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Abstract

An exhaustive study, based on numerical three-dimensional simulations, of the Boussinesq thermal convection of a fluid confined

in a rotating spherical shell is presented. A moderately low Prandtl number fluid (σ = 0.1) bounded by differentially-heated solid

spherical shells is mainly considered. Asymptotic power laws for the mean physical properties of the flows are obtained in the limit

of low Rossby number and compared with laboratory experiments and with previous numerical results computed by taking either

stress-free boundary conditions or quasi-geostrophic restrictions, and with geodynamo models. Finally, using parameters as close

as possible to those of the Earth’s outer core, some estimations of the characteristic time and length scales of convection are given.
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1. Introduction

The study of thermal convection in rotating spherical geome-

tries is important for understanding the generation of the mag-

netic fields of cosmic bodies and in particular in the Earth’s

outer core. It is widely accepted that they are generated by con-

vection of electrically conducting fluids in their interiors. A

recent study (Christensen and Aubert (2006)) predicts that the

strength of the magnetic fields is independent of the conductiv-

ity and of the rotation rate, and that it is basically controlled by

the buoyancy flux. Although it is known that the Earth’s mag-

netic field is driven by both thermal and compositional buoy-

ancy forces (Lister and Buffet (1995); Poirier (2000)) in this

paper we focus on the imprint of the former because its knowl-

edge for low Prandtl numbers, σ, is not yet completely under-

stood.

There is a multitude of papers devoted to study the role

that thermal convection plays in the dynamics of the celes-

tial bodies. Good reviews can be found in the literature, see

for instance Cardin and Olson (1994), Gillet and Jones (2006)

and Olson (2011). Therefore we will restrict ourselves to re-

marking mostly those directly related with temporally chaotic

and turbulent flows, with which we compare.

Fully developed thermal convection in a rapidly rotating

spherical shell was studied experimentally with water (σ = 7)

and numerically with a quasi-geostrophic model by Cardin and

Olson (1994). At a Rayleigh number Ra = 200Rac, where Rac

is the critical value of the onset of convection, they found large

scale flows with radial variations of the azimuthally averaged
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velocity, negative (retrograde) near the inner boundary, and pos-

itive (prograde), comparable in strength to the former, near the

outer. Their results are consistent with a zonal flow maintained

by a transfer of energy from the small to the large scales of

convection via Reynolds stresses, i.e. by the correlation of the

azimuthal component of the velocity field and the cylindrical ra-

dial component. This theory was revisited by Gillet and Jones

(2006) and Plaut et al. (2008), the latter taking into account the

tilt of the convective vortices.

The role of the bulk viscosity and the Ekman friction on

the formation of banded zonal structures at weakly nonlinear

regimes because of deep convection was studied by Morin and

Dormy (2006) with a two-dimensional approximation. They

notice that the Ekman pumping tends to produce a large num-

ber of bands in the system with the large amplitudes located

near the center of the shell. The scale of the transition from

dominant bulk viscosity to dominant Ekman friction was found

to be δ ∼ O(LE1/4), where L is the large scale of the axisym-

metric flow. The generation of banded atmospheres in the major

planets due to turbulent convection was investigated in Aurnou

and Olson (2001) and Aurnou and Heimpel (2004), among oth-

ers, for different radius ratios and boundary conditions.

In a recent experiment with liquid sodium (σ = 0.01) Shew

and Lathrop (2005) got Ekman numbers as low as 10−8, and

reached Rayleigh numbers up to 109. They found the experi-

mental law for the dimensional time-averaged azimuthal veloc-

ity (|vϕ|)d as a function of Ra and E close to the inner boundary

of the shell, and also derived the scaling relation |vϕ| ∼ RaE ei-

ther by balancing Coriolis and buoyancy forces or by supposing

that the azimuthal motions come from thermal winds.

The generation of mean zonal flows was analyzed numeri-

cally in Christensen (2002) for full three-dimensional calcula-

tions with stress-free boundary conditions and Prandtl numbers

mainly of order one. It was shown that, at moderate Ra, the
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contribution of the mean zonal flow to the total kinetic energy

decreases by increasing σ, but when Ra is higher the maxi-

mum fraction of the kinetic energy density in the zonal wind

is nearly independent of σ. Moreover it was established that

the ratio of total kinetic energy density to that in the zonal flow

decreases drastically at high Ra due to the loss of geostrophy

of the convective columns and the corresponding decorrelation

of the Reynolds stresses. In agreement with Cardin and Olson

(1994) a prograde mean zonal flow close to the outer bound-

ary and retrograde near the inner sphere was found. Asymp-

totic power laws computed in the limit of negligible viscos-

ity where used successfully to determine the magnitude of the

zonal winds on the surface of the giant gas planets in the ab-

sence of magnetic field.

Aubert (2005) and Christensen and Aubert (2006) also ob-

tained differential rotation with non-slip boundary conditions.

In addition, the influence of the magnetic fields on the convec-

tive and zonal flows was studied in these papers. In the former,

it was found that the magnetic field has no direct influence on

the variations of the zonal flow along the axis of rotation, but it

allows an enhancement of the heat flux by means of the relax-

ation of the Taylor-Proudman constraint. However, in the sec-

ond paper, and in agreement with Soderlund et al. (2012), not

much different scalings were obtained for magnetic and non-

magnetic (Christensen (2002)) rotating convection. Coherent

extrapolations in the presence of magnetic fields were reported

in Christensen and Aubert (2006). They predicted a magnetic

field strength of order 1 mT inside the Earth’s outer core.

The zonal circulations in the Earth’s outer core were also in-

vestigated experimentally in Aubert et al. (2001); Gillet et al.

