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Abstract

In this paper, we study the computation of the sign of the determinant of a
large matrix as a byproduct of the preconditioned GMRES method when applied to
solve the linear systems arising in the discretization of partial differential equations
(PDEs). Convergence is proved using not the eigenvalues but the singular values of
the PDE operator when premultiplied by a preconditioner. Numerical experiments
are presented where the technique is applied to detect and locate pitchfork and
transcritical bifurcation points on a one parameter dependent system. With an
appropriate selection of the initial guess in the GMRES method, the technique is
shown to accurately locate bifurcation points.

Mathematics Subject Classification: 65F40, 15A60, 65P30, 35B60, 65N35, 65F10.

Keywords and Phrases: Determinants, Arnoldi decomposition, compact operators in
Hilbert spaces, spectral methods for PDEs, continuation methods, bifurcation location.

1 Introduction

Much of the well-developed numerical techniques to study the bifurcations of dynamical
systems in Rm (see e.g., [10], [25], [35], [36]) are inapplicable or have their computational
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efficiency greatly diminished when the systems arise from the discretization of partial
differential equations (PDE). One of the reasons for this is the impossibility of storing
and factoring m × m matrices for m large. Although discretizations by finite-element
or finite-difference methods usually give rise to sparse matrices, this is not usually the
case of spectral methods when applied to nonlinear equations. In these cases, for the
Linear Algebra problems to be solved in the study of the dynamical systems (solution of
systems of linear equations, eigenvalue computation, etc) one must resort to matrix-free
methods based only on matrix vector products (plus preconditioning) without explicitly
building the matrices involved. Iterative matrix-free methods for solving linear systems
or computing eigenvalues are well-established today [16], [26], and are regularly used in
the studies of large dynamical systems (see e.g. [11], [14], [13], [28], [29]). However, to our
knowledge, no matrix-free method has been studied for the computation of determinants,
which, in the study of one-parameter dependent dynamical systems, can be used for
detection and location of pitchfork and transcritical bifurcations.

In this paper, we study the computation of the sign of the determinant of a large
matrix as a byproduct of the GMRES method [33] for solving linear systems. The
matrices we deal with arise from the discretization of one parameter-dependent partial
differential equations (PDE) problems. The PDE problems we consider are of the form

find u ∈ H, µ ∈ R, such that f(u, µ) ≡ Au+R(u, µ) = 0, (1)

where H is a Hilbert space (typically L2(Ω) for some domain Ω ⊂ Rd) A is an operator
such as the Laplacian, the biharmonic operator or some other elliptic operator, subject
to appropriate boundary conditions, and R(·, λ) is a nonlinear differential operator with
D(R(·, µ)) ⊂ D(A), so that the Fréchet differential of A−1R(·, µ) is compact. This is
typically the case when the derivatives featuring in R are of lower order than those
in A. The solutions of (1) will be assumed to be sufficiently smooth so that standard
discretizations by spectral, finite-element or finite-difference methods converge.

We will also assume that a fast solver is available for A or its discretization, as it is
usually the case of spectral methods, and thus, A can be used as a preconditioner. This
assumption is for simplicity, since the results here apply also when more sophisticated
preconditioners are used.

Although in practice the GMRES method is applied to solve linear systems in Rm,
following [9], [13], we will analyze first the case where the coefficient matrix is replaced
by compact perturbation of the identity in a Hilbert space, in order to deduce results
in Rm independent of the value of m.

In Section 2, besides preliminary material, we introduce an approximation to the
determinant of a matrix by means of the Arnoldi decomposition. In Section 3 we analyze
how correctly the Arnoldi decomposition reproduces part of the spectrum of an operator.
Borrowing from [31], singular values rather than eigenvalues will be a key element in
the convergence result in Theorem 4. In Section 4 we deal with issues of practical
implementation. Section 5 contains numerical experiments where the previous material
is applied to locate pitchfork and transcritical bifurcations. The last section is devoted
to conclusions and further remarks.
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2 Preliminaries

2.1 Discretization and Continuation

In the discretization of (1) by spectral methods, a complete orthonormal set p1, p2, . . .
of H is given. Typically, the pj are the Fourier modes, their real or imaginary parts,
Legendre or Chebyshev polynomials, eigenfunctions of some boundary value problem
or tensor products of these functions. Let us denote Hm = span(p1, . . . , pm−1), and let
Pm : H → Hm be the orthogonal projection onto Hm. Although it is not always the
case, quite frequently PmA = APm. Thus, for simplicity, we make this assumption, the
reader bearing in mind that only minor modifications of what follows apply to a more
general case. Problem (1) is then replaced by the family of problems

find um =

[

um
µ

]

∈ Hm × R s.t. f (m)(um) ≡ Aum + PmR(um) = 0. (2)

Here and in the sequel, we reserve boldface characters for elements of

Ĥ = H× R;

similarly, for simplicity we will drop the subindex m and the superindex (m) when no
confusion arises.

As mentioned in the introduction, we assume that the Jacobian matrix f
(m)
um is full

but the mapping
v 7→ f (m)um v

can be computed at a cost of O(m log(m)) flops with Fast Fourier Transform (FFT)

techniques, and without explicitly building f
(m)
um .

Solutions of (2), when not isolated, appear in branches s 7→ u(s) ∈ Ĥ for certain
parameter s such as the arclength. A discrete set of points is computed sequentially
along the branch. A much-used technique is Keller’s pseudo-arclength continuation [22],
[23], [25], which requires at every step the solution of the system

F (m)(u, µ) =

[

f (m)(u, µ)
(tr, (u− ur))− δr

]

=

[

0
0

]

= 0, (3)

where ur is a reference point, typically the most recently available solution of (2), tr is an
approximation to the tangent t(s) = du(s)/ds of the branch at ur, δr is the corresponding
increment along this tangent, and (·, ·) denotes the inner product in the Hilbert space Ĥ

(x1,x2) = 〈u1, u2〉+ µ1µ2,

〈·, 〉 being the inner product in H.
System (3) is typically solved by Newton’s method. This requires to solve systems of

the form
Fud = −F. (4)

Of the various methods to solve (4) based on v 7→ Fuv operations (see e.g. [16]) we focus
on the GMRES method [33], although our discussion covers other methods based on the
Arnoldi decomposition of a matrix such as ORTHORES [20].
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Note however that the systems in (4) arise from the discretization of PDEs, and thus,
are typically ill-conditioned. This ruins the computational efficiency of the GMRES
method. For this reason, preconditioning is used in practice. Here, we consider left-
preconditioning, which amounts to replace the systems in (4) by P−1Fud = −P−1F ,
where the preconditioner P is a matrix (hopefully) close to Fu and easily invertible. For
simplicity, we take as preconditioner the operator P defined by

P
[

u
µ

]

=

[

Au
µ

]

. (5)

Typically, when using spectral methods, fast solvers are available for P . In fact, in
Fourier spectral methods, P is a diagonal matrix.

