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Abstract. A tutorial on continuation and bifurcation methods for the
analysis of truncated dissipative partial differential equations is pre-
sented. It focuses on the computation of equilibria, periodic orbits,
their loci of codimension-one bifurcations, and invariant tori. To make
it more self-contained, it includes some definitions of basic concepts of
dynamical systems, and some preliminaries on the general underlying
techniques used to solve non-linear systems of equations by inexact
Newton methods, and eigenvalue problems by means of subspace or
Arnoldi iterations.

1 Introduction

Continuation methods have become the standard tools to analyze the dependence of
the solutions of ordinary differential equations (ODEs) on parameters and to study
their bifurcations. Equilibria, periodic and homoclinic orbits, loci of bifurcations, and
boundary-value problems can be studied with the software packages developed during
the past four decades. Among them AUTO [1] is probably the most widely known
and used. The references and historical comments in [2–8] can be used to trace the
history of these methods and the available software.

The applications of these techniques to partial differential equations (PDEs) is not
so extended due essentially to the difficulties with the numerical linear algebra. There
are two main fields in which they have been applied from the very beginning, struc-
tural and fluid mechanics. Two early examples are [9,10]. For these kind of problems,
equilibria of the elasticity or Navier-Stokes equations were studied. This was possible,
in most cases, thanks to the special structure of the matrices of the linear systems,
obtained after discretizations by finite differences or elements, which allowed using
adapted direct solvers. In the case of discretizations by spectral or pseudospectral
methods, or in the case of periodic orbits, the Jacobians are no longer sparse and
matrix-free methods are required. Their development for non-symmetric problems
was impulsed by the appearance of GMRES [11], and by the development of Arnoldi
methods to solve eigenvalue problems [12]. Several applications were presented in [13],
and in the recent review article [14].

As far as we know there are only two freely available software packages for the
computation of equilibria of PDEs which allow tracking steady solutions, and loci
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of, at least, some of the generic codimension-one bifurcations including symmetry
breakings; LOCA [15], quite general and developed in C, and pde2path [16] for 2D
problems and based on the FEM toolbox of Matlab, pdetoolbox.

The continuation of periodic orbits in large-scale dissipative systems has only been
developed recently. Newton-Picard algorithms [17] were implemented in the package
PDECONT, Broyden method were used in [18], and Newton-Krylov techniques in
[19,20]. The computation of two-dimensional unstable manifolds of periodic orbits
was developed in [21]. Methods for tracking invariant tori for large-scale applications
were first considered in [22], and improved with a parallel algorithm in [23]. The
continuation of codimension-one bifurcations of periodic orbits for high-dimensional
systems has been developed only recently [24].

This tutorial article focuses on Newton-Krylov methods for the computation of
steady states, periodic orbits, their bifurcation loci, and invariant tori, of systems
of parabolic PDEs. It is therefore mainly devoted to computations based on time
integrations. Some of these algorithms were already introduced with less details in
reference [14]. The examples presented there were of equilibria or waves, which com-
putation can be reduced to that of steady solutions. Since we only give references to
examples, the description of the numerical methods and the underlying algorithms
are given with more detail here. Moreover we include new types of continuations;
invariant tori by a parallelizable method, much faster than that presented in [14],
and codimension-one bifurcations of periodic orbits. Brief introductions to the nu-
merical linear algebra tools needed to solve linear systems and eigenvalue problems,
to continuation and inexact Newton’s methods, and to some elementary concepts of
stability in dynamical systems are provided for completeness. References to available
software for these basic tools are also given. It is justified why the methods work
efficiently, at a qualitatively level. With regard to efficiency, it is shown that once a
particular problem has been discretized, giving rise to a system of ODEs of dimension
n, the calculations of these invariant objects involve, at most, the time integration of
systems of dimension 2n in the case of periodic orbits and tori, or 5n in order to track
bifurcation loci of periodic orbits. This minimizes the computational work needed to
calculate them. The last section contains references to recent publications using these
techniques.

2 Equilibria and periodic orbits

Suppose
ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R (1)

is a large-scale (n� 1) autonomous system of ordinary differential equations (ODEs)
obtained after the spatial discretization of a system of parabolic partial differential
equations (PDEs) (reaction-diffusion or Navier-Stokes equations, for instance) and
that

ϕ(t, x, p) (2)

is its solution with initial condition x at t = 0 for a fixed value of p, i.e. ϕ(0, x, p) = x.
In the case of discretizations by finite elements methods or for differential-algebraic
equations (DAEs) it is possible that the system be of the form Mẏ = f(y, p), with M
a linear operator which might not be invertible. The form of Eq. (1) will be assumed
for simplicity. We are interested in the computation of its equilibria, x, given by

f(x, p) = 0, (3)

and its periodic regimes. A trajectory ϕ(t, x, p) of (1), starting at x, is a periodic orbit
if there is a minimal T > 0 (its period) such that ϕ(T, x, p) = x. Then a particular
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snapshot of the periodic regime satisfies the system of equations

x− ϕ(T, x, p) = 0, (4)

g(x, p) = 0, (5)

where x is selected by a phase condition g(x, p) = 0, which can depend or not on
p. The system determines simultaneously x and the period T for a fixed value of p.
In many cases g(x, p) = 0 is the equation of a hyperplane cutting transversely the
periodic orbits. It can be fixed or varied with the parameter p. The particular case
g(x, p) = 〈f(x0, p0), x− x0〉, where x0 is an initial approximation of x for p = p0 and
〈·, ·〉 is the Euclidean dot product, is known as the Poincaré condition.

The computation of both invariant objects (equilibria and periodic orbits) as func-
tions of parameters, and the study of their stability imply solving large-scale nonlinear
systems of equations and eigenvalue problems.

3 Continuation of zeros of a nonlinear system of equations

Consider a general system of nonlinear equations depending on a parameter p

H(x, p) = 0, (x, p) ∈ U ⊂ Rm × R (6)

with m � 1 for which one is interested in its solutions and their dependence on
p. Parameter, pseudo-arclength, or local parameterization continuation methods are
used to obtain the curves (x(s), p(s)) of solutions as functions, for instance, of the
arclength s. They consist in two stages, a predictor step in which an initial approx-
imation to a new point on the curve (x0, p0) is computed by extrapolation from the
previous solutions, and a corrector step in which the prediction is refined, usually by
Newton’s method. The three continuation methods admit an unified formulation by
adding to (6) an equation to determine simultaneously x and p

h(x, p) = 0. (7)

If h(x, p) = p− p0 the equation fixes the parameter p, leading to parameter continu-
ation. It is not suitable for systems with strong variations with p or in the presence
of folds of the curve of solutions. If h(x, p) = h>x (x − x0) + hp(p − p0), (x0, p0) and
(hx, hp) being the predictions of a new point and the tangent to the curve of solutions,
respectively, the hyperplane h(x, p) = 0 will cut it transversely if the prediction is not
far away from the previous point, and the algorithm allows passing turning points.
The condition h(x, p) = (x− x0)(i) or h(x, p) = p− p0, where (x− x0)(i) indicates
here the i-th component of x−x0, corresponds to the local parameterization method.
It fixes one component of the vector (x, p), selected by looking at the variable which
has the local largest variation. The index is that of the largest component of the
tangent vector (hx, hp), or the largest component of the difference between the two
last computed points on the curve of solutions. In any of the three cases the system
that determines a unique solution, (x, p) ∈ Rm+1, is

H̃(x, p) =

(
H(x, p)
h(x, p)

)
= 0 .