(2007); Shew and Lathrop (2005) for water σ = 7, gallium

σ = 0.023 and liquid sodium σ = 0.010. In the experiments

the gravity force is supplied by the centrifugal acceleration, thus

changing the radial dependence of the buoyancy force to normal

to the axis of rotation. However, this modification resulted to

be of secondary importance for very high Ra at low and mid-

latitudes. Aurnou (2007) compared heat transfer data from re-

cent models of rotating convection. From the analysis of these

data he concluded that numerical and laboratory experiments

produced different scaling laws. While for the former the rela-

tion between the modified Nusselt number (based on the total

heat flux) and the modified heat flux-based Rayleigh number is

Nu∗ ∼ (Ra∗
QT

)0.55, for the latter it is Nu∗ ∼ (Ra∗
QT

)0.29 in the

regime dominated by the rotation. According to the author the

discrepancy could be due to the low conductivity of the materi-

als employed in the outer spherical shells, which could offer a

higher resistance to heat transfer than the fluid, or to the exis-

tence of a new scenario in which a regime with the heat transfer

controlled by the physical properties of the thermal boundary

layers exists, that has not yet been achieved.

General scaling laws for the velocity field depending on the

total heat flux-based Rayleigh number, RaQT
, E, σ and on the

slope of the outer sphere were derived in Cardin and Olson

(1994). They approximate the inertial state by neglecting the

dissipation through the Ekman boundary layers. The veloc-

ity, Ũ ∼ E1/5Ra
2/5

QT
, and length scales, δ ∼ E3/5Ra

1/5

QT
, for the

convective vortices in the high Reynolds number regime were

given. In Aubert et al. (2001) scaling laws for the zonal flow,

Û ∼ E9/10Ra
4/5

QT
, were obtained extending the former study by

including Ekman friction on the outer boundary. They con-

sider that the kinetic energy is transported from the scale of

convective vortices to the large-scale flows through Reynolds

stresses, i.e. following a reverse cascade of energy. Then it

is dissipated by the zonal flow in the viscous boundary lay-

ers. A consequence of this hypothesis is that the energy con-

tained in the zonal flow cannot be significantly higher than the

energy contained in the convective vortices. With these scal-

ings they extrapolated values for the Earth’s outer core, finding

for the radial and azimuthal velocities and for the characteristic

length of the convective eddies and zonal flow, Ũd ≈ 10−3 m/s,

Ûd ≈ 10−2 m/s, δr = δϕ ≈ 10 km, respectively.

The same experiment and scaling laws incorporating Ekman

pumping and a varying β-effect were re-examined in Gillet

et al. (2007), and checked with the data supplied by quasi-

geostrophic numerical simulations. At weak supercritical

regimes, a quadratic dependence of the zonal flow on convec-

tive velocities, Û ∼ Ũ2, was found, reflecting that the zonal

flow is driven by the Reynolds stresses if the characteristic

length scale corresponds to that established at the onset of con-

vection. For turbulent flows, the amplitude of the zonal motions

observed is also larger than that of the convective flows. In this

regime they took as characteristic azimuthal scale the Rhines

scale, δβ ∼
√

Û/β, associated with the radial shear of the mean

flow. They found that the balance between the Reynolds stress

and the Ekman friction is Û ∼ Ũ4/3.

Recently, from a dataset of several numerical dynamo mod-

els, Stelzer and Jackson (2013) have analyzed, by leaving one

parameter out and cross-validation, the results of other authors.

They found that diffusion dependent parameters are needed

for scaling the flow velocity and the magnetic field strength.

Moreover King and Buffett (2013) have found l ∼ E1/3 and

U ∼ C1/2E1/3 for typical length scales and speeds, respectively.

They come from theoretical scaling analysis (balances between

rotation, viscosity and buoyancy), which are fitted to several dy-

namo simulation data. In the latter formula C = Ra(Nu− 1)σ−2

accounts for the convective power. According to the authors,

there are some evidences that geodynamo simulations with

magnetic Prandtl numbers tending to zero would lead to a

new regime in which large scale convection and Lorentz forces

would be more important than viscosity.

The frequency spectra of the temperature observed by Shew

and Lathrop (2005) shows an abrupt change in the slope at a

high frequency (knee frequency fc). It was related with the in-

verse cascade of energy dissipation pointed out by Aubert et al.

(2001) and Gillet et al. (2007) in the framework of the two-

dimensional turbulence. Shew and Lathrop (2005) suggested

that for frequencies lower than fc the temperature fluctuations

are due to an inverse cascade of energy from the scale of con-

vective flows to the largest scales up to the size of the domain.

Despite the power of modern computers full three-

dimensional simulations at high Reynolds numbers with an ac-

ceptable wall-clock CPU time must be run using parameters

that are far from those of the dynamics of the planetary liquid
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cores, or limit its number to study a particular phenomenon in

a very well planed way. In any case nowadays the simulations

are far from reaching the Ekman and Rayleigh numbers of the

Earth’s outer core. In this paper we adopt the first approach,

and extend the previous stress-free numerical study of Chris-

tensen (2002), by using non-slip boundary conditions, mainly

the lower Prandtl number value σ = 0.1 and the radius ratio

of the Earth’s outer core η = 0.35. Our simulations are per-

formed for four Ekman numbers, E, the larger being E = 10−4,

which, although it is far from those needed for real applications,

is sufficiently small to be in the asymptotic regime of the onset

of convection (see Garcia et al. (2008)). In addition the val-

ues used allow us to compare with other authors. The location

of the convection and the flow patterns, as well as the asymp-

totic laws of the flow properties in the regime of fully developed

convection, are studied. The results are mainly confronted with

the experimental data and scaling laws of Aubert et al. (2001);

Shew and Lathrop (2005); Gillet et al. (2007). In addition, the

fittings are used to extrapolate physical properties to a situation

similar to that of the present day Earth’s outer core.

The study is organized as follows: In Sec. 2, the formulation

of the problem and the definition of the output data are intro-

duced. Sec. 3 contains the validation of the numerical results.

The study of the variation of the location of the convection with

Ra is performed in Sec. 4 by computing relevant physical prop-

erties at different collocation points inside the shell. The pur-

pose of Sec. 5 is to find scaling relations as functions of the

diffusivity-free Rayleigh number, and to compare them with the

equivalent limits including magnetic field. A comparison with

the scaling laws derived from previous experimental studies is

performed in Sec. 6. In Sec. 7 the fittings are used to extrapo-

late to the Earth’s outer core values, and the final conclusions

are discussed in Sec. 8. The Appendix contains a summary of

the properties analyzed in the preceding sections.