2.2 Arnoldi decomposition

In an Arnoldi decomposition of an operator A such as P−1Fu, starting from an initial
vector v1 (for a linear system Ax = b, v1 = (b−Ax0)/ ‖b− Ax0‖, for an initial approx-
imation x0 to x), a sequence of orthonormal vectors, the Arnoldi vectors , is obtained
recursively by

vk+1 =
(I − PVk

)Avk
‖(I − PVk

)Avk‖
, k = 1, 2, . . . , L− 1, (6)

where Vk is the k-dimensional Krylov subspace

Vk = span(v1, . . . ,vk), (7)

and where here and in the sequel PV denotes the orthogonal projection onto the sub-
space V of Ĥ. The integer L in (6) is such that (I − PVL

)AvL = 0. In fact, it is easy to
check that VL is the minimal subspace invariant by A containing v1.

Denoting by Vk the row vector Vk = [v1, . . . ,vk] with entries in Ĥ, from (6) follows
the Arnoldi decomposition of the operator A,

AVk = Vk+1H̃k = VkHk + [0, . . . ,0, hk+1,kvk+1], (8)

where H̃k is a (k + 1) × k matrix, and Hk is the k × k matrix obtained from H̃k by
deleting the last row. The entries hi,j of H̃k are given by

hi,j = (vi, Avj), 1 ≤ i ≤ k + 1, 1 ≤ j ≤ k.

Observe thatHk is the matrix of the operator PVk
A|Vk , given by the restriction of PVk

A
to the subspace Vk, expressed in the basis of the Arnoldi vectors v1, . . . ,vk.

For solving a linear system Ax = b, the GMRES method approximates x by xk, found
by solving the least-squares problem minxk∈Vk

‖b− Axk‖, and the ORTHORES [20]
method approximates x by xk ∈ Vk such that the residual b−Axk is orthogonal to Vk.
In practical implementations, the matrices H̃k are explicitly built in a sequential process,
starting from k = 1 and stopping when the residual ‖b− Axk‖ / ‖b‖ satisfies a prescribed
tolerance test.
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2.3 Bifurcation detection via determinants

Typically, solutions of (1) (or, in practice, (2)) are the equilibria or steady-states of
evolution equations of the form ut = f(u, µ), for a given value of µ. It is of interest
then to know how many such steady-states exist for a given value of µ, their asymptotic
stability, the appearance of periodic orbits (Hopf bifurcations) etc. A steady-state u is
asymptotically stable if all the eigenvalues of the Fréchet derivative fu(u, µ) have nega-
tive real part. Thus, if when approximating branches of equilibria by solving (3), one is
also interested in their stability, the spectrum of fu or its most relevant part [26], [27],
must be computed. This not only provides information on the stability of equilibria,
but also informs about saddle–node bifurcations, the appearance of periodic orbits in
Hopf bifurcations as well as crossings of two branches of equilibria at branching points
in pitchfork or transcritical bifurcations. In branching points, not only fu has a zero
eigenvalue, but also one eigenvalue of Fu changes sign along any of the two crossing
branches. The bifurcation point can then be located by finding the zero of the small-
est eigenvalue or, as in [1], [2], the smallest singular value of Fu, or even by solving
some generalized eigenvalue problem as in [13]. Also, due to the ill-conditioning of Fu,
shift-invert techniques [30] (i.e. solving linear systems) are usually required when more
sophisticated techniques [26] are used to locate the smallest eigenvalue of Fu.

The same approach can be used to study bifurcations of some solutions different from
steady-states, like periodic solutions and invariant tori. There are different approaches
to reduce these problems to fixed point problems, u = f(u, µ), in suitable spaces (see
[21], [34], [37], and references therein).

However, since eigenvalue computations are in general much more costly than solving
linear systems, specially when the dimension m − 1 in (2) is large, it is useful in many
instances to compute first all branches of equilibria so that the study of stability can
be focused on places of most interest at a later stage (although it is advisable to do
some eigenvalue computations, at least at bifurcation points, since besides providing
important geometric information, they help to better focus the stability computations).
In order to do this, it is necessary to be able to detect and locate branching points
without computing the most relevant part of the spectrum of fu or Fu.

Detection of branching points can be done by monitoring sign(det(Fu)) and, for their
location, there are robust techniques based on augmented systems of larger dimension
than (3), [3], [18], [42], although they require more than providing the computation of f
and the action of fu. Location of branching points can also be done by by finding the
zero of sign(det(Fu)) with the help of the bisection method (to avoid possible overflow
or underflow, it is advisable to compute sign(det(Fu)) rather than det(Fu) [10], despite
computing the logarithm of |det(Fu)| can reduce the number of iterations when locating
a bifurcation point as a zero of det(Fu)). This is particularly appealing if sign(det(Fu))
can be obtained at little cost as a byproduct of Newton’s method when solving (3), as
it is suggested in [10]. Such is the case if m is small and Gaussian elimination is used to
solve the linear systems (4).

When an iterative method based on an Arnoldi decomposition of A = P−1Fu is used
to solve (4), the following argument suggests how to approximate sign(det(Fu)). Since
Hk is a matrix representation of PVk

A|Vk , and V1 ⊂ V2 ⊂ . . . with increasing dimensions,
for the larger k reached in the iterative solution of (4), we may take

χk = sign(det(P))sign(det(Hk)) (9)
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as an approximation to sign(det(Fu)). Next section will show that under certain hy-
pothesis this approximation is correct. We end this section commenting on how readily
available is this approximation in the standard implementations of the GMRES method.

In practice, the matrices H̃k are reduced to upper triangular form by means of or-
thogonal transformations,

QkH̃k = R̃k =

[

Rk

0T

]

,

where Rk is k× k and upper triangular. The transformation Qk is built recursively as a
product of Givens rotations,

Qk = Gk

[

Qk−1 0
0T 1

]

, k = 1, . . . , L− 1,

where if we express
[

Qk−1 0
0T 1

]

H̃k =





Rk−1 rk
0T ηk
0T hk+1,k



 , (10)

then

Gk =





Ik−1 0 0
0T ck sk
0T −sk ck



 , ck =
ηk

√

η2k + h2k,k+1

, sk =
hk,k+1

√

η2k + h2k+1,k

. (11)

In view of (11), we observe that for l = 1, . . . , L− 1, det(Gl) = 1, and, consequently,
det(Ql) = 1. Thus, in view of (10), we have that det(Hk) = ηkdet(Rl−1). But, due to
the way the matrices Gl, l = 1, . . . , L− 1 are built, we deduce that all diagonal elements
of Rk−1 are positive. Consequently,

sign(det(Hk)) = sign(ηk) = sign(ck), k = 1, . . . , L− 1. (12)

Generally, routines for the GMRES method provide as optional output the sequence of
values cl and sl, so that no extra computation is needed to estimate sign(det(Fu)).