Large-scale systems, H̃(x, p) = 0, are usually solved by an inexact Newton’s meth-
ods. Instead of solving the linear systems by means of direct algorithms, iterative
methods are used. If the linear solvers are based on Krylov subspaces (GMRES,
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BiCGStab, FOM, TFQMR, etc., see for instance [25]) they are also called Newton-
Krylov methods. In the particular case of periodic orbits, iterations based on Newton-
Picard [17] and Broyden [26] algorithms have also been proposed in the past. In in-
exact Newton’s methods, a sequence of approximations are obtained, starting from
the initial prediction (x0, p0), with

(xi+1, pi+1) = (xi, pi) + (∆xi, ∆pi),

where (∆xi, ∆pi) satisfies the linear system(
DxH(xi, pi) DpH(xi, pi)

h>x hp

)(
∆xi
∆pi

)
=

(
−H(xi, pi)
−h(xi, pi)

)
(8)

which is solved iteratively. The term matrix-free methods is used when the linear
solver only requires the user to provide matrix products. In our case products of the
form (

DxH(xi, pi) DpH(xi, pi)
h>x hp

)(
δx
δp

)
,

with (δx, δp)> an arbitrary vector. The linear solvers do not need to be convergent for
an arbitrary system, and they hardly do when looking for equilibria of discretizations
of systems of parabolic PDEs. It is necessary then to use preconditioners to improve
the convergence.

Suppose that a generic system Ax = b is to be solved, and that M is a matrix
which approximates A in some sense (M ≈ A) and which is easy to invert, i.e. it
is easy to solve systems with matrix M . Left preconditioning consists in solving the
system

M−1Ax = M−1b.

Its solution is that of Ax = b. In right preconditioning the system solved is

AM−1y = b.

Then the solution of Ax = b is x = M−1y. This means that when applying a matrix-
free method each matrix product by A is substituted by a matrix product by A
followed by a system solve with matrix M in the case of left preconditioning, or by
a system solve with matrix M followed by a matrix product by A for right precon-
ditioning. If M ≈ A then M−1A or AM−1 will be closer to the identity than the
original matrix A. Most iterative linear solvers based on Krylov subspaces converge
quickly for matrices near the identity.

It is important to state a fundamental difference between the computation of
equilibria and periodic orbits of discretized parabolic PDEs. Assume, to simplify, that
the condition (7) is p − p0 = 0 such that the last row of system (8) is (0, . . . , 0, 1),
and that one has to solve a system with matrix DxH(xi, p0). In the case of equilibria
DxH(xi, p0) = Dxf(xi, p0), and since f(x, p) is the discretization of a system of
elliptic equations, its spectrum will have eigenvalues of a wide range of negative
real parts. This is the reason for the poor convergence of the iterative solvers. This
will be seen in detail for the GMRES method later. In the case of periodic orbits
the Jacobian with respect to x of Eq. (4) is I − Dxϕ(T, x, p). Since the flow of a
parabolic differential equation (and of its consistent and stable discretizations) is
strongly contractive, Dxϕ(T, x, p) has most of its spectrum tightly clustered around
the origin, making I − Dxϕ(T, x, p) close to the identity. The addition of the phase
condition, using a different continuation condition h(x, p) = 0, or the presence of
some unstable multipliers of the periodic orbit (see below for definitions) out of the
unit circle does not change this, except on a low-dimensional subspace. The case of
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adding borders to the matrix (additional rows and columns as in system (8)) was
considered in [27]. This means in practice that there is no need to use preconditioners
in the case of periodic orbits. This is why this method has been used successfully by
many authors, since its introduction in [19].

A consequence of the simplicity of computing periodic orbits, from the point of
view of the linear solvers, is that it is also possible to find equilibria by solving
x− ϕ(T ′, x, p) = 0, where now T ′ is an arbitrary characteristic time of the system, if
a good time-stepper is available (it will be if periodic orbits are also being computed).
It is clear that if f(x, p) = 0 then x−ϕ(T ′, x, p) = 0 for all T ′ > 0. The time T ′ must
be as short as possible to save computing time, but large enough to have the required
contractive properties of the flow ϕ(t, x, p) just mentioned. This method can be used
as a second option, for instance, when the continuation method applied to f(x, p)
fails due to the lack of good preconditioners for the linear systems or the eigenvalue
problems.

When Newton-Krylov methods are applied to the computation of periodic orbits
of (1) it is necesary to evaluate x−ϕ(T, x, p), and the action of its Jacobian on vectors
(δT, δx, δp),

δx−Dxϕ(T, x, p)δx−Dpϕ(T, x, p)δp−Dtϕ(T, x, p)δT, (9)

where Dtϕ(T, x, p) = f(ϕ(T, x, p), p). The calculation of ϕ(T, x, p) implies integrat-
ing (1) during a time T , with initial condition y(0) = x and p fixed. The matrix
product

Dxϕ(T, x, p)δx+Dpϕ(T, x, p)δp (10)

can be computed by integrating a first variational equation. If

y(t) =ϕ(t, x, p), (11)

y1(t) =Dxϕ(t, x, p)δx+Dpϕ(t, x, p)δp, (12)

are defined, y1 satisfies, by interchanging the order of the derivatives and using that
ϕ(0, x, p) = x,

ẏ1 = Dyf(y, p)y1 +Dpf(y, p)δp and y1(0) = δx.

This equation must be solved coupled with that for y,

ẏ = f(y, p), y(0) = x, (13)

ẏ1 = Dyf(y, p)y1 +Dpf(y, p)δp, y1(0) = δx. (14)

At time t = T
Dxϕ(T, x, p)δx+Dpϕ(T, x, p)δp = y1(T ). (15)

Therefore the evaluation of (9) requires the integration of a system of 2n ODEs, in
contrast to that of the full Jacobian (Dxϕ(T, x, p), Dpϕ(T, x, p)) which would require
integrating, at least, n(n+ 2) equations.

The same holds if equilibria are found by solving, as suggested before, x−ϕ(T ′, x, p) =
0. The only difference is that T ′ is fixed and then the term Dtϕ(T, x, p)δT ′ is missing
in (9).

4 The convergence of inexact Newton’s methods

The efficient computation of the invariant objects considered in this paper requires
that the number of iterations of Newton’s method and the linear solvers be small. The



6 Will be inserted by the editor

linear solvers can be preconditioned, or it might be unnecessary if the map for which
the fixed points are searched involves the time evolution of parabolic equations, as
seen before for periodic orbits. It remains to see what happens with Newton’s method.
Let us recall some results on its convergence [28].

Iterative methods can be classified by their rate of convergence which are defined
as follows.

Definition 1 Let {xk}k∈N ⊂ Rn and x∗ ∈ Rn. Then

– xk → x∗ linearly with factor σ ∈ (0, 1) if ‖xk+1 − x∗‖ ≤ σ‖xk − x∗‖.
– xk → x∗ superlinearly if limk→∞ ‖xk+1 − x∗‖/‖xk − x∗‖ = 0.
– xk → x∗ superlinearly with order α > 1 if xk → x∗ and there is a K > 0 such

that ‖xk+1 − x∗‖ ≤ K‖xk − x∗‖α.
– xk → x∗ quadratically if xk → x∗ and there is a K > 0 such that ‖xk+1 − x∗‖ ≤
K‖xk − x∗‖2.