2. The equations and output data

We consider the thermal convection of a fluid filling the

gap between two concentric spheres differentially heated, ro-

tating about an axis of symmetry with constant angular velocity

Ω = Ωk, and subject to radial gravity g = −γr, where γ is

constant and r the position vector. The mass, momentum and

energy equations are written in the rotating frame of reference.

The units are d = ro − ri for the distance , ν2/γαd4 for the

temperature, and d2/ν for the time. In the previous definitions

ri and ro are the inner and outer radii, respectively, ν the kine-

matic viscosity, and α the thermal expansion coefficient.

We use the Boussinesq approximation and the solenoidal ve-

locity field is expressed in terms of toroidal,Ψ, and poloidal,Φ,

potentials

v = ∇ × (Ψr) + ∇ × ∇ × (Φr) . (1)

Consequently, the equations for both potentials, and the tem-

perature perturbation, Θ = T − Tc, from the conduction state

v = 0, T = Tc(r), with r = |r|, are

[

(∂t − ∇2)L2 − 2E−1 ∂ϕ
]

Ψ = − 2E−1QΦ −
− r · ∇ × (ω × v),

(2)
[

(∂t − ∇2)L2 − 2E−1 ∂ϕ
]

∇2Φ + L2Θ = 2E−1QΨ +
+ r · ∇ × ∇ × (ω × v),

(3)
(

σ∂t − ∇2
)

Θ − Ra η (1 − η)−2r−3L2Φ = − σ(v · ∇)Θ, (4)

where ω = ∇ × v is the vorticity.

The parameters of the problem are the Rayleigh number Ra,

the Prandtl number σ, the Ekman number E, and the radius

ratio η. They are defined by

Ra =
γα∆Td4

κν
, E =

ν

Ωd2
, σ =

ν

κ
, η =

ri

ro

, (5)

where κ is the thermal diffusivity, and ∆T > 0 the difference of

temperature between the inner and outer boundaries.

The operators L2 andQ are defined by L2 ≡ −r2∇2+∂r(r
2∂r),

Q ≡ r cos θ∇2 − (L2 + r∂r)(cos θ∂r − r−1 sin θ∂θ), (r, θ, ϕ) being

the spherical coordinates, with θ measuring the colatitude, and

ϕ the longitude. When non-slip perfect thermally conducting

boundaries are used

Φ = ∂rΦ = Ψ = Θ = 0 at r = ri, ro. (6)

The conduction state in non-dimensional units is Tc(r) = T0 +

Ra η/σ(1 − η)2r.

The equations are discretized and integrated as described

in Garcia et al. (2010) and references therein. The potentials

and the temperature perturbation are expanded in spherical har-

monics in the angular coordinates, and in the radial direction a

collocation method on a Gauss-Lobatto mesh is used.

Since we are interested in comparing our results with those

of different authors, several types of output data are analyzed.

The local output data consist of time series of selected variables

taken at representative points of the domain (see Sec. 4). Global

data correspond to physical properties averaged over the whole

volume, or on the surface of a sphere. The first global data used

here is the Nusselt number, defined as the ratio of the average

of the total radial heat flux to the conductive heat flux, both

through the outer surface,

Nu =
〈JT (ro, θ, ϕ)〉S
〈Jc(ro)〉S

= −(
√

2σ/2ηRa)∂rΘ
0
0(t, ro) + 1, (7)

the brackets 〈〉S mean the surface integral evaluated at r = ro,

and Θ0
0

is the zero degree and order amplitude of the spherical

harmonic coefficient of the temperature perturbation expansion.

The second is the volume-averaged kinetic energy density K =
1
2
〈|v|2〉V, called from now on kinetic energy density (KED) for

simplicity, i.e.

K =
1

V

∫

V

1

2
(v · v) dv = (3

√
2/4(r3

o − r3
i ))

∫ ro

ri

r2[v2]0
0(r, t) dr.

(8)
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The previous volume integral can also be computed for either

the toroidal, ∇ × (Ψr), or the poloidal, ∇ × ∇ × (Φr), compo-

nent of the velocity field, giving rise to either the toroidal, Kt,

or the poloidal, Kp, KEDs. The axisymmetric, Ka, and the non-

axisymmetric, Kna, KEDs can also be defined by modifying the

velocity field of Eq. (8). They are based, respectively, on the

m = 0 or the m , 0 modes of the spherical harmonic expan-

sion of the potentials Ψ and Φ. From these volume-averaged

kinetic energy densities the Reynolds number is obtained as

Re∗ =
√

2K∗, and the Rossby number as Ro∗ = Re∗E, where

∗ means the part of the total energy taken into account. What-

ever the data ds be (local or global) a time series of the form

(ti, ds(ti)), i = 1, . . . ,N can be obtained, and its time average

(mean value)

ds =
1

∆t

∫ t+∆t

t

ds dt, (9)

and relative variance or relative root-mean-square (r.m.s.) ds

deviation

σds
=

√

(ds − ds)2

ds

(10)

can be computed. The symbols and the definition of the physi-

cal properties that will be studied along this paper are summa-

rized in Table 12 of the Appendix.

3. Validation and accuracy of the results

The numerical solutions can be computed by imposing a md-

fold azimuthal symmetry. This is accomplished by only retain-

ing the modes with wave number m = kmd, k ∈ Z for a given

md, in the truncated spherical harmonics expansion of the un-

knowns. Besides of reducing the numerical effort for obtain-

ing time-averaged properties of strongly supercritical flows, the

constrain on the symmetry can also be used to find existing un-

stable flows.