3 Convergence Analysis

Although in practice, computations are carried out in finite-dimensional spaces, we will
gain the right perspective of what happens in practice by first analyzing the estimate
sign(det(Hk)) ≈ sign(det(P−1Fu)) in the Hilbert space Ĥ, that is, the casem =∞ in (2),
where H∞ = H and P∞ = I (further below we explain how to get rid of determinants,
which, in general, are not defined for operators in infinite-dimensional spaces). This is
not unnecessary artificial since, as discussed in [12], any possible pathological behaviour
of Krylov methods is attainable in finite-dimensional spaces. The following matrix, used
in [19] to show that the GMRES method may achieve the worst possible convergence
sequence, also shows that the approximation sign(det(Hk)) ≈ sign(det(A)) is completely
wrong until the final step k = m. Consider the matrix,

A =















0 0 . . . 0 −α0
1 0 . . . 0 −α1
0 1 0 −α2
...

. . .
...

...
0 0 1 −αm−1















.
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Taking as v1 the first coordinate vector in Rm, the resulting matrices Hk are the upper-
left k× k submatrices of A. Thus, for k = 1, . . . ,m− 1, det(Hk) = 0 6= (−1)msign(α0) =
sign(det(A)). We will see that this situation cannot happen in the infinite-dimensional
case, and then thanks to the convergence properties of the discretization, it will be
excluded also for m <∞.

3.1 The infinite-dimensional case

The mappings f (m) in (2) are approximations to the mapping in H given by f(u, µ) =
Au+ R(u, µ). For a given solution (u, µ) of (1), let us denote by Ru(u, µ) and Rµ(u, µ)
the Fréchet derivatives of R with respect to u and µ, respectively, and let us consider
the operator in Ĥ given by

Av = A

[

v
δ

]

=

[

v +A−1Ru(u, µ)v + δA−1Rµ(u, µ)
(t,v)

]

,

where

t =

[

t
τ

]

is a unit vector such that fu(u, µ)t+fµ(u, µ)τ = 0. Observe then that, since the solutions

(um, µm) of (2) converge to (u, µ) as m→∞, the operators P−1F
(m)
u converge to A.

As mentioned in the introduction, we assume that the operator in H given by
A−1Ru(u, µ) is compact. Thus, it is clear that the operator A can be written as

A = I + T,

where T is a compact operator in Ĥ.
For a compact operator K let us denote by σ(I +K) the spectrum of (I +K). It is

well-known that σ(I +K) is composed of a sequence of isolated eigenvalues converging
to 1, together with λ∞ = 1. Let us also denote

σ−(I +K) = σ(A) ∩ {Re(z) < 0}, σ+(I +K) = σ(A) ∩ {Re(z) ≥ 0},
the set of eigenvalues of I + K with negative and non negative real part respectively.
Observe that σ−(I + K) is a finite set. For an isolated eigenvalue λ ∈ σ(I + K), the
invariant subspace Eλ associated with λ is the range of Pλ

Eλ = R(Pλ), Pλ =
1

2π

∫

|z−λ|=δ
(zI − (I +K))−1 dz,

for δ > 0 such that σ(I + K) ∩ {z ∈ C | |z − λ| ≤ δ} = {λ}. Since K is compact,
dim(Eλ) <∞, and it is known as the algebraic multiplicity of λ (see e. g. [24]).

For operators in infinite-dimensional spaces, it is not generally possible to extend the
idea of determinant [24], § X.1.4. Thus, we consider instead the orientation. If (I +K)
is invertible, we define the orientation of I +K as

or(I +K) = (−1)d(K), d(K) =
∑

λ∈σ−(I+K)
dim(Eλ). (13)

Observe that if K is an operator in a finite-dimensional space (and, hence, compact)
or(I +K) = sign(det(I +K)).

The following result is a consequence of Theorem 3.11 and Remark 3.2 in [24], § IV.5,
and [24], § I.4.6.
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Theorem 1 Let K be a compact operator such that −1 6∈ σ(K), and Γ a closed curve
in {z ∈ C | Re(z) < 0} such that is interior encloses σ−(I +K) and no other eigenvalue
I +K. If B is a bounded operator such that

‖B‖ ≤ 1

2minξ∈Γ ‖(ξI − (I +K))−1‖ , (14)

then
or(I +K +B) = or(I +K).

Let us consider now (vk)
∞
k=1, the sequence of Arnoldi vectors of I + T , that is the

vectors obtained by the process in (6–8). Recall then that Hk is the matrix of PVk
(I +

T )|Vk . Let us denote by V the minimal closed invariant subspace containing the first
Arnoldi vector v1, that is

V = ∩v1∈XX , X subspace of Ĥ, and TX ⊂ X , (15)

where X denotes the closure of the set X. If the subspace V is finite-dimensional, then
the Arnoldi process finishes in a finite number of steps.

We consider the operators

Tk = PVk
TPVk

, k = 1, 2, . . . .

It is clear then that
sign(det(Hk)) = or(I + Tk).

Observe also that, since (vk)
∞
k=1 is a complete orthonormal set in V , we have that

lim
k→∞

(I + Tk) = (I + T )|V ,

Thus, taking K = T|V in Theorem 1, we have the following result.

Theorem 2 If
⋃

λ∈σ−(I+T )∩R

Eλ ⊂ V , (16)

then limk→∞ sign(det(Hk)) = or(I + T ).

Remark 1 Observe that since V is an invariant subspace of I +T , if (16) does not hold
and, then limk→∞ sign(det(Hk)) = or

(

(I + T )|V
)

.

3.2 Results for the discretization

The same arguments that lead to Theorem 2 also show that sign(det(P−1F
(m)
um ))→ or(T ),

as m → ∞. However notice that this only guarantees that the approximation (9) is
correct when k = m. In practice, though, this is an undesirable situation since one usually
aims at k ¿ m in the GMRES method from which we obtain the approximation (9).

The purpose of this section is to show that the correct value of sign(det(P−1F
(m)
um )) is

obtained for k ¿ m.
As in the previous section we denote as (vk)

∞
k=1 the Arnoldi vectors of (I + T ),

Vk their Krylov subspaces and H̃k and Hk the corresponding matrices of the Arnoldi
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decomposition. Besides, in this section, for every m = 1, 2, . . . , we denote (v
(m)
k )mk=1 the

Arnoldi vectors of ((I + PmT )|Hm
), V (m)k their Krylov subspaces and H̃

(m)
k and H

(m)
k the

corresponding matrices of the Arnoldi decomposition. Notice that (I + PmT )|Hm
does

not coincide with P−1F
(m)
um since the former has the term PmA−1Ru(u, µ) and the later

PmA−1Ru(um, µ). However, since um → u as m → ∞, all results about (I + PmT )|Hm

apply also to P−1F
(m)
um . Similarly, for simplicity, we will assume that v

(m)
1 = Pmv1,

although any other values satisfying
∥

∥v1 − v(m)1

∥

∥→ 0 as m→∞ may be taken.
The main result of this Section is Theorem 4 below. Its proof will be a consequence

of preliminary results which are presented next.