The following results state the rate of convergence of Newton’s and inexact New-
ton’s methods. We refer to [28–30] for more details and proofs. Suppose one seeks to
solve the system F (x) = 0 with x, F (x) ∈ Rn, and assume the following conditions
hold:

– F (x) = 0 has a solution x∗,
– F is continuously differentiable in a neighborhood of x∗,
– DF (x∗) is nonsingular.

Theorem 1 Under the above assumptions there is a δ > 0 such that if ‖x0−x∗‖ < δ
the Newton’s iteration

xk+1 = xk +∆xk, with DF (xk)∆xk = −F (xk)

converges quadratically to x∗.

Newton’s methods is therefore interesting because of its fast convergence, but
it requires solving the linear systems DF (xk)∆xk = −F (xk) exactly. This is not
possible, in general, for huge systems. Suppose that they are solved instead by an
iterative method with stopping criteria

‖DF (xk)∆xk + F (xk)‖ ≤ ηk‖F (xk)‖, (16)

for ηk > 0. The factors ηk are sometimes called the forcing terms in the literature
after [31].

Theorem 2 Let the above conditions hold. There exists a δ > 0 such that if ‖x0 −
x∗‖ < δ, and {ηk} ⊂ [0, η] with η < η̄ < 1, then the inexact Newton iteration

xk+1 = xk +∆xk, with ‖DF (xk)∆xk + F (xk)‖ ≤ ηk‖F (xk)‖,

converges linearly to x∗ with factor η̄, with respect to the norm ‖ · ‖∗ = ‖DF (x∗) · ‖.
Moreover

– if ηk → 0 the convergence is superlinear, and
– if ηk ≤ Kη‖F (xk)‖r for some Kη > 0 the convergence is superlinear with order

1+r.

Therefore if the linear systems are solved with the adequate tolerances for the
residuals (ηk ≤ Kη‖F (xk)‖), quadratic convergence can still be obtained. In practice
and for a particular problem, one can do some experiments with different stopping
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criteria in order to minimize the total computational cost of the inexact Newton’s
method.

The expression inexact Newton’s method was coined in [29] to refer to the case
where the linear solver is stopped when the condition (16) holds. There are, of course,
other sources of inexactness due to the errors in the evaluation of the function and
the action by its Jacobian. They can degrade or event prevent the convergence of
Newton’s method (see [28]). This is specially important for invariant objects found
as fixed points of maps that involve time integrations (periodic orbits and their bi-
furcations loci or invariant tori, for example). In these cases the approximation by
finite differences of the action by the Jacobian is very dangerous because the error
in the time evolution is amplified when it is divided by the step of the difference
formula. Therefore, the integration of a variational equation as described at the end
of section 3 is almost compulsory, unless the time stepper be very accurate, which is
hardly the case when solving PDEs.

With regard to available software we will only mention NITSOL [32]. It in-
cludes standard and globalized Newton’s methods, and three linear solvers (GMRES,
BiCGSTAB and TFQMR). It is therefore a standalone implementation of inexact
Newton’s methods.

5 GMRES and its convergence

In order to understand the reasons for the fast or slow convergence of the linear
solvers it is good to have some knowledge of at least a particular method. We will
focus on GMRES since it is the most widely used linear solver for non-symmetric
problems, and because the theory is quite simple in this case. Assume that a non-
singular system Ax = b of dimension n � 1 is to be solved. Projection methods
produce, starting with an initial guess x0, a sequence of approximations, xk, to the
solution x∗ = A−1b, in the affine subspace xk ∈ x0 + Kk, which satisfy the Petrov-
Galerkin condition b − Axk ⊥ Lk, where Kk and Lk are two k-dimensional linear
subspaces. If Lk = AKk, then xk satisfies

||b−Axk||2 = inf
x∈x0+Kk

‖b−Ax‖2,

i.e., xk minimizes the Euclidean norm ||b−Ax||2 over x ∈ x0 +Kk.
In the particular case of GMRES, Lk = AKk and Kk is the Krylov subspace

Kk = {r0, Ar0, A
2r0, . . . , A

k−1r0},

r0 = b − Ax0 being the initial residual. It follows that if xk = xo + zk with zk ∈ Kk
then

rk ≡b−Axk = b−A(x0 + zk) = r0 −Azk =

=Ir0 −A(α1r0 + α2Ar0 + · · ·+ αkA
k−1r0)

=(I − α1A− α2A
2 − · · · − αkAk)r0 = pk(A)r0,

pk being a polynomial of degree k, with pk(0) = 1. This means that the residual rk
can be written as the action of a polynomial of the matrix A acting on the initial
residual r0. Now, by using that:

– if A = V ΛV −1 then Al = V ΛlV −1 and p(A) = V p(Λ)V −1,
– if Λ = diag(λ1, . . . , λn) then p(Λ) = diag(p(λ1), . . . , p(λn)),
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– ‖p(A)‖2 ≤ ‖p(Λ)‖2‖V ‖2‖V −1‖2 = κ2(V )‖p(Λ)‖2, with κ2(V ) = ‖V ‖2‖V −1‖2 the
norm-2 condition number of V , and

– if Λ = diag(λ1, . . . , λn) then ‖p(Λ)‖2 = maxi=1,...,n |p(λi)|,

where diag(a1, . . . , an) means the diagonal with entries the ai, the following result is
obtained.

Theorem 3 (Saad and Schultz 1986) Assume that A is diagonalizable with A =
V ΛV −1, where Λ = diag(λ1, · · · , λn) is the diagonal matrix of eigenvalues, Pk is the
set of polynomials of degree at most k such that p(0) = 1, and κ2(V ) = ‖V −1‖2‖V ‖2
is the norm-2 condition number of V . Then at the k-th step of GMRES

‖b−Axk‖2
‖b−Ax0‖2

≤ κ2(V ) inf
p∈Pk

max
i=1,...,n

|p(λi)|.

With the above preparation the proof is trivial. If xk = pk(A)r0 minimizes ‖b−Ax‖2
then

‖b−Axk‖2 = inf
p∈Pk

‖p(A)r0‖ ≤ κ2(V )‖b−Ax0‖2 inf
p∈Pk

max
i=1,...,n

|p(λi)|.

It is very difficult to obtain estimates of κ2(V ) for large-scale systems. It is known
that κ2(V ) ≥ 1, but one can be almost sure that it will be large for realistic problems.
In any case, to conclude from this result that after a small number of iterations k,
‖b−Axk‖2 will be small it is necessary that there exists a polynomial of small degree k
which is very small on the spectrum of A. This is accomplished if the spectrum consists
of a small number of clusters. Estimates in this situation can be found in [33]. In the
case of periodic orbits the matrix of the linear system is essentially I −Dxϕ(T, x, p)
with most of the spectrum in a small cluster surrounding +1. This is almost the
ideal situation and GMRES converges quickly. In the case of equilibria the matrix
is Dxf(x, p), and since this Jacobian will include diffusion terms its eigenvalues will
spread to −∞ in the complex plane. Therefore preconditioners M are required to
reduce the diameter of the spectrum of M−1Dxf(x, p) (or Dxf(x, p)M−1), in order
to accelerate the convergence.