The first solution, corresponding to Ra = 2 × 105 with

E = 10−4, is computed by starting from an initial condition

with velocity v = 0, and temperature

TB(r, θ, ϕ) =
riro

r
− ri +

2A
√

2π
(1 − x2)3Pm

m(θ) cos mϕ, (11)

with A = 0.1, x = 2r − ri − ro, m = 6, and Pm
m(θ) =√

(2m + 1)!!/2(2m)!! sinm θ the normalized associated Legen-

dre function of order and degree m. The solution tends, after an

abrupt transient, to an azimuthal travelling wave of wave num-

ber m = 6. At higher Ra the calculations are started from the so-

lution computed at the previous lower Ra. For E = 3.162×10−5,

the first solution is computed using again the initial condition

given in Eq. (11), but with critical wave number m = 8, and at

E = 8.165 × 10−6 with m = 12. The resolution is increased

from time to time in order to look into spatial discretization er-

rors (see Tables 1 and 2). The initial transients are discarded

until a stationary pattern is reached or until the time-averaged

properties and the fundamental frequencies do not substantially

change.

For E = 10−4, σ = 0.1 and small Ra, the solutions are ob-

tained firstly without symmetry assumptions (md = 1), that is

by using all the spherical harmonics in the expansions of the

functions. At about Ra ten times supercritical or greater, a two-

fold longitudinal symmetry is assumed (only the even modes in

the spherical expansions are retained) because we have checked

that this does not change significantly the mean values of the

fields, and nearly halves the computational time. In Tables 1

and 2, several space and time-averaged physical properties,

computed with md = 8, md = 4, md = 2 and md = 1, are

listed for several solutions at different Ekman numbers, in or-

der to show the differences caused by the use of each symmetry.

Different spatial resolutions are also used for checking the ac-

curacy of the results. Notice in the second table that only Ka
p

changes significantly with the change of symmetry, and that it

is one or two orders of magnitude lesser than the others, so its

contribution hardly modifies the axisymmetric KED. For this

reason Ka
t will be used as an estimator of the KED stored in the

zonal flow.

Finally, in order to check the correct computation of the

physical magnitudes, some volume and time-averaged physical

properties are compared in Table 3 with those of Christensen

(2002) for two values of E. They are computed by using his pa-

rameters and boundary conditions. In addition, the mean ratio

of KED to its non-axisymmetric contribution (shown in Fig. 6c

of Christensen (2002)) is included. In our case both solutions

are obtained without symmetry assumptions (md = 1), although

in Christensen (2002) a two-fold symmetry is imposed for the

solutions corresponding to E = 10−4. The agreement is very

good, taking into account that it is impossible to capture exactly

the same temporal register for non-periodic flows.

4. Location of convection

Some time-averaged local quantities, extracted from a se-

quence of solutions obtained by increasing Ra for E = 10−4,

are analyzed in this section to quantify the variation of the lo-

cation of convection with Ra up to approximately 10Rac. The

time-averaged quantities are extracted from representative col-

location points pi, i = 1, . . . , 9, whose positions are sketched

in Fig. 1. Their spherical coordinates are given in the figure

caption.

In Fig. 2, the time-averaged azimuthally-averaged azimuthal

component of the velocity field, 〈vϕ〉 (from now on mean zonal

flow), at the collocation points pi, i = 1, . . . , 9, is plotted versus

Ra. The rate of generation of 〈vϕ〉 is faster in the neighborhood

of the tangent cylinder depicted in Fig. 1. For Ra < 5 × 105,

only a weak retrograde mean zonal flow very close to the inter-

nal part of the cylinder is generated (see the situation of points

p3 and p4 in the figure), however in the external part the gen-

eration is more than twice that of the former (see points p5 and

p7). As Ra is increased, the mean zonal circulation becomes

stronger and spreads affecting most of the shell, although main-

taining a weak value (see points p8, p6, p1 and p2). The inten-

sity of the retrograde mean zonal flow weakens from the tan-

gent cylinder to the rotation axis and to the outer sphere. In

fact, near the outer boundary at low and mid latitudes, there
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E = 10−4

Ra/Rac Re × 10−2 Rep × 10−2 Nu K/Kna σKp
Nr L md

5.39 2.634 1.082 1.286 1.968 0.326 32 54 2

5.39 2.599 1.064 1.274 1.873 0.214 32 54 1

5.39 2.598 1.066 1.274 1.870 0.210 50 84 1

10.78 6.782 3.119 2.103 1.868 0.173 50 84 2

10.78 6.762 3.128 2.094 1.770 0.135 50 84 1

26.94 13.60 7.596 3.907 1.385 0.138 50 84 2

26.94 13.68 7.594 3.905 1.338 0.094 50 84 1

26.94 13.89 7.765 3.918 1.410 0.143 70 128 2

37.70 16.38 9.608 4.725 1.251 0.123 50 84 2

37.70 16.86 9.933 4.738 1.249 0.115 70 128 2

53.88 21.45 13.03 5.770 1.152 0.085 80 160 2

53.88 21.42 13.01 5.820 1.116 0.060 80 160 1

E = 3.162 × 10−5

Ra/Rac Re × 10−2 Rep × 10−1 Nu K/Kna σKp
Nr L md

3.14 1.725 6.507 1.100 1.926 0.314 32 54 2

3.14 1.746 6.511 1.101 1.971 0.298 50 84 2

78.50 39.61 189.2 7.431 2.090 0.181 70 128 4

78.50 39.10 197.9 7.618 1.702 0.138 70 128 2

78.50 38.61 202.5 7.717 1.564 0.126 70 148 2

78.50 40.54 209.7 7.855 1.629 0.128 80 192 2

E = 8.165 × 10−6

Ra/Rac Re × 10−3 Rep × 10−3 Nu K/Kna σKp
Nr L md

41.62 4.219 1.773 5.207 2.311 0.166 80 192 8

41.62 3.873 1.820 5.374 1.787 0.137 70 128 4

41.62 4.379 1.819 5.442 2.319 0.151 80 192 4

Table 1: Time-averaged Reynolds number, Re, its poloidal contribution, Rep, Nusselt number, Nu, ratio between KED to its non-axisymmetric contribution, K/Kna ,

and relative variance of the poloidal KED, σKp , for several solutions computed with different numerical radial resolution, Nr, spherical harmonic degree, L and

imposed md-fold azimuthal symmetry. In all cases σ = 0.1.

is a region of prograde mean zonal flow whose strength also

increases with Ra (see point p9 and Fig. 3), becoming compa-

rable to the retrograde circulations calculated at p8. The exis-

tence of opposite zonal flows indicate that the shear stresses in

the transition zone, estimated near r = ri + 0.5(ro − ri) are very

strong. The prograde differential rotation near the equator at the

outer surface was already found by Cardin and Olson (1994)

and Aubert et al. (2001) in water and gallium experiments, by

Tilgner and Busse (1997) in three-dimensional numerical sim-

ulations with stress-free boundaries, and by Cardin and Olson

(1994) in quasi-geostrophic simulations with non-slip bound-

aries and Prandtl numbers σ = 0.1, 1, 7, 10.