Lemma 1 Let X ⊂ Y and U be closed subspaces of the Hilbert space Ĥ satisfying that
for some positive εs < 1,

‖PXu‖ ≥
√

1− ε2s ‖PYu‖ , ∀u ∈ U . (17)

Then, for every y ∈ Y such that PXy = 0 the following bound holds:

‖PUy‖ ≤ εs ‖y‖ . (18)

Proof . We write

y = (I − PU)y + PUy (19)

= (I − PU)y + (I − PY)PUy + PYPUy

= (I − PU)y + (I − PY)PUy + (I − PX )PYPUy + PXPYPUy. (20)

Taking inner product with y we have

‖y‖2 = ‖(I − PU)y‖2 + (y, (I − PX )PYPUy). (21)

Since PXPYPUy = PXPUy and PUy ∈ U , (17) implies that ‖(I − PX )PYPUy‖ ≤ εs ‖PYPUy‖ ≤
εs ‖PUy‖, so that from (21) it follows that ‖y‖2 ≤ ‖(I − PU)y‖2+εs ‖y‖ ‖PUy‖, and hence,

‖(I − PU)y‖2 ≥ ‖y‖2 − εs ‖y‖ ‖PUy‖ . (22)

Going back to (19), by Pythagoras Theorem we have ‖y‖2 = ‖(I − PU)y‖2 + ‖PUy‖2,
and, taking into account (22), it follows that

0 ≥ ‖PUy‖2 + εs ‖y‖ ‖PUy‖ ,

from where (18) follows.

We remark that for (17) to hold, it must be dim(PYU) ≤ dim(X ). In fact, if dim(U) <
+∞ (which will be the case in the analysis that follows), εs = sin(θ), θ being the smallest
principal angle between U and X (see e.g. [15], § 12.4.3).

We need the singular value decomposition of an operator. Let K a compact operator
in a Hilbert space and let σ21 ≥ σ22 . . . , the eigenvalues (counted with their multiplicities)
of K∗K. Let u1, u2, . . . , be the complete orthonormal set of the associated eigenvectors
and, for j = 1, 2, . . . , let us denote wj = σ−1j Kuj, and u∗j the functional given by the
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inner product u∗x = (u, x). The singular value decomposition (SVD) of K is the one
given by

K =
∞
∑

j=1

σjwju
∗
j .

Notice that ‖K‖ = σ1. For a given ε > 0 let

U ε = span{uj | σj ≥ ε}. (23)

Observe that relevant information about an operator is provided by the singular
vectors. However, in practice, we have the Arnoldi vectors instead. The following two
results aim at establishing when the properties of the singular vectors are enjoyed in
some sense by the Arnoldi vectors.

Lemma 2 Let X ⊂ Y be closed subspaces of Ĥ and 0 < εs < 1 such that ‖PXu‖ ≥
√

1− ε2s ‖PYu‖, for all u ∈ U ε. Then, for every y ∈ Y such that PXy = 0,

‖Ky‖ ≤
(

ε2s ‖K‖2 + ε2
)1/2

‖y‖ . (24)

Proof. Let y be such that PXy = 0 and let us denote u = PUε
y and z = (I − PUε

)y so
that y = u+ z. We have that

‖Ky‖2 = ‖Ku‖2 + ‖Kz‖2 ≤ σ21 ‖u‖2 + ε2 ‖z‖2 = ‖K‖2 ‖u‖2 + ε2 ‖z‖2 .

Applying Lemma 1 and taking into account that ‖z‖ ≤ ‖y‖, (24) follows.

Theorem 3 For every 0 < ε ≤ 1 there exist positive integers k1 and m1 given by (27),
(28) below, such that the Arnoldi vectors (vk)

∞
k=1 of I + T satisfy

‖Tvk‖ ≤ ε, for k ≥ k1, (25)

and for m ≥ m1, the Arnoldi vectors (v
(m)
k )∞k=1 of I + PmT satisfy

∥

∥PmTv
(m)
k

∥

∥ ≤ ε, for k1 ≤ k ≤ m. (26)

Proof. If ‖T‖ < ε both (25) and (26) follow trivially. Hence, we can assume ‖T‖ ≥ ε.
We take

ε1 =
ε√
2
, εs =

ε√
2 ‖T‖

.

Let T = Σ∞
j=1σjwju

∗
j be a SVD of T and let us consider U ε1 = span{uj | σj ≥ ε1}.

Since in the invariant subspace V defined in (15), PVk
→ I as k → ∞, there exists

an integer k1 such that

∥

∥

∥
PVk1

u
∥

∥

∥
≥

√

1− ε2s
2
‖PVu‖ =

√

1− ε2

4 ‖T‖2
‖PVu‖ , for all u ∈ U ε1 . (27)

Now, we apply Lemma 2 with K = T , X = Vk1 and Y = V , to get that,

‖Ty‖ ≤
(ε2

4
+
ε2

2

)1/2

‖y‖ ≤ ε ‖y‖ , for y ∈ (I − PVk1
)V ,

10



which implies (25).
We now prove (26). Since the generation of the Arnoldi basis (vk)

∞
k=1 is, for a fixed k,

a continuous mapping of v1, and Pm → I as m→∞, there exists a m1 such that

∥

∥PV(m)
k1

− PVk1

∥

∥ ≤ ε2s
8

=
ε2

16 ‖T‖2
, for all m ≥ m1. (28)

Let us consider now m ≥ m1, and let us denote by V (m) the minimal T -invariant
subspace containing the first Arnoldi vector v

(m)
1 . For u ∈ U ε1 , let us denote v = PV(m)u.

In view of (27–28), we have

∥

∥PV(m)
k1

u
∥

∥ =
∥

∥PV(m)
k1

v
∥

∥ ≥
∥

∥PVk1
v
∥

∥−
∥

∥(PV(m)
k1

− PVk1
)v
∥

∥ ≥
√

1− ε2s
2
‖v‖ − ε2s

8
‖v‖ .

A simple calculation shows that
√

1− ε2s/2− ε2s/8 ≥
√

1− ε2s, so that

∥

∥PV(m)
k1

u
∥

∥ ≥
√

1− ε2s ‖PV(m)u‖ , u ∈ Uε1 , m ≥ m1. (29)

For k1 ≤ k ≤ m, we have V (m)k1
⊂ V (m)k , so that ‖PV(m)

k

u‖ ≥ ‖PV(m)
k1

u‖, and, hence, (29)
holds with k1 replaced by k. Thus, applying Lemma 2 with K = T , X = V (m)k and
Y = V (m), for k1 ≤ k ≤ m we have that

‖Ty‖ ≤
(ε2

2
+
ε2

2

)1/2

‖y‖ = ε ‖y‖ , for y ∈ (I − PV(m)
k

)V (m), m ≥ m1,

which, taking into account that ‖PmTy‖ ≤ ‖Ty‖, implies (26).

The following result states sufficient conditions for the sequence sign(det(Hk)), k =
1, 2, . . . , to become stationary. This has to be so if the sequence sign(det(Hk))

∞
k=1 is to

converge to the orientation or(I + T ).

Lemma 3 Assume that the value of sk in (11) satisfies that |sk| < 1/
√
2. If ‖Tvk+1‖ <

1/
√
2, then

sign(det(Hk+1)) = sign(det(Hk)). (30)

Proof. Since in (12) we saw that sign(det(Hk)) = sign(ηk) = sign(ck), we will show that
sign(ηk+1) = sign(ck). Recall (10–12), and let us write





Qk−1 0 0
0T 1 0
0T 0 1



 H̃k+1 =









Rk−1 rk f
0T ηk γ
0T hk+1,k hk+1,k+1
0T 0 hk+2,k+1









.