A problem is still pending; how to find the xk solving the minimizing problem
infx∈x0+Kk

‖b−Ax‖2. This is done by reducing it, using the Arnoldi’s decomposition
(see below), to one for a matrix of dimension k which can be solved very efficiently.
We skip the details and recommend the references [25,28,11] for details and further
reading. There are very good sources of software for Krylov linear solvers. See for
instance [34,35].

6 Stability of equilibria and periodic orbits

In this section the definitions of stability of equilibria and periodic orbits, and their
characterizations in terms of eigenvalues are recalled. The dependence on the param-
eter p of the system of ODEs (1) is not made explicit. It is written as ẏ = f(y), and
ϕ(t, x) for its solution with initial condition x. Let x∗ be a fixed point (equilibrium)
of the system, i.e. f(x∗) = 0.

Definition 2 The fixed point is said to be Lyapunov stable if for every neighborhood
N of x∗ there is a neighborhood M ⊂ N of x∗ such that if x ∈ M , then ϕ(t, x) ∈ N
for all t ≥ 0.

An equilibrium that is not stable is said to be unstable.
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Definition 3 The fixed point is said to be asymptotically stable if it is Lyapunov
stable and there is a neighborhood N of x∗ such if x ∈ N then limt→∞ ‖ϕ(t, x)−x∗‖ =
0.

Definition 4 The fixed point said to be exponentially stable if it is asymptotically
stable and there exist α > 0, and β > 0, and a neighborhood N of x∗ such that if
x ∈ N , then ‖ϕ(t, x)− x∗‖ ≤ α‖x− x∗‖e−βt, for t ≥ 0.

Theorem 4 If f is of class C1 and x∗ is a fixed point such that all the eigenvalues
of Df(x∗) have strictly negative real parts, then x∗ is exponentially stable (and hence
asymptotically stable). If at least one eigenvalue has strictly positive real part, then
x∗ is unstable.

This means that the eigenvalues of Df(x∗) of largest real part must be computed
to know the stability and detect bifurcations of fixed points.

Definition 5 A set Λ is said to be invariant under the flow ϕ(t, x) if ϕ(t, Λ) = Λ for
all t; that is, for each x ∈ Λ, ϕ(t, x) ∈ Λ for any t.

Definition 6 The invariant set is said to be stable if for every neighborhood N of Λ
there is a subset M ⊂ N such that if x ∈M , then ϕ(t, x) ∈ N for all t ≥ 0.

An set that is not stable is called unstable.

Definition 7 The invariant set is said to be asymptotically stable if it is stable and
there is a neighborhood N of Λ such if x ∈ N then, then limt→∞ ρ(ϕ(t, x), Λ) = 0,
with ρ(x,Λ) = infy∈Λ(‖x− y‖).

Consider the first variational equation Ṁ = Df(x(t))M about a periodic orbit
x(t) = ϕ(t, x) of period T (ϕ(T, x) = x), with initial condition M(0) = I. The
solution at time T is called the monodromy matrix M(T ), and its eigenvalues the
Floquet multipliers of the periodic orbit.

Theorem 5 The monodromy matrix M(T ) always has a unit eigenvalue with eigen-
vector ẋ(0) = ẋ(T ) = f(x(0)).

This unit eigenvalue is named the trivial eigenvalue of the periodic orbit.

Theorem 6 If x(t) is a periodic orbit of a C2 flow ϕ(t, x) that is linearly asymptoti-
cally stable (its monodromy matrix has all the eigenvalue inside the unit circle except
the trivial one), then it is asymptotically stable.

Therefore the eigenvalues of M(T ) of largest modulus have to be computed to
know the stability and detect bifurcations of periodic orbits.

7 Large-scale eigenvalue problems

Most algorithms to obtain the leading (largest magnitude) eigenvalues of a large-
scale matrix are based on the Rayleigh-Ritz method [36]. Assume A is a real matrix
of dimension n×n (n� 1), and that Vm = [v1, . . . , vm] is of dimension n×m (m� n)
such that V >m Vm = Im (Im identity of dimension m) and

AVm = VmBm,
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with Bm of dimension m×m. This expression says that the columns of Vm generate
an invariant subspace of A of dimension m. Moreover, if (λ, u) is an eigenpair of Bm
(Bmu = λu) then (λ, Vmu) is an eigenpair of A:

AVmu = VmBmu = λVmu.

If the identity AVm = VmBm is only approximate, the pairs (λ, Vmu) are called
Ritz values and vectors of A, respectively. It is clear that since V >m Vm = Im then
Bm = V >mAVm, so obtaining Bm reduces to the computation of matrix vectors by A
followed by dot products.

There are two main methods to obtain approximate bases, Vm, of the subspace
corresponding to the leading eigenvalues of a large-scale matrix; subspace iteration
and Arnoldi’s method. They are described in next section.

It is important to realize that in the case of periodic orbits all that is needed is
having one of these algorithms available. They provide precisely the eigenvalues of
interest. In the case of equilibria, transformations of the matrix are required. This is
explained below. Studying the stability of periodic orbits is easier than for equilibria,
as in the case of solving the linear systems. It is also possible to study the stability
of fixed points by using time evolution. If (λ, v) is an eigenpair of Df(x∗) then (µ, v),
with µ = exp(λT ′), is an eigenpair of Dxϕ(T ′, x). By taking logarithms, and using
that λ = 〈v,Av〉/〈v, v〉 to recover the undetermined imaginary part, λ can be obtained
from µ. Since the exponential transforms the left half complex plane into the interior
of the unit circle, the multipliers µ of larger modulus are those of interest.

7.1 Subspace iteration

Subspace iteration, for which several good implementation exist [37,38], works as
follows.

1. Start: Choose an initial system of orthonormal vectors Vm = [v1, . . . , vm], (m� n)
2. Iterate: Until convergence do:

(a) For l=1,. . . , k do
i. Compute Zm = AVm

ii. Orthonormalize Zm by computing Zm = QmRm with Q>mQm = Im and
Rm upper-triangular, and set Vm = Qm

(b) Form Bm = V >mAVm and compute the eigenpairs (λi, zi), i = 1, · · · ,m of Bm
by the QR method (with LAPACK [39] for instance)

(c) Test for convergence of eigenvalues and/or eigenvectors
3. Stop: When satisfied, compute the approximate eigenvectors of A as xi = Vmzi,
i = 1, · · · ,m. The λi, i = 1, · · · ,m are the approximate eigenvalues.

The following results gives a complete description of the convergence of the method.

Theorem 7 Suppose that the n eigenvalues of A are ordered by decreasing modulus
|λ1| ≥ |λ2| ≥ · · · |λm| > |λm+1| ≥ · · · ≥ |λn|. If the initial set of vectors Vm is not
deficient in the eigenvectors corresponding to λ1, · · · , λm, and if the total number of
iterations taken, k, is large enough, then the previous algorithm computes approxima-

tions λ̂i,k to λi (i = 1, . . . ,m) with

|λ̂i,k − λi| = O

(∣∣∣∣λm+1

λi

∣∣∣∣+ εi,k

)k
, lim

k→∞
εi,k = 0.

Moreover, if λi is simple, then εi,k = 0.
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It is clear that λ1 will, generically, converge first, then λ2, etc. Therefore in good
implementations, as those already mentioned, care is taken to freeze the part of the
approximate invariant base {v1, . . . , vm} already converged in order to save computing
time. Moreover, the columns of the product AVm can be computed in parallel since
they are independent.