In Fig. 3 the snapshots of the azimuthally-averaged azimuthal

component of the velocity field (zonal flow), 〈vϕ〉, are taken in

meridional sections for five representative Rayleigh numbers,

Ra = 3.42 × 105, 5.1 × 105, 7.5 × 105, 106, and 2 × 106. The

scale of greys (colors online) is different for each figure. Black

and white (blue and red) colors mean retrograde and prograde

zonal flows, respectively. In the sequence, the above mentioned

tendency of the negative circulations to expand to wider regions

of the spherical shell, and the existence of positive circulations

Ω

p

rri o

p
4

p
1

p
2

p
3

p
5

p
6

p
7

8
p

9

Figure 1: Meridional section of the spherical shell taken at ϕ = 0 showing

the points pi, i = 1, · · · , 9, where the time-averaged physical properties are

monitored. Their colatitudinal coordinates are θ ≃ π/8, θ ≃ π/4, and θ ≃ 3π/8,

and the radial are r = ri+ (ro−ri)/7, r = ri+ (ro−ri)/2, and r = ri+6(ro−ri)/7.
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E = 10−4

Ra/Rac K × 10−4 Ka
t × 10−4 Kna

t × 10−4 Ka
p × 10−1 Kna

p × 10−3 Nr L md

5.39 3.5039 1.6204 1.2823 13.654 5.8763 32 54 2

5.39 3.3900 1.5371 1.2800 7.9091 5.6504 32 54 1

5.39 3.3885 1.5349 1.2794 7.9426 5.6639 50 84 1

10.78 23.058 10.270 7.8875 201.03 46.990 50 84 2

10.78 22.895 9.7083 8.2735 113.51 48.000 50 84 1

26.94 92.683 23.484 40.218 1410.4 275.71 50 84 2

26.94 93.608 22.485 42.224 762.55 281.37 50 84 1

26.94 96.680 25.580 40.795 1543.0 287.62 70 128 2

37.70 134.36 23.690 64.338 2357.2 439.71 50 84 2

37.70 142.42 24.982 67.946 2589.7 469.05 70 128 2

53.88 230.20 25.153 119.95 4639.7 804.65 80 160 2

53.88 229.41 21.145 123.60 2386.8 822.71 80 160 1

E = 3.162 × 10−5

Ra/Rac K × 10−4 Ka
t × 10−3 Kna

t × 10−3 Ka
p Kna

p × 10−3 Nr L md

3.14 1.5047 6.9264 5.9502 7.6585 2.1623 32 54 2

3.14 1.5396 7.2993 5.9285 7.3023 2.1611 50 84 2

78.50 786.00 3861.6 2195.4 141679. 1661.2 70 128 4

78.50 765.41 3004.0 2683.0 78414. 1888.6 70 128 2

78.50 746.17 2542.4 2859.5 82921. 1976.2 70 148 2

78.50 822.62 3017.7 3000.7 92269. 2115.5 80 192 2

E = 8.165 × 10−6

Ra/Rac K × 10−6 Ka
t × 10−6 Kna

t × 10−6 Ka
p × 10−4 Kna

p × 10−6 Nr L md

41.62 7.5129 3.2108 2.6392 4.9787 1.613 70 128 4

41.62 8.9253 4.9370 2.4068 6.2713 1.519 80 192 8

41.62 9.6000 5.3407 2.5964 5.6730 1.606 80 192 4

Table 2: Time-averaged total KED, K, axisymmetric toroidal KED, Ka
t , non-axisymmetric toroidal KED, Kna

t , axisymmetric poloidal KED, Ka
p, non-axisymmetric

poloidal KED, Kna
p , for several solutions computed with the resolutions and symmetries of Table 1. In all cases σ = 0.1
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Figure 2: Time averaged azimuthally-averaged azimuthal component of the

velocity field 〈vϕ〉, at the collocation points of Fig. 1, plotted versus Ra. The

radii are r = ri + (ro − ri)/7 at p1 , p4 and p7, r = ri + (ro − ri)/2 at p2 , p5

and p8 , and r = ri + 6(ro − ri)/7 at p3, p6 and p9 , and solid/dotted/dashed

(red/green/blue colors online) lines mean: θ = π/8, θ = π/4 and θ = 3π/8,

respectively.

               

Figure 3: From left to right, contour plots of snapshots of the zonal flow 〈vϕ〉
on meridional sections at Ra = 3.42 × 105 , Ra = 5.1 × 105 , Ra = 7.5 × 105 ,

Ra = 106, and Ra = 2 × 106 , respectively.

at low and mid latitudes close to the outer boundary, can also

be observed. This expansion is quantified in Table 4, where it

can be seen that the radial position of 〈vϕ〉 = 0 in the equator

travels from r = ri + 0.4(ro − ri) to r = ri + 0.525(ro − ri) when

Ra varies from Ra = 3.42 × 105 to Ra = 2 × 106. The maxi-

mum and minimum values of 〈vϕ〉 are also written down on the

same table, together with the coordinates where they take place.