Observe that
[

f
γ

]

=

[

Qk−1 0
0T 1

]







h1,k+1
...

hk,k+1






,

and thus
(‖f‖2 + |γ|2)1/2 =

∥

∥PVk
(I + T )vk+1

∥

∥=
∥

∥PVk
Tvk+1

∥

∥, (31)

11



so that

(‖f‖2 + |γ|2)1/2 =
(

‖(I + T )vk+1‖2 − |1 + (vk+1, Tvk+1)|2 − |hk+2,k+1)|2)
)1/2

.

On the other hand,

ηk+1 = ckhk+1,k+1 − skγ = ck +
(

ck(vk+1, Tvk+1)− skγ
)

. (32)

Thus, ηk+1 and ck will have the same sign if the last term on the right-hand side above
is sufficiently small. Applying Holder’s inequality and recalling (31) we have that

|ck(vk+1, Tvk+1)− skγ| ≤ (c2k + s2k)
(

|(vk+1, Tvk+1)|2 + |γ|2
)1/2

≤
(

|(vk+1, Tvk+1)|2 + ‖PVk
Tvk+1‖2

)1/2

≤
(

‖Tvk+1‖2 − |hk+2,k+1|
)1/2

<
1√
2
< |ck| , (33)

and thus, sign(ηk+1) = sign(ck).

Lemma 3 guarantees the same sign for the determinants of Hk and Hk+1 provided
‖Tvk+1‖ and sk are small. Theorem 3 gives conditions to ensure that ‖Tvk+1‖ is small.
For the smallness of sk, Lemma 6.11 in [12] states that

|sk| ≤
∥

∥(I + T )−1
∥

∥ |(vk+1, Tvk+1)| , k = 1, 2, . . . . (34)

Thus, choosing

ε =
1√

2max(1, ‖(I + T )−1‖)
, (35)

Theorem 3 and (34) allow us to conclude the following result.

Theorem 4 Assume that (16) holds and let T =
∑∞

j=1 σjwjPuj be a SVD of T . For ε

defined in (35) set Uε/√2 = span{uj | σj ≥ ε/
√
2}. Choose k1 such that

∥

∥PVk1
u
∥

∥ ≥
(

1− ε

4 ‖T‖2
)1/2

‖u‖ , for all u ∈ Uε/√2.

Then, sign(det(Hk)) = sign(det(Hk1)) = or(T ), for all k ≥ k1.
Furthermore, choose m1 such that

∥

∥PV(m)
k1

− PVk1

∥

∥ ≤ ε2

16 ‖T‖2
, for all m ≥ m1.

Then, sign(det(H
(m)
k )) = sign(det(H

(m)
k1

)) = or(T ), for all k1 ≤ k ≤ m, and m ≥ m1 .

Notice that, it is also possible to findm2 ≥ m1 such that form ≥ m2, sign(det(H
(m)
k ))

= sign(det(Hk)), for k = 1, . . . ,m. This value will obviously depend on factors such as
the rate of decay of ‖(I − Pm)T‖.

Remark 2 As argued in (34–35), the fact that det(H
(m)
k ) has the correct sign relies in

‖Tvk+1‖ being sufficiently small, which, according to the proof of Theorem 3, is attained
for k sufficiently large. Observe then that, in view of (34), in order to guarantee the
hypothesis |sk| < 1/

√
2 in Lemma 3, k may have to be quite large if I + T is close to

singular. We will refer to this remark when commenting our numerical tests.

12



4 Practical implementation

In practice, χk = sign(det(P))sign(det(H (m)
k )) may easily fail to change sign at a branch-

ing point u(s0) in a branch of equilibria s 7→ u(s) whenever this branch is in an invariant
subspace shared by both F and the preconditioner P . This scenario is typical when f is
equivariant by an appropriate group Γ of symmetries (see e.g., [6], [7], [17]), that is

f(Su, µ) = Sf(u, µ), S ∈ Γ, µ ∈ R, (36)

where, for the purposes of the present section, we may assume that Γ is a group of
isometric operators in H. The fixed space of Γ,

E = {u ∈ H | Su = u, ∀S ∈ Γ},

is then invariant by f and its differential fu.
For a branch s 7→ u(s) ∈ Ê = E × R, branching takes place at u0 = u(s0) if, for

instance, besides some further assumptions [6], § 2.3.2, a single eigenvalue of fu changes
sign at s0 and

Ker(fu(u0, µ0)) = span(v), v /∈ E . (37)

For example, a symmetry-breaking pitchfork bifurcation happens if Sv = −v for some
S ∈ Γ with S2 = I.

Notice then that, in spite of u0 being a singular point of f : H × R → H, however,
since E is an invariant subspace of f , (37) implies that u0 is a regular point of f as a
mapping from E × R onto E .

Now recall how the mapping F in Keller’s pseudo-arclength continuation technique
is built in (2–3), and then it is a simple exercise to check that from (36) it follows that,
in the case m = ∞, Ê is invariant by F and Fu. If, in addition, Ê is also invariant by
the preconditioner P , we also have

−P−1F (u) ∈ Ê , ∀u ∈ Ê , P−1Fu(u)x ∈ Ê , ∀u ∈ Ê , ∀x ∈ Ê . (38)

Furthermore, let us denote

v =

[

v
0

]

, t0 =
du

ds
(s0),

where v is the same as in (37). Ovserve that t0 ∈ Ê and v /∈ Ê . On the other hand, a
simple calculation shows that for some α ∈ R,

Ker(Fu(u0)) = Ker(P−1Fu(u0)) = span(v + αt0), v + αt0 /∈ Ê . (39)

Since t0 ∈ Ê , it follows that v + αt0 /∈ Ê , that is, no eigenvalue of the restriction to Ê
of Fu chages sign at the bifurcation point u0.

Now, when using Newton’s method to solve equations (2–3) (for m = ∞) along the
branch s 7→ u(s) ∈ Ê , in the corresponding linear systems (4), if the initial guess u[0] for
Newton’s method satisfies that u[0] ∈ Ê (which will hold if u[0] is computed by any of
the standard extrapolation procedures used in practice), and if the initial guess x0 in the
GMRES method is also taken in Ê (which will be so if x0 = 0) then, the first residual

13



r0 = −P−1(F +Fux0) is also in Ê . Since the first Arnoldi vector v1 is proportional to r0,
it follows that the minimal invariant subspace V containing v1 satisfies that

V ⊂ Ê . (40)

Thus, according to Remark 1, the value of sign(det(Hk)) for k sufficiently large, will
not be that of the orientation of P−1Fu, but that of its restriction to V ⊂ Ê , where, as
shown in (39), no eigenvalue changes sign at u0. In other words, since all computations
are carried out in the invariant subspace Ê , these show that u0 is a regular point of f :
E ×R→ E , but not a singular point of f as a mapping from H×R onto H. This is also
the case of a symmetry-breaking double turning point, where, instead of (37), we have
Ker(fu(u0, µ0)) = span(v, (du/ds(s0)), v /∈ E and fµ not in the range of fu(u0, µ0).