7.2 Arnoldi iterations

The Arnoldi’s method is based on the Arnoldi’s decomposition. The latter is also
used in the iterative solution of linear systems (for instance in GMRES) and to find
reduced order models.

Let A be a given matrix, and v1 an unitary vector. The Arnoldi’s decomposition
finds an orthonormal basis of the Krylov subspace Km = {v1, Av1, A

2v1, . . . , A
m−1v1}

by applying a modified Gram-Schmidt orthogonalization:
Iterate: for j = 1, 2, . . . ,m compute

1. w = Avj
2. for i = 1, 2, . . . , j do

(a) hi,j = 〈w, vi〉
(b) w ← w − hi,jvi

3. hj+1,j = ‖w‖, if hj+1,j = 0 stop
4. vj+1 = w/hj+1,j

If Vm = [v1, . . . , vm], its columns form an orthonormal basis of Km, and if Hm is the
m×m upper Hessenberg matrix whose nonzero entries are the hi,j then

AVm = VmHm + wme
>
m, and V >mAVm = Hm,

with wm = hm+1,mvm+1, and e>m = (0, . . . , 0, 1) ∈ Rm. At line 3 of the above pseu-
docode, the stop indicates that an exact invariant subspace has been found. If more
eigenvalues are needed the method can be restarted with a new v1 linearly indepen-
dent of the basis already found.

The Arnoldi’s iteration to obtain Ritz eigenpairs, implemented for instance in the
package ARPACK [12], is:

1. Start: Choose an initial unitary vector v1.
2. Iterate: Until convergence do:

(a) Compute the Arnoldi factorization AVm = VmHm + wme
>
m

(b) Compute the eigenpairs (λi, zi), i = 1, · · · ,m of Hm = V >mAVm by the QR
method (LAPACK).

(c) Test for convergence of eigenvalues and/or eigenvectors. If not converged select
a new initial vector v1 from the Arnoldi factorization.

3. Stop: When satisfied, compute approximate eigenvectors of A as xi = Vmzi, i =
1, · · · ,m. The λi, i = 1, · · · ,m are the approximate eigenvalues.

The size of the Krylov subspace is limited to m to save storage and computational
cost. When this size is reached the method is restarted by choosing a new initial
vector v1 in step (c). This must be done trying to preserve as much information as
possible of the eigenvalues of interest. The way this is done is out of the scope of
this article. The reference [40] contains the algorithm implemented in ARPACK. The
algorithm of the Arnoldi decomposition is sequential and therefore parallelism has to
be implemented at the level of the computation of each matrix product.

The results on the convergence of this method are not as clean and elegant than
for subspace iteration (see [36]). The practice shows that it is, in general, faster and
therefore Arnoldi’s method is now preferred.
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During the computation of solutions by Newton-Krylov methods, Arnoldi’s de-
compositions are generated (for instance inside GMRES). They can be used to obtain
estimates of the eigenvectors, probably by increasing the size of the Krylov base. This
possibility was studied in [41].

8 Eigenvalue Transformations

Two ways of obtaining eigenvalues of maximal modulus have been described. This
is exactly what it is required in the analysis of the stability of periodic orbits. To
find those of maximal real part, in the case of equilibria, matrix transformations
have to be used to convert the eigenvalues of maximal real part to those of maximal
modulus of the transformed matrix [36,42]. This process is also known as eigenvalue
preconditioning. Some possibilities are the following.

Shift-invert with real or complex shift σ:

Av = λv =⇒ (A− σI)−1v = µv with µ = 1/(λ− σ).

The eigenvalues of A close to the shift σ become those of largest modulus of (A−σI)−1.
It implies solving systems with the matrix A−σI. If the original problem is real, one
can take a real σ > 0, compute a large number of eigenvalues µ of (A − σI)−1,
transform them by λ = σ+1/µ and reorder by the real part [43]. This can be useful if
the imaginary parts are not too large. If a wide range of imaginary parts are present
and it is possible to use complex arithmetics a swept of complex shifts σ can be
used [44,45].

Generalized Cayley transformation with shift σ and anti-shift τ :

Av = λv =⇒ (A− σI)−1(A− τI)v = µv with µ = (λ− τ)/(λ− σ).

The line Re(λ) = (σ + τ)/2 is mapped to the unit circle and Re(λ) < (σ + τ)/2
(Re(λ) > (σ + τ)/2) is mapped to the interior (exterior) of the unit circle. This
makes this transformation interesting [42,46,47]. The problem is that the choice of
σ and τ can be very tricky because all the eigenvalues of A of large negative real
part, which are of no interest, are transformed into µ near +1. This can make the
convergence very slow. A possible strategy is starting with a filtering of the initial
vector by applying several actions of (A−σI)−1 to remove the components along the
unwanted eigenvectors. A similar technique was used recently in [47].

Double complex shift: If σ = ρ+ iθ,

Av = λv =⇒ (A− σI)−1(A− σ̄I)−1v = µv with µ = 1/((λ− ρ)2 + θ2).

Systems with the matrix (A − σI)(A − σ̄I) = (A − ρI)2 + θ2I have to be solved.
The advantage is that it is real if A does. This method was used, together with
exponential transformations in [48] because there the matrix A was block-tridiagonal,
then (A−ρI)2 +θ2I was block-pentadiagonal and a tailored LU decomposition could
be used to solve the systems.

Exponential:

Av = λv =⇒ exp(TA)v = µv with µ = exp(λT ),

with an arbitrary time T . This is the ideal transformation. The lines Re(λ) = a are
mapped to the circles |µ| = exp(a). The computation of the exponential requires the
time integration of ẏ = Ay, but it is supposed that a time integrator for the original
system is already available, which could be modified for this purpose. This method
is expensive but very robust. It has ben used in [48,49].
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9 Continuation of bifurcation curves

Suppose now that the parameter p in (1) is two-dimensional (p = (p1, p2)). It is now
described how to track curves of codimension-one bifurcations of equilibria and peri-
odic orbits in system with or without symmetries. These curves separate the regions
in the parameter space of different phase portraits. The extended systems in the case
of equilibria are the same as for low-dimensional systems [6,50,7]. The only differ-
ence being that the linear systems have to be solved iteratively. The package LOCA
incorporates the tracking of codimension-one bifurcations of steady solutions [15,51].
We will focus on the case of periodic orbits of large-scale systems because its develop-
ments is very recent [24]. The methods described here can also be applied to equilibria
if they are found as fixed points of the flow as described above.

9.1 Saddle-node and period-doubling bifurcations

The saddle-node and period-doubling bifurcations can be treated together. A point x
on a periodic orbit of period T with a non-trivial multiplier λ = 1 (saddle-node), or
λ = −1 (period-doubling) satisfies the system of equations H(x, u, T, p) = 0 given by

x− ϕ(T, x, p) = 0,

g(x, p) = 0,

λu−
(
Dxϕ(T, x, p)u− 1

2
(1 + λ)

〈w, u〉
〈w,w〉

w

)
= 0,

〈ur, u〉 = 1,

with w = f(x, p). The first two equations are the same as (4)-(5) and determine a
single point on a periodic orbit and its period. The third equation says that there
is an eigenvector u of the monodromy matrix of eigenvalue λ, normalized by the
fourth equation, ur being a reference vector. It can be ur = u. The last term of the
third equation is missing in the case of a period-doubling. For a saddle-node point it
becomes (〈w, u〉/〈w,w〉)w. It is necessary to remove the trivial +1 multiplier in order
to have a regular system of equations. This is done by deflating the trivial eigenvector
which is f(x, p). This prodedure is known as Wieland’s deflation [36]. It shifts the
trivial +1 multiplier to zero. It is clear that the vector of unknowns X = (x, u, T, p)
has dimension 2n + 3 (remember that p is two-dimensional), and that the 2n + 2
equations define the curve of bifurcations.