Notice that, at least at the instant of time considered, both ex-

trema are located close to the outer surface, and, while the lati-

tude of the maximum of the retrograde flows scarcely changes,

that of the prograde moves from 43o to 31o, i.e. the flows be-
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E = 3 × 10−4

Results Ra/Rac Re Rep Nu K/Kna σKp
Nr L md

GNS13 5.36 40.6 12.6 1.338 2.90 0.17 32 54 1

Chr02 5.36 41.0 12.6 1.342 – 0.25 33 53 1

GNS13 6.7 59.9 17.0 1.470 3.80 0.33 32 54 1

Chr02 6.7 60.9 15.3 1.454 – 0.34 33 53 1

E = 10−4

Results Ra/Rac Re Rep Nu K/Kna σKp
Nr L md

GNS13 4.3 39.7 8.43 1.134 4.84 0.28 32 53 1

Chr02 4.3 41.1 8.2 1.123 5 0.33 33 53 2

Table 3: Comparison of our results for σ = 1 and stress-free boundary conditions with those of Christensen (2002). The parameters, properties and resolutions are

the same as in Table 1.

Ra 〈vϕ〉max (rmax − ri)/d θmaxo 〈vϕ〉min (rmin − ri)/d θmino r+/− − ri

3.42 × 105 2.42 × 101 0.975 46.59 −6.53 × 101 0.975 29.65 0.4

5.1 × 105 5.72 × 101 0.975 48.71 −1.64 × 102 0.975 27.53 0.462

7.5 × 105 9.12 × 101 0.975 52.94 −2.93 × 102 0.975 27.53 0.487

106 1.06 × 102 0.975 57.21 −3.63 × 102 0.975 27.91 0.5

2 × 106 4.30 × 102 0.975 58.60 −1.04 × 103 0.975 30.70 0.525

Table 4: Maximum/minimum value of 〈vϕ〉 and coordinates (rmax/min − ri, θmax/min) where they are located for the five solutions shown in Fig. 3. The radius

(r+/− − ri)/d indicates the change of sign of 〈vϕ〉 in the equatorial plane.

come progressively confined to lower latitudes. When Coriolis

is no longer the dominant force, the latitudinal profile of the

zonal flow close to the outer boundary depens mainly on the

deepness of the convective layer Aurnou et al. (2007), and the

boundary conditions. With increasing Ra, prograde polar circu-

lations start to develop, and the validity of the Taylor-Proudman

constraint is progressively lost. At Ra = 2 × 106 (Ra ≈ 10Rac

with Rac = 1.856 × 105), the equatorial symmetry is already

broken although the flows still maintain a recognizable colum-

nar structure.

5. Numerical asymptotic limit

As a first step the mean Reynolds, Re, and Nusselt, Nu, num-

bers, and zonal flow, −〈vϕ〉, are plotted versus the heat flux-

based Rayleigh number, RaQ = Ra(Nu−1), in Fig. 4 forσ = 0.1

and E = 10−4 (empty squares), E = 3.162 × 10−5 (stars) and

E = 8.165 × 10−6 (crosses), σ = 0.025 and E = 10−5 (black

squares), and σ = 1, E = 3.162 × 10−5 (circles).

Two regimes can be observed, in Figs 4a,b, with two very

different slopes in that of Nu, and a short transition zone be-

tween them. For a fixed Prandtl number (σ = 0.1 in this case),

the mean Reynolds and Nusselt numbers show a power depen-

dence for high and low Rayleigh numbers. In the first case the

curves of Re tend to collapse, while those of Nu become al-

most parallel (see the curves of empty squares, asterisks and

pluses). On the other hand, fluids with other σ values (black

squares and circles) follow the same type of behavior, with a

slightly different slope. Since we are interested in the very high

Re regime (Re > 1000), it is possible to collapse all the curves if

they are depicted in front of a diffusion independent parameter

Ra∗
Q

(defined below). It is important to realize that this proce-

dure is only possible for high Re since Fig 4 (and the equivalent

but plotted versus Ra, not included here) also shows the depen-

dence of the low Re regime on the diffusivities. A third regime

can be differentiated in Fig 4c in which the zonal flow becomes

saturated, but the heat flux and the modulus of the velocity field

continue increasing its value.

To quantify the global balance of the forces acting on the

fluid per unit mass, we have also evaluated, as in Soderlund

et al. (2012), their mean volume-averaged value, defined as in

Eq. 8, for several solutions corresponding to the regimes above

mentioned. The results are included in Table 5. They show that

at low Ra and at leading order, the dynamics comes from the

balance between the Coriolis force and the modified pressure

gradient with heat transported mainly by conduction. The other

forces are two orders of magnitude smaller. At very high Ra

(see E = 3.162×10−5) the inertial force is needed to balance the

modified pressure gradient, and the buoyancy force becomes as

large as the Coriolis force. When the zonal flow flattens out the

inertial overcomes the Coriolis term, and the ratio between the

inertial and viscous forces becomes constant.

The time-averaged physical properties and scaling laws com-

puted in this section are compared with the numerical results

obtained by Christensen (2002) with stress-free boundary con-

ditions for σ = 0.3 and 1, and with those of Christensen

and Aubert (2006) in convection-driven dynamos with non-slip

boundaries andσ ranging from 0.1 to 10. In these articles it was

already assumed that the scaling laws of the volume-averaged

physical parameters could be written at low E and high Ra

as functions of the modified heat flux-based Rayleigh number

Ra∗
QT

in the former and Ra∗
Q

in the latter, because for strongly

supercritical Ra the convection is maintained predominately by
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Figure 4: (a) Mean Reynolds number, Re, (b) Nusselt number, Nu, and (c) zonal

flow −〈vϕ〉 versus Ra(Nu − 1). The symbols mean: ⊡ (σ = 0.1, E = 10−4), ∗
(σ = 0.1, E = 3.162 × 10−5), + (σ = 0.1, E = 8.165 × 10−6), � (σ = 0.025,

E = 10−5) and ⊙ (σ = 1, E = 3.162 × 10−5).