In practical computations, the discretizations by spectral methods usually inherit the
symmetries of f , that is,

f (m)(Sum, µ) = Sf (m)(um, µ), S ∈ Γ, µ ∈ R, (41)

so that (38) holds with F , u and Ê replaced F (m), um and Ê ∩ Hm respectively. Thus,

the arguments above also show that χk = sign(det(P))sign(det(H (m)
k )) will fail to change

sign when crossing a branching point. Indeed, as shown in Section 5 below, it may be
even worse, since round-off and discretization errors may induce χk to suffer spurious
change of signs.

A simple remedy is to “pollute” the initial guess x0 in the GMRES method so
that x0 6∈ Ê . Now observe that Ê is a proper subspace of Ĥ. Thus the probability
of any given vector to be in Ê is 0. Consequently, a random initial guess suffices to
take x0 out of Ê (see (47) in next section).

An alternative to taking an initial random guess x0 in the GMRES method may be
implemented if, a priori, it is known in which fixed subspace E is the branch s 7→ u(s). In
the case of a Z2 symmetry, that is, when Γ = {I, S}, so that S2 = I, it is observed in [42]
that, in many practical instances, it is straightforward to code f (m) as a mapping f (m) :
E (m) × R→ E ∩Hm, where E (m) = E ∩ Hm. Besides, in this case, S(m) can be naturally
decomposed as

Hm = E (m) ⊕ E (m)a , E (m)a = {u ∈ Hm | Su = −u},

In [42] it is shown that if the system f(u, µ) is augmented with a new variable p ∈ Ea,
and with the equations fu(u, µ)p = 0, and (l, p) = 1, for a suitable l ∈ Ea, the resulting
system G(u, p, µ) has an isolated solution in a symmetry-breaking bifurcation point.

Coding f
(m)
um as an operator in E (m)a brings a substantial reduction in computational cost

when solving the discretization of G(u, p, µ) = 0. Similar strategies are followed in [8]
in the case of a Z2 × Z2 symmetry, that is when Γ is the group generated by S1 and S2
such that S21 = S22 = I.

Substantial computational costs can be obtained also in pseudo-arclenth continuation
by coding F (m) as a (nonlinear) operator in E (m) × R. In order to detect a symmetry
breaking bifurcation point, we may use the following strategy. After computing a point
um on the branch, we can compute the sign of the determinant of P−1F

(m)
um (um). This

can be done as described in Section 2.3, if we solve by the GMRES method the system
P−1F

(m)
um x0 = b, where b = P−1F

(m)
um x0, for a random vector x0 ∈ E (m)a × R, and if

14



the action of P−1F
(m)
um is coded as that of an operator in E (m)a × R. In the case of

a Z2 × Z2 symmetry, to such systems must be solved, with the action of F
(m)
um coded as

an operator in E (m)a,j × R, j = 1, 2, where E (m)a,1 = {u ∈ H | S1x = −x, S2x = x} and

E (m)a,2 = {u ∈ H | S1x = x, S2x = −x}.

5 Numerical experiments

In this section we test numerically how correctly χk = sign(det(P))sign(det(H (m)
k )) ap-

proximates sign(det(F
(m)
um )) and the capabilities of this approximation to locate pitchfork

and transcritical bifurcation points. The value of k is that produced by the GMRES
method for the system Ax = b, under the stopping criterion

‖b− Ax‖ / ‖b‖ ≤ TOLMR. (42)

We initially set the value of the prescribed tolerance TOLMR to TOLMR = 5 × 10−4.
We will duly point out when and why this value is altered.

For numerical experiments, we consider the following Bérnard convection problem.
Let Ω = [−1/2, 1/2] × [0, 1], and consider the following system of partial differential
equations in the variables u = u(y, z), v = [v1(y, z), v2(y, z)]

T , p = p(y, z).

ut +
√
µv(∇u− e3) = ∆u,

−∇p− v +√µue3 = 0,
∇ · v = 0,

−∇u · n = 0, y = ±1
2
, z ∈ [0, 1],

u = 0, y ∈ [−1/2, 1/2], z = 0, 1,
v · n = 0, (y, z) ∈ ∂Ω,

(43)

where n represents the outward normal vector, e3 = [0, 1]T is the vertical unit vector,
and µ is a scalar parameter.

This systems models two-dimensional flow in a closed box, filled with fluid-saturated
porous material, heated from below and cooled from above and subject to gravity (see
e.g. [8], [17], [32], [38], [39] and the references cited therein). The variable u represents
the deflection from the linear temperature distribution Tl(y, z) = T0(1 − z), T0 being
the temperature jump between top and bottom walls. The variables v and p represent,
respectively, the velocity and pressure of the fluid, and the parameter µ = Ra stands for
the Rayleigh number.

A simple application of the divergence theorem shows that the velocity v and the
pressure ∇p are orthogonal in L2(Ω), so that v can be expressed as v = v(u). Thus, the
system can be entirely written as an equation in terms of u, and steady-state solutions
satisfy,

f(u, µ) ≡ −∆u+
√
µv(u) · (∇u− e3) = 0. (44)

Observe that the eigenfunctions of the Laplacian operator subject to the boundary
conditions imposed on u in (43) are

pj,k = cos(πj(y +
1

2
)) sin(πkz), j = 0, 1, . . . , k = 1, 2, . . . .
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Thus, it is easy to check that the left hand side of (44) is equivariant by the group of
symmetries generated by Sy and Sz

Syu(y, z) = u(−y, z), Szu(y, z) = −u(y, 1− z). (45)

In addition, for p = 2, 3, . . . , the subspaces

Yp = span{ppl,k, l = 0, 1, . . . , k = 1, 2, . . . }

are invariant by f and enjoy the translational invariance T s
pu(y, z) = u(y + 2s

p
, z), for

s = 1, . . . , p− 1 (see e.g. [32]).
Fig. 1 shows a bifurcation diagram of the equation (44), that is a representation of

the branches of its steady-state solutions parameter µ for 0 ≤ µ ≤ 325 (See Remark 3
below for details of the computation of this diagram). A two-dimensional version of this
diagram can be found for example in [32]. The vertical axis represents the L2 norm of the
solution u and the transversal axis the value of u at the left mid wall, that is u(−1/2, 1/2).
For the values of the parameter µ considered, there are bifurcations enough to test the
proposed technique. Here, we have represented only the solutions emanating from the
first three bifurcations of the trivial solution u = 0. Branches of solutions were followed
until µ = 325 was reached or the trivial solution was returned to. Branches of stable and
unstable solutions are represented by continuous and discontinuous lines respectively.

For the discretization of (44) we use a standard pseudospectral Fourier method [4].
That is, following the notation of Section 2.1,

Hm = span {pj,k, 0 ≤ j ≤ N, 1 ≤ k ≤ N − 1} , m = N 2.