The terms ϕ(T, x, p) and Dxϕ(T, x, p)u can be computed as in the case of eval-
uating the product (10), but with δp = 0, by using the auxiliary functions y(t) and
y1(t) (see Eqs. (11),(12)). The evaluation of the deflation term is trivial. The action of
DXH(x, u, T, p) on (δx, δu, δT, δp) needed in the matrix-free methods to solve linear
systems is

δx−Dtϕ(T, x, p)δT −Dxϕ(T, x, p)δx−Dpϕ(T, x, p)δp, (17)

Dxg(x, p)δx+Dpg(x, p)δp, (18)

λδu−D2
txϕ(T, x, p)(u, δT )−D2

xxϕ(T, x, p)(u, δx)−D2
xpϕ(T, x, p)(u, δp)

−Dxϕ(T, x, p)δu

+
1 + λ

2〈w,w〉

(
〈w, u〉z +

(
〈z, u〉+ 〈w, δu〉 − 2〈w, z〉

〈w,w〉
〈w, u〉

)
w

)
, (19)

〈ur, δu〉, (20)
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where w = f(x, p) and z = Dyf(x, p)δx+Dpf(x, p)δp. Let us define

y(t) = ϕ(t, x, p),

y1(t) = Dxϕ(t, x, p)u,

y2(t) = Dxϕ(t, x, p)δx+Dpϕ(t, x, p)δp,

y3(t) = D2
xxϕ(t, x, p)(u, δx) +D2

xpϕ(t, x, p)(u, δp),

y4(t) = Dxϕ(t, x, p)δu.

It is easy to check that all the terms in the expressions (17)-(20) are contained in the
vectors yi(T ) i = 1, . . . , 4, or can be reduced to evaluations of the vector field f(x, p)
and its first order derivatives. For instance,

Dtϕ(T, x, p)δT = f(y(T ), p)δT,

D2
txϕ(T, x, p)(u, δT ) = δT Dyf(ϕ(T, x, p), p)Dxϕ(T, x, p)u = δT Dyf(y(T ), p)y1(T ).

The system which must be integrated to obtain y(T ), yi(T ), i = 1, . . . , 4 is

ẏ = f(y, p), y(0) = x (21)

ẏ1 = Dyf(y, p)y1, y1(0) = u (22)

ẏ2 = Dyf(y, p)y2 +Dpf(y, p)δp, y2(0) = δx (23)

ẏ3 = Dyf(y, p)y3 +D2
yyf(y, p)(y1, y2) +D2

ypf(y, p)(y1, δp), y3(0) = 0 (24)

ẏ4 = Dyf(y, p)y4, y4(0) = δu. (25)

It can be decoupled into two subsystems which can be solved in parallel; (21) and
(25) of dimension 2n, and (21)-(24) of dimension 4n.

9.2 Neimark-Sacker bifurcations

The Hopf bifurcations of periodic orbits with multiplier eiθ and associated eigenvector
u+ iv are solutions of the system H(x, u, v, T, θ, p) = 0 given by

x− ϕ(T, x, p) = 0,

g(x, p) = 0,

u cos θ − v sin θ −Dxϕ(T, x, p)u = 0,

u sin θ + v cos θ −Dxϕ(T, x, p)v = 0,

〈u, u〉+ 〈v, v〉 = 1,

〈u, v〉 = 0.

The first two equations determine a single point on a periodic orbit and its period,
the next two are the real and imaginary parts of eiθ(u+iv)−Dxϕ(T, x, p)(u+iv) = 0,
and the last two uniquely determine the eigenvector u+ iv. Now X = (x, u, v, T, θ, p)
has dimension 3n + 4, and the 3n + 3 equations define the curve of Neimark-Sacker
points. The work required to evaluate H(X) and DXH(X)δX doubles since there are
now two products by Dxϕ(T, x, p) in the system. They can obviously be computed
in parallel. All the terms required to compute H, or the action by its Jacobian have
already been considered in the case of saddle-node bifurcations.

The case of pitchfork bifurcations, when simmetries are present, was also consid-
ered in [24], where an example of thermal convection of a binary fluid was presented,
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having all the types of codimension-one bifurcation, and where the reasons for the
convergence of these methods were explained.

The bifurcations of steady solutions can also be continued with the preceding
systems by taking as T a fixed characteristic time of the problem, which is no longer
an unknown, and removing the phase condition. This is not, in general, the most
efficient way because it involves time integrations, but as stated before there is no
need to find adequate preconditioners for the extended systems.

10 Computation of invariant tori

After a Neimark-Sacker bifurcation of a periodic orbit, and under very general con-
ditions, it changes its stability and a new branch of two-dimensional invariant tori
appears. Their study is simplified if a Poincaré section is taken, cutting the periodic
orbit at a point and the torus at an invariant curve. The methods used to compute
invariant tori for low-dimensionl systems consist in discretizing the invariant curve
or the full tori expanding them in Fourier series (simple or double), using finite dif-
ferences to approximate the invariance conditions, or finding a single point of the
tori by adding a second section [52–57]. In the case of high-dimensional systems, tori
are usually computed by time evolution of the equations. Only attracting tori are
obtained by this method. It is a very expensive way of studying their dependence on
parameters, specially near bifurcations, where due to the weak attraction the tran-
sients are very long. We summarize here the methods described in [22,23], which use
all the previous tools in this article, are much more efficient, and allow computing
weakly unstable tori. Since discretizing a full invariant curve in a large phase space
would be too expensive, the two methods presented try to find a single point or an
small arc of it.

10.1 Poincaré maps and its derivatives

Consider again system (1) with a one-dimensional parameter p, and suppose there is
a periodic orbit which cuts transversely a hyperplane Σ1 given by

Σ1 =
{
y ∈ Rn / 〈v1, y − xΣ1 〉 = 0

}
,

xΣ1 and v1 being a point on the hyperplane and its normal unitary vector, respectively.
Let V ⊂ Σ1 be a neighborhood of the intersection of the periodic orbit with Σ1 at
which the Poincaré map P : V ⊂ Σ1 → Σ1 is defined as

P (x, p) = ϕ(t(x, p), x, p), (26)

t(x, p) > 0 being the first time for which ϕ(t(x, p), x, p) ∈ Σ1 with sign〈v1, f(x, p)〉 =
sign〈v1, f(P (x, p), p)〉 (or the second after a period doubling, etc.). Computing P (x, p)
requires a time integrator able to stop when the condition ϕ(t, x, p) ∈ Σ1 holds. This
can be done by tracking the sign of 〈v1, ϕ(t, x, p) − xΣ1 〉 and apply a root-finding
method to compute the intersection. This is implemented in many libraries of numer-
ical integrators of ODEs.