Ra/Rac 〈|FC |〉V 〈|FI |〉V 〈|FV |〉V 〈|FB|〉V

E = 10−4

1.08 2.34 × 105 1.78 × 103 4.62 × 103 6.54 × 103

1.62 6.19 × 105 9.15 × 103 1.09 × 104 2.71 × 104

2.69 1.77 × 106 7.82 × 104 3.39 × 104 1.11 × 105

5.39 3.97 × 106 4.72 × 105 1.02 × 105 3.26 × 105

8.08 7.02 × 106 1.77 × 106 2.56 × 105 7.16 × 105

10.78 1.02 × 107 3.97 × 106 4.58 × 105 1.16 × 106

16.16 1.49 × 107 9.62 × 106 9.92 × 105 2.12 × 106

26.94 2.10 × 107 2.26 × 107 2.15 × 106 4.19 × 106

37.70 2.53 × 107 3.79 × 107 3.63 × 106 6.36 × 106

53.88 3.13 × 107 6.14 × 107 5.71 × 106 9.73 × 106

E = 3.162 × 10−5

1.57 2.03 × 106 2.05 × 104 2.49 × 104 4.73 × 104

3.14 8.04 × 106 2.29 × 105 8.67 × 104 3.41 × 105

12.56 5.35 × 107 1.32 × 107 1.44 × 106 4.61 × 106

31.40 1.10 × 108 7.52 × 107 6.68 × 106 1.46 × 107

109.91 2.26 × 108 4.95 × 108 3.65 × 107 6.87 × 107

188.41 2.94 × 108 1.06 × 109 6.72 × 107 1.31 × 108

Table 5: Modulus of the mean volume-averaged forces 〈|F∗ |〉V =

1
V
∫

V

√

F2
r + F2

θ
+ F2

ϕ dv for several Ra/Rac, σ = 0.1 and Ekman numbers

10−4 and 3.162 × 10−5. The symbol ∗ indicates the forces which appear in

the momentum equation. FC = −2E−1k × v, FI = − (v · ∇) v, FV = ∇2v and

FB = Θr are the Coriolis force, inertial (advective part), viscous and buoyancy

forces, respectively.

the buoyancy, Coriolis and inertial forces. Thus, on the basis of

Fig. 4, Table 5 and the results of these authors, in the present

study the physical properties are also expressed as functions of

Ra∗
Q

defined as follows. If

Ra∗ = RaE2σ−1, and (12)

Nu∗ = (Nu − 1)Eσ−1 (13)

are the modified Rayleigh and Nusselt numbers, respectively,

which neither depend on the viscosity nor the thermal diffusiv-

ity, then

Ra∗Q = Ra∗Nu∗. (14)

For geophysical applications it is more useful to analyze the

dependence of the properties of the fluid with Ra∗
Q

rather than

with Ra∗, based on the temperature contrast ∆T , because the

latter is more difficult to estimate.

The relation between Ra, defined in Eq. (5), with that defined

by Christensen and Aubert (2006), RaCA, is Ra = (1 − η)RaCA.

The same relation holds for Ra∗ and Ra∗
Q

since E, σ agree, and

(Ra∗)CA/(Ra∗c)CA = Ra∗/Ra∗c. The definitions of Ro (see Ta-

ble 12 in the Appendix) and Nu are also the same in both stud-

ies, then the comparison is straightforward. Although Ra∗
QT

is

used in Christensen (2002), we have checked that this change

does not affect significantly the scaling laws obtained in that

study, since it focused on high Ra convection with Nu ≫ 1. On

the other hand, the definitions of Re and K are the same.
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The numerical resolutions, and the type of azimuthal sym-

metry imposed to obtain the solutions are indicated in Table 6.

By comparing these results with those found for pure thermal

convection with stress-free boundary conditions, we have found

smaller Re, larger Rep and very similar Nu at moderately high

Ra∗ and low σ. For instance, for E = 10−4, σ = 0.1 and

Ra∗/Ra∗c = 53.88 we obtain Re = 2144.6, Rep = 1303.4 and

Nu = 5.77, while by extrapolating the stress-free results for

σ = 1 and σ = 0.3 at Ra/Rac ∼ 50 to σ = 0.1 and assuming

a power law dependence on σ, Re ∼ 2300, Rep ∼ 1070 and

Nu ∼ 5.26, are obtained. So although Re is a little higher with

stress-free conditions due to the strong zonal flows, the volume-

averaged poloidal velocity is larger in the non-slip case. The

heat transport at r = ro is very similar, probably because in this

range of Ra the thermal boundary layers affect small areas of

the external surface, and in rotating systems the width of these

layers decreases when Ra increases (see Julien et al. (2012)).

To check the validity of analyzing the results versus a

diffusivity-free parameter at high Ra with non-slip boundary

conditions, Table 7 shows, like in Stelzer and Jackson (2013),

the power laws, Y = a(Ra∗
Q

)bEc, with the respective errors for

the mean Rossby number, Ro, ratio of the kinetic energy density

to the non-axisymmetric part, K/Kna, poloidal Rossby num-

ber, Rop, modified Nusselt number, Nu∗, axisymmetric Rossby

number, Roa, and the zonal Rossby number 〈vϕ〉E, computed at

θ = 3π/8, r = ri + (ro − ri)/7 (see the Appendix for the defini-

tions). The points considered are included in Table 6, and the

fittings are done by taking the maximal number of points that

gives the best potential law by minimizing the fitting error.

Any of the exponents of E obtained in the scalings is very

small indicating the low explicit dependence on this parameter,

and the errors of the fittings can be even larger than those com-

puted by neglecting the E dependence (see below for compari-

son). In addition, to verify the existence of power laws indepen-

dent of the thermal diffusivity we have included the solutions of

σ = 0.025 and E = 10−5, and σ = 1 and E = 3.162 × 10−4,

one order of magnitude above and below σ = 0.1. In these

two cases not enough points were available to do a fitting, but,

as can be seen in Fig. 5, there is a clear tendency of the so-

lutions to follow the fitted lines, which have been included in

the figure. Notice also that the lower E the lower the value of

Ra∗
Q

for which the points reach the fitted line. Consequently,

taking into account that the spatial truncation, imposed sym-

metries and the errors of the very large integrations can easily

change the weak dependence on E and σ, and that these depen-

dences are not clear, we have followed Christensen and Aubert

(2006) and plotted the scalings of the parameters versus Ra∗
Q

alone to facilitate the comparison with previous studies.