Nonlinear terms are approximated by standard trigonometric interpolation and evaluated
by Fast Fourier Transform (FFT) techniques. In our tests, we set N = 48, which makes
a total number of m = 2304 degrees of freedom. With this value of m, solutions of (44)
can be computed with a relative accuracy close to machine precision. This can be seen in
Fig. 2, where we show the first nonzero Fourier coefficients of bifurcation point labelled 7
in Fig. 1, which corresponds to a value of the parameter Ra = 243.06 Let us mention
that for smaller values of Ra a smaller number of Fourier modes suffices to obtain similar
levels of accuracy. For simplicity in our computations, though, we have not implemented
an adaptive value of m.

This high accuracy should not be surprising since spectral methods are reputed by
their fast convergence. For this reason, in the experiments we show, we set a general
tolerance TOL to the values TOL = 5× 10−5, 5× 10−7, 5× 10−9, and for computation
of “exact” reference solutions, TOL = 10−9 was used. In the iterative processes such
as Newton’s method or the bisection method, given an estimation e of the error of an
approximation u, the iteration was stopped whenever

‖e‖
α ∗ TOL(1 + ‖u‖) ≤ 1,

where α is a factor which for Newton’s method was set to α = 1 and for the bisection
method in locating bifurcations was set to α = 10. Notice that the accuracy demanded
greatly exceeds what is generally demanded in PDE applications. We use such stringent
tolerances in order to severely test the proposed technique.
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Figure 1: Bifurcation diagram of system (44), µ = Ra the Rayleigh number. Bifurcation
points: ◦, pitchfork or transcritical; ¦, saddle-node; ¤, Hopf bifurcation. Top: Full
diagram. Bottom: detail of bifurcation points 5 and 6.
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Figure 2: Nonzero Fourier coefficients of bifurcation point 7.

As preconditioner P in (5), we took

A = −∆, (46)

subject to the boundary conditions specified in (43), which, in terms of the Fourier
coefficients, is a diagonal operator.

Despite being a very simple preconditioner, its usage resulted in a small number of
GMRES iterations (see Figs. 6 and 5 below) even up to Ra = 500. More sophisticated
preconditioners can be used in practice, as for example banded approximations to the
Jacobian. In this case, for a branch of solutions s 7→ u(s), we would have P = P(s),
Observe that with more sophisticated preconditioners, it is possible to have the case when
P−1(s)Fu = I + T with ‖T‖ < 1, so that the sign of χk = sign(det(P))sign(det(H (m)

k ))
is given by the sign of P , independently of the value of k. For the testing purposes here,
however, it is more advisable to have a simpler preconditioner and let the sign of χk
depend entirely on H

(m)
k .

Following the analysis in Section 4, we take as initial guess x0 for the GMRES method
when applied to solve the systems (4) in Newton’s method,

x0 = αr ‖F‖
[

vr
0

]

, (47)

with vr a randomly generated vector with uniform distribution in (−1, 1), and αr is a
scaling parameter. The value of αr was set to αr = 10. Other values of αr that we tried
did not essentially alter the results we present below.

It is interesting, though, to see what may happen in practice if the initial guess x0 in
the GMRES method is taken x0 = 0. In Fig. 3, where we show χk as a function of µ = Ra
in the branch between bifurcation points marked 2 and 3 in Fig. 1, taking x0 = 0 and
x0 given by (47). When x0 = 0, besides failing to change sign at the bifurcation points,
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the determinant changes sign four times in the middle of the branch. The points where
it changes sign are not bifurcation points as it can be seen from the three eigenvalues
of fu closest to zero, represented on the lower plot. On the other hand, taking x0 as a
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0
=0
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Real part of eigenvalues closest to 0

Figure 3: Top: evolution of χk = sign(det(P)sign(det(H (m)
k )) on branch between bifur-

cation points 2 and 3. Bottom: the three eigenvalues of fu closest to zero are shown.

random vector (formula (47)), as argued in Section 4, χk behaves as the theory predicts.
The spurious changes of sign of χk in Fig. 3 are due to the following reasons. This

branch is in the invariant subspace E × R where E = Y3 ∩ {x ∈ H | SySzx = x},
and there is just one eigenvalue of P−1Fu with negative real part whose associated
eigenvector v satisfies that v ∈ (I − PE)H × {0}. Factors such us round-off in FFT
routines, and, in Newtons’ method, extrapolation for the first iterate and the number
of iterations, make that the linear systems solved with the GMRES method are of the
form Ax = b + δb, where b ∈ E × R and δb ∈ (I − PE)H × {0}. Now recall that
the first Arnoldi vector v1 in the GRMRES method is proportional to the first residual
r0 = b+ δb−Ax0. When x0 = 0, then r0 = b+ δb, and wether computaions are carried
out in the invariant subspace E ×R or not (and χk is spuriously altered or not) depends
on the ratio ratio ‖δb‖ / ‖b‖, which in practice varies from values close to round-off
errors to values closer to 1 depending on the above-mentioned factors. Conversely, if x0

is given by (47), the ratio ‖(I−PE)r0‖/ ‖r0‖ is always close to one, so that computations
are always taken out of E × R and χk comes out with right sign.

Of all the branching points shown in Fig. 1 (marked with ◦ marks), some of them
were reached through the transversal branch (dµ(s)/ds = 0), and were more effectively
computed as extrema in the parameter µ. the rest of them, those labelled with a number
ranging from 1 to 7 and their images by Sz, were correctly detected by a change of sign
in χk (with x0 given by (47)), and furthermore, accurately located as zeros of χk by the
bisection method. The (approximate) values of the Rayleigh nunber for these points are,
respectively, 80.95, 138.01, 159.48, 146.74, 214.23, 216.04 and 243.06.

We remark that system (44) has a Z2 × Z2 symmetry, and, as argued in [8] double
symmetry-breaking bifurcations occur generically. In these, two eigenvalues of Fu change
sign, so that they cannot by detected by a change of sign of χk. However, as shown in [8],
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[32], those double symmetry-braking bifurcation points are not to be found in the range
of the Rayleigh number considered here, so that χk changes sign at all branching points
in Fig. 1.

We now study how accurate the location of bifurcation points a zeros of χk can
be. In Fig. 4 we show the relative errors ‖ua − ue‖ / ‖ue‖ where ue is the bifurcation
point and ua is the approximation obtained by finding a change of sign of (9) by the
bisection method taking (47) as initial approximation in the GMRES method. Results
are shown for general tolerance TOL = 5× 10−5, 5× 10−7, 5× 10−9. The relative errors
committed with the three tolerances are marked, respectively with +, ∗ and ◦, and,
for each tolerance, the errors committed in the seven bifurcation points are joined by
a discontinuous line. The corresponding precisions demanded in the bifurcation points,
10TOL, are marked in the plot with dotted lines. It can be seen that the errors are
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Figure 4: Errors in bifurcation location by zeroing χk: +, TOL = 5 × 10−5; *, TOL =
5× 10−7; ◦, TOL = 5× 10−7. Accuracy demanded is 10TOL.

below the precision demanded.
To achieve these errors, it was also necessary to reduce the tolerance TOLMR of

the stopping criterion (42) in the GMRES method. Thus, although for general TOL =
5× 10−5 we kept TOLMR = 5× 10−4, for TOL = 5× 10−7 we set TOLMR = 5× 10−5,
and further, for TOL = 5×10−9 we took TOLMR = 5×10−6. Failing to do this resulted
in some of the computations not reaching the accuracy levels demanded. For example,
when using TOLMR = 5× 10−4 with TOL = 5× 10−7, the sixth bifurcation point failed
to achieve the accuracy of 5 × 10−6 (the rest of the points achieved the same errors as
in Fig. 4); if TOLMR = 5 × 10−5 is used with TOL = 5 × 10−9, then it was the second
bifurcation point who could not be computed with errors below 5× 10−8.