Since the map is restricted to Σ1 the action of the Jacobian of P (x, p) has to be
restricted to vectors (δx, δp) with 〈v1, δx〉 = 0. The action is

w ≡ DxP (x, p)δx+DpP (x, p)δp = y1 −
〈v1, y1〉
〈v1, z〉

z, (27)
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Fig. 1. Diagrams of a) the parameterized Poincaré map and b) the action by its Jacobian.

where z = f(P (x, p), p), and y1 is the solution, at the arrival time, t(x, p), of the first
variational equation (14). To see this, P (x, p) = ϕ(t(x, p), x, p) is first differentiated
to obtain

DxP (x, p)δx+DpP (x, p)δp = Dxϕ(t(x, p), x, p)δx+Dpϕ(t(x, p), x, p)δp

+ f(ϕ(t(x, p), x, p), p)
(
Dxt(x, p)δx+Dpt(x, p)δp

)
= y1(t(x, p)) + cz,

with

y1(t) =Dxϕ(t, x, p)δx+Dpϕ(t, x, p)δp,

c =Dxt(x, p)δx+Dpt(x, p)δp ∈ R,
z =f(ϕ(t(x, p), x, p), p).

Since h1(x, p) ≡ 〈v1, P (x, p) − xΣ1 〉 = 0 ∀x ∈ V and ∀p, its derivative must vanish
identically for all δx satisfying 〈v1, δx〉 = 0, then

Dxh1(x, p)δx+Dph1(x, p)δp = 〈v1, y1〉+ c〈v1, z〉 = 0,

and c = −〈v1, y1〉/〈v1, z〉.
Since Σ1 has dimension n− 1 it is convenient to parameterize it and the Poincaré

map. If v1k
is the largest component of v1, let us define Rk as the orthogonal projection

from Σ1 onto the hyperplane yk = 0, where the subscript indicates here the k-th
component of y. The inverse of this map is a regular parameterization of Σ1. The
map Rk simply removes the component of index k of a point x on Σ1 so that x̄ =
Rk(x) ∈ Rn−1, and its inverse R−1

k inserts a new component at the position k of a

point x̄ ∈ Rn−1 such that x = R−1
k (x̄) ∈ Σ1 (see Fig.1). Then the map

P̄ (x̄, p) = Rk(P (R−1
k (x̄), p))

is a projected Poincaré map defined on Rk(V) ⊂ {y ∈ Rn / yk = 0}. By applying the
chain rule to P̄ (x̄, p) = Rk(P (R−1

k (x̄), p))

Dx̄P̄ (x̄, p)δx̄+DpP̄ (x̄, p)δp = Rk
(
DxP (x, p)DR−1

k (x̄)δx̄+DpP (x, p)δp
)

= Rkw

where δx = DR−1
k (x̄)δx̄, and w is defined by Eq. (27).

The periodic orbits of (1) can be computed as fixed points of the parameterized
version of the Poincaré map. Its fixed points, verifying x̄− P̄ (x̄, p) = 0, x̄ ∈ Rn−1,
are in one-to-one correspondence with those of P by the map x = R−1

k (x̄). This was
the method used originally in [19]. All the computations required are represented
schematically in Fig. 1. The multiple shooting version using parallelism was studied
in [20]. The extension is not trivial if some speedup is expected.
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Fig. 2. Diagrams of the two generalized Poincaré maps used to compute invariant tori when
the degree of interpolation is three.

10.2 Invariant tori

The first method to compute invariant tori tries to find a single point of the invariant
curve. Similar methods were used in the past for low-dimensional dissipative [53] and
conservative [54] problems. Assume that a Poincaré map has been defined as before
on a hyperplane Σ1, and let Σ2 be another hyperplane, given by 〈v2, x − xΣ2 〉 = 0,
cutting transversely both Σ1 and the invariant tori, i.e., it cuts the invariant curve at
the point one wants to obtain. It is found as the fixed point of a generalized Poincaré
map G(x̄, p) : U ⊂ Rn−2 × R → Rn−2 defined as follows. Let us fix ε > 0, and let
R : Σ1 ∩Σ2 → Rn−2 be the orthogonal projection of Σ1 ∩Σ2 onto the n− 2 manifold
{y ∈ Rn / yk1 = 0, yk2 = 0}, k1 and k2 being the indices of the components of
maximal modulus of v1 and v2, respetively. If x̄ ∈ U let x = R−1(x̄) ∈ Σ1 ∩ Σ2 and
zj = P kj (x, p), j = 1, . . . , q + 1 be the first q + 1 powers of P applied to x such that
‖P kj (x, p)− x‖ < ε. Then

G(x̄, p) = R

q+1∑
j=1

lj(0)P kj (R−1(x̄), p)

 = R

q+1∑
j=1

lj(0)zj

 , (28)

where the lj are the Lagrange interpolation polynomials of degree q, associated to
the mesh of points µj , and evaluated at µ = 0 with

lj(µ) =

q+1∏
i=1
i 6=j

µ− µi
µj − µi

, µj = 〈v2, zj − xΣ2 〉, j = 1, · · · , q + 1.

The variable µ is a local coordinate, perpendicular to Σ2, which parameterizes the
invariant curve close to the initial point x, and with origin µ = 0 at Σ2. What the
maps does is finding the intersection of the curve interpolating the zj with Σ2. Since
zj ∈ Σ1, j = 1, · · · , q + 1, the intersection will be in Σ1 ∩Σ2. Fig 2a shows a scheme
of the process. The solutions of x̄ − G(x̄, p) = 0 correspond, via x = R−1(x̄), to an
approximation of the point of the invariant tori in Σ1 ∩Σ2.

The map G(x̄, p) depends on two parameters, the radius ε and the degree of the
interpolation polynomial q. At least ε has to be varied adaptively when the parameter
p is moved in a continuation process. When resonance regions are crossed a point on
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the manifolds connecting stable and unstable periodic orbits on the torus will be
found provided the tori persists and the returning points zj can still be computed.

To apply Newton-Krylov methods to the fixed point problem x̄ − G(x̄, p) = 0 it
is necessary to compute the action of the Jacobian of G(x̄, p) on vectors (δx̄, δp). It
reduces to the case of the differential of the Poincaré map:

Dx̄G(x̄, p)δx̄+DpG(x̄, p)δp = R

q+1∑
j=1

[
lj(0)

(
DxP

kj (x, p)δx+DpP
kj (x, p)δp

)
+ P kj (x, p)

q+1∑
i=1

∂µi
lj(0)〈v2, DxP

ki(x, p)δx+DpP
ki(x, p)δp〉

]
,

with x = R−1(x̄) and δx = Dx̄R
−1(x̄)δx̄, and where

〈v2, DxP
ki(x, p)δx+DpP

ki(x, p)δp〉 = Dxµiδx+Dpµiδp.

The derivatives ∂µi
lj(0) of lj(0) =

∏q+1
i=1, i 6=j µi/(µi − µj) are trivial.

This first method is clearly sequential. The computation of zj must be preceded
by that of zj+1. The second method is a parallelizable version (see Fig. 2b). Instead of
finding a single point on the invariant curve, several points are found which approxi-
mate a segment. With the same meaning for P , Σ1 and Σ2, let µ1, · · · , µq+1 be q+ 1
fixed coordinates along the line x = xΣ2 + µv2, let us fix ε > 0 and define the map
G(X, p) : U ⊂ R(n−1)(q+1) ×R→ R(n−1)(q+1) as follows. If X = [x1, · · · , xq+1] ∈ U is

a matrix with columns the coordinates of the points x1, . . . , xq+1, let zj = P k
′
j (xj , p)

be the first power of P applied to xj such that ‖P k
′
j (xj , p)−xj‖ < ε, j = 1, . . . , q+1.

Then
G(X, p) = X ′ = Z(X, p)Ṽ (X, p)−1V, (29)

with X ′ = (x′1, · · · , x′q+1), Z(X, p) = (z1, · · · , zq+1), and V and Ṽ being the Vander-
monde matrices

V =

 1 · · · 1
µ1 · · · µq+1

. . . . . . . .
µq1 · · · µ

q
q+1

 , Ṽ =

 1 · · · 1
µ̃1 · · · µ̃q+1

. . . . . . . . .
µ̃1
q · · · µ̃qq+1

 ,

associated with the µj and the µ̃j = 〈v2, P
k′j (xj , p)− xΣ2 〉, j = 1, · · · , q + 1 respec-

tively.
The map takes q + 1 initial conditions xj approximating a segment (see Fig. 2b),

finds the first return point zj of each one, interpolates them, and evaluates the inter-

polating polynomial at the original coordinates µj . The product Z(X, p)Ṽ (X, p)−1

contains the vectorial coefficients of the monomials 1, µ, µ2, . . . , µq+1. Multiplying
them by V is evaluating the interpolation polynomial at the nodes µj . A fixed point
of G(X, p) provides an approximation of an arc of the invariant curve in Σ1.

In this case the parameterizations of the intersections of Σ1 with the planes µ = µj
have not been made explicit. They are exactly the same as for the first method. The
radius ε, and the position of the µj defining G should be varied adaptively during the
continuation process. Finally, the action by the Jacobian of this second map, which
can be written as G = ZṼ −1V to simplify, can also be reduced to that of the Poincaré
map. If δX = [δx1, · · · , δxq+1] then

DG(X, p)(δX, δp) =[
DZ(X, p)(δX, δp)− Z(X, p)Ṽ (X, p)−1DṼ (X, p)(δX, δp)

]
Ṽ (X, p)−1V
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where DZ(X, p)(δX, δp) = [DP k
′
1(x1, p)(δx1, δp), · · · , DP k

′
q+1(xq+1, p)(δxq+1, δp)],

DṼ (X, p)(δX, δp) =


0 · · · 0
1 · · · 1

2µ̃1 · · · 2µ̃q+1

. . . . . . . . . . .

qµ̃q−1
1 · · · qµ̃q−1

q+1


η1 · · · 0

...
. . .

...
0 · · · ηq+1

 ,

and ηj = 〈v2, DP
k′j (xj , p)(δxj , δp)〉. In short, DG =

[
DZ − ZṼ −1DṼ

]
Ṽ −1V.

In [23] the two methods were compared. The main conclusion is that the second
should be preferred. It is trivially parallelizable because finding each zj is now an
independent task, and, if the xj are close together, the number of iterations of the
linear solver is quite independent of the number of points, q + 1. Moreover the in-
tegration time required to find the xj is much lower because only the first return
point is needed. This allows also to find more unstable invariant curves than with
the first method. The final result is that good speedups can be achieved with parallel
implementations. Other formulations are possible based on splines interpolation or
least squares fitting. Both were also considered in [23].

11 Applications and conclusions

The tools required to analyze efficiently systems of parabolic nonlinear PDEs, from
the point of view of dynamical systems, have been introduced in this tutorial. No
examples have been provided to reduce the length of the article. Instead, some refer-
ences will be given representing recent uses of these algorithms, without attempting
to be exhaustive. The reviews [58,14] present the current status of the application of
dynamical systems techniques in Fluid Dynamics, including several examples.

Since computing equilibria and their stability is now quite common, we will only
mention [47] as typical study, because it is for an open flow at high Reynolds number,
using a model for the turbulence. The authors compute the flow around four-digits
symmetric NACA airfoils of several thickness. Continuation methods allow them to
pass the stall point.

Waves and modulated waves can be computed by writing the governing equations
in the frame at which they become steady and periodic solutions, respectively. This
approach has been used in [59] for the study of localized structures in binary convec-
tion of a two-dimensional layer, and in [60,61] for the thermal convection in rotating
spherical shells.

Several studies of periodic regimes in fluid flow problems, which are not just waves,
have appeared after the publication of [19]. The problems treated included the plane
Couette flow [62], the pipe flow [63], thermal convection in a cubical cavity [64], the
thermoacoustics of flames [65,66], and the continuation of modulated waves for the
thermal convection in rotating spherical shells in [67], among others. This multiplicity
of works is due to the fact that the continuation and eigenvalue computation algo-
rithms are functionally separated from that of the time evolution, and can therefore be
developed pretty much independently allowing the use of adapted legacy simulation
codes.

As far as we know, the methods to compute invariant tori introduced in [22,23]
have not yet been used by other authors, probably because they might seem too
complicated, or simply because there has been no need to study in detail extended
systems in quasiperiodic regimes.
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The possible appearance in the future of general software packages implementing
all these tools, will relieve the users from the burden of having to program everything
from scratch and promote their use, as happened for low-dimensional systems.
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22. J. Sánchez, M. Net, C. Simó, Computation of invariant tori by Newton-Krylov methods
in large-scale dissipative systems, Physica D 239 (2010) 123–133.

23. J. Sánchez, M. Net, A parallel algorithm for the computation of invariant tori in large-
scale dissipative systems, Physica D 252 (1) (2013) 22–33.

24. M. Net, J. Sánchez, Continuation of bifurcations of periodic orbits for large-scale sys-
tems, SIAM J. Appl. Dynam. Systems 14 (2) (2015) 674–698.

25. Y. Saad, Iterative methods for sparse linear systems, PWS pub. company, New York,
1996.

26. T. L. van Noorden, S. M. Verduyn Lunel, A. Bliek, The efficient computation of periodic
states of cyclically operated chemical processes, IMA J. Appl. Math. 68 (2003) 149–166.

27. K. I. Dickson, C. T. Kelley, I. C. F. Ipsen, I. G. Kevrekidis, Condition estimates for
pseudo-arclength continuation, SIAM J. Numer. Anal. 45 (1) (2007) 263–276.

28. C. T. Kelley, Iterative methods for linear and nonlinear equations, Frontiers in applied
mathematics, SIAM, 1995.

29. R. S. Dembo, S. C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal. 19 (2) (1982) 400–408.

30. J. E. Dennis, Jr., R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations (Classics in Applied Mathematics, 16), SIAM, 1996.

31. S. C. Eisenstat, H. F. Walker, Choosing the forcing terms in an inexact newton method,
SIAM J. Sci. Comput. 17 (1) (1996) 16–32.

32. M. Pernice, H. F. Walker, NITSOL: A Newton iterative solver for nonlinear systems,
SIAM J. Sci. Comput. 19 (1) (1998) 302–318.

33. S. L. Campbell, I. C. F. Ipsen, C. T. Kelley, C. D. Meyer, GMRES and the Minimal
Polynomial, BIT Numerical Mathematics 36 (4) (1996) 664–675.

34. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, H. V. der Vorst, Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
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