We believe that this need to reduce TOLMR when more precision is demanded in the
computed solutions (i.e., when the general tolerance TOL decreases) is related to the
comments made in Remark 2. Notice that, the more stringent the precision demanded,
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the closer the computed points ua will be to the true bifurcation point ue, and, conse-
quently, the closer to singular becomes P−1Fu = I + T . Then, reducing the stopping
criterion tolerance TOLMR in the GMRES method increases the number k of iterations,
which is the key to guarantee det(Hk) having the correct sign.

So far, computing the correct signs has required taking the initial approximation x0 in
the GMRES method as indicated (47), and increasing precision in the GMRES method
when close to a bifurcation point. It is natural to ask how all this affects to cost. In
Fig. 5 we show the numbers of GMRES iterations corresponding to the computation

140 142 144 146 148 150 152 154 156 158
0

10

20

30

40

Ra

GMRES iterations

x
0
 random

x
0
=0

mean: 35.9

mean: 23.1

Figure 5: Iterations k in GMRES method between bifurcation points 2 and 3.

of regular points between bifurcation points 2 and 3, that is, corresponding to results
shown in Fig. 3. Here TOLMR is TOLMR = 5×10−4. We also show the average number
of iterations for the two options of choosing x0. We see that, on average, (47) results in
a 50% increase in cost.

In Fig. 6, we show the maximum number of iterations in the GMRES method in the
computation of each of the seven bifurcation points, with the same convention as in Fig. 4.
Also, joined by a continuous line, we show the results corresponding to taking x0 = 0 and
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Figure 6: Maximum number of iterations k in GMRES method.
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TOLMR = 5×10−4. Comparing the results marking with + signs, we see that now, when
computing bifurcation points, using (47) on average doubles the cost of using x0 = 0,
and that in some points the cost is three times larger. Comparing the results joined by
discontinuous lines, we see that reducing the stopping criterion tolerance TOLMR in the
GMRES method from 5× 10−4 to 5× 10−6 results in a less than a 10% increase in cost.

In Figs. 5 and 6 we notice that the major increase in cost is due to using (47) instead
of taking x0 = 0. However, once that cost is paid so that det(Hk) has the correct
sign, increasing the precision in the GMRES method (reducing TOLMR) adds little to
the cost. Since, as seen in Fig. 4, reducing TOLMR has played its role in accurately
computing bifurcation points, we may draw the conclusion that, in order to play on the
safer side, it is advisable to increase the precision demanded to GMRES method when
accurately locating bifurcations. Observe also that the number of iterations is low when
compared with the dimension m = 2304 of the problem.

In spite of the increase in cost caused by (47), we must point out that computing
bifurcation points as zeros of χk compares favourably with computing them as zeros
of an eigenvalue of fu. In our tests, typically, around 300 matrix-vector products were
required to compute the relevant rightmost part of the spectrum of fu, a quantity that
greatly exceeds the numbers of iterations shown in previous figures.

Remark 3 All numerical experiments were carried out in a SUN Ultra 60 worksta-
tion running Solaris 8. All programs were written in FORTRAN, and compiled with
the Workshop 5 compiler. Saddle-node bifurcations were located as extrema of the pa-
rameter µ as well as pitchfork bifurcations whenever possible. Hopf bifurcations were
computed as zeros of the real part of one eigenvalue of fu. Pitchfork and transcritical
bifurcations, besides being computed with the techniques described in this paper, were
also computed (for the purpose of having more accurate reference solutions) as zeros
of eigenvalues of fu. These were computed both by implicitly restarted Arnoldi itera-
tion from the ARPACK package [26] as well as, for double checking, with standard QR
iteration from LAPACK routines. Reference solutions were computed with a general
tolerance of TOL = 10−9. The diagram was first computed with N = 24 (m = 576).
Branches where selected bifurcation points where located, were repeated with N = 48
(m = 2304).

6 Conclusions and remarks

We have seen, both theoretically and practically that the matrix Hk of the Arnoldi de-
composition (8) adequately reproduces the orientation of certain operators. These are
of the form I + T with T compact but not necessarily self-adjoint, a form adopted by
many differential operators when preconditioned by a fast solver of their higher deriva-
tive terms. From the theoretical point of view, an important role in the convergence of
the Krylov sequence is played by the singular values of T . This has allowed to prove con-
vergence of sign(det(Hk)), not only for the operator I +T , but also for its discretization
by spectral methods.

As a consequence, sign(det(Hk)) is a useful tool for detecting and locating bifurcations
in branches of equilibria, and convenient from the practical point of view since it is
obtained as a byproduct of the preconditioned GMRES method when applied to solve the
linear systems that arise in the equilibrium computations via Keller’s pseudo-arclength
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continuation technique. This is so provided that a random initial guess is taken in the
GMRES method, so that the Arnoldi decomposition in the GMRES method is not limited
to invariant subspaces which do not contain the relevant eigendirections at bifurcation
points.

As argued in Section 2.3, the technique studied here is an alternative to other more
sophisticated techniques, which may prove useful for preliminary computations, and
whose main advantage is its simplicity. Notice that existing techniques for branching
point location require either costly eigenvalue computations or providing codes for f
and the action of its differential fu as mappings from certain invariant subspaces onto
themselves, or, to provide a code for the adjoint operator (recall we are dealing with
problems who require matrix-free methods), which, in view of systems like (44), may
discourage some potential users.
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[28] J.M. López, F. Marqués and J. Sánchez, Oscillatory modes in enclosed swirling flow,
J. Fluid Mech., 439 (2001), pp. 109-129.

[29] C. K. Mamun and L. S. Tuckerman, Asymmetry and Hopf bifurcation in spherical
Couette flow, Phys. of Fluids , 7 (1995), pp. 80-91.

[30] K. Meerbergen and D. Roose, Matrix transformations for computing rightmost
eigenvalues of large sparse non-symmetric eigenvalue problems. IMA J. Numer.
Anal., 16 (1996), pp. 297–346.

[31] I. Moret, A note on the superlinear convergence of GMRES, SIAM J. Numer. Anal.,
34 (1997), pp. 513–516

[32] R. S. Riley and K. H. Winters, Modal exchange mechanism in Lapwood convection,
J. Fluid. Mech., 204 (1989), pp. 325–358.

[33] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986),
pp. 856–869.
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