Figure 5a-f, which contains the same information as Fig. 7

from Christensen (2002), shows the dependence of the mean

spatially-averaged physical properties of Table 7 as functions

of Ra∗
Q

, for the same solutions of Fig. 4. They are computed as

before, i.e. by only taking the points which minimize the fit-

ting errors. It seems that the curves of Roa and −〈vϕ〉E tend to a

maximum value, consequently in these cases (and as before) the

region of saturation at high Ra∗
Q

is also discarded. We proceed

Ra/Rac Re Rep Kt/K Nu σKp
Nr L md

E = 10−4

1.08 15.7 8.7 0.69 1.005 ≈ 0 32 54 1

1.62 41.3 19.1 0.78 1.02 0.27 32 54 1

2.69 117.5 49.1 0.83 1.10 0.039 32 54 1

5.39 259.9 106.4 0.83 1.27 0.21 32 54 1

8.08 465.3 200.6 0.81 1.64 0.22 40 64 2

10.78 678.2 311.9 0.79 2.10 0.17 50 84 2

16.16 983.6 495.4 0.75 2.84 0.16 50 84 2

26.94 1389.1 776.5 0.69 3.92 0.14 70 128 2

37.70 1686.4 993.3 0.65 4.74 0.12 70 128 2

53.88 2144.6 1303.4 0.63 5.77 0.085 80 160 2

E = 3.162 × 10−5

1.26 29.1 14.9 0.74 1.009 ≈ 0 32 54 2

1.57 47.7 21.9 0.79 1.02 ≈ 0 32 54 2

3.14 174.5 65.1 0.86 1.10 0.30 50 84 2

6.28 449.4 160.9 0.87 1.33 0.20 50 84 2

9.42 771.4 299.2 0.85 1.71 0.17 50 84 2

12.56 1104.0 446.5 0.84 2.21 0.20 50 84 2

15.70 1362.7 574.3 0.82 2.62 0.15 50 84 2

31.40 2214.8 1008.6 0.79 4.20 0.12 70 128 2

47.10 3052.1 1416.2 0.78 5.62 0.12 70 128 2

78.50 4053.6 2097.1 0.73 7.86 0.13 80 192 2

109.91 4628.2 2567.8 0.69 9.47 0.12 80 192 2

188.41 6140.5 3657.0 0.65 12.24 0.08 80 224 2

E = 8.165 × 10−6

1.21 32. 17. 0.74 1.006 ≈ 0 50 84 4

2.77 251. 99. 0.84 1.12 0.40 50 84 4

5.28 605. 220. 0.87 1.29 0.31 70 128 4

10.41 1343. 496. 0.86 1.77 0.22 70 128 4

20.81 2664. 1065. 0.84 3.21 0.18 80 192 4

27.75 3330. 1348. 0.84 4.02 0.14 80 192 4

41.62 4379. 1819. 0.83 5.44 0.15 80 192 4

104.06 7647. 3228. 0.82 9.78 0.13 80 224 4

173.43 9999. 4527. 0.79 13.56 0.12 90 256 4

242.80 12111. 5780. 0.77 16.88 0.10 100 300 4

Table 6: Relative Rayleigh number Ra/Rac, mean Reynolds and poloidal

Reynolds numbers, Re and Rep, mean ratio of the toroidal to the total KED,

Kt/K, mean Nusselt number, Nu, relative variance of the poloidal KED, σKp ,

numerical resolutions, Nr and L, and imposed md-fold azimuthal symmetry for

three Ekman numbers. The Prandtl number is 0.1.

in this way because we are interested in obtaining the extrapo-

lation at low Ra∗
Q

(see Sec. 7). The validity of this extrapolation

is based on Fig. 5, which shows the tendency of the curves to

reach the power law (solid line) at lower values of Ra∗
Q

when E

is decreased. On the other hand, we have checked that the satu-

ration is not a consequence of the enforced two-fold symmetry

by redoing some points without the symmetry. This feature was

also described in the experiments of Shew and Lathrop (2005)

and Manneville and Olson (1996).

The power laws obtained correspond to low Rossby num-

ber convection for which the Coriolis force is still funda-
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Y a ǫ(a) b ǫ(b) c ǫ(c)

Ro 1.28 0.10 0.35 0.0046 −0.0060 0.0094

K/Kna 0.24 0.026 −0.22 0.013 −0.043 0.014

Rop 1.23 0.18 0.42 0.0087 0.0092 0.018

Nu∗ 0.077 0.024 0.54 0.012 −0.015 0.033

Roa 0.60 0.094 0.36 0.0079 −0.054 0.016

〈vϕ〉E 0.084 0.016 0.31 0.011 −0.059 0.019

Table 7: Coefficients and absolute errors of the power laws Y = a(Ra∗
Q

)bEc, Y

being the mean Rossby number, Ro, ratio of the total to the non-axisymmetric

KEDs, K/Kna, poloidal Rossby number, Rop, modified Nusselt number, Nu∗,

axisymmetric Rossby number, Roa, and zonal Rossby number 〈vϕ〉E. The

Prandtl number is 0.1.

Y a ǫ(a) b ǫ(b)

Ro 1.34 0.038 0.35 0.0034

K/Kna 0.31 0.029 −0.24 0.014

Rop 1.14 0.062 0.42 0.0064

Nu∗ 0.089 0.0092 0.54 0.010

Roa 0.96 0.098 0.35 0.010

〈vϕ(rint)〉E 0.14 0.019 0.29 0.015

〈vϕ(rmid)〉E 0.15 0.015 0.35 0.010

〈vϕ(rout)〉E 0.15 0.014 0.42 0.010

Table 8: Coefficients and absolute errors of the power laws Y = a(Ra∗
Q

)b, with

Y being the mean Rossby number, Ro, ratio of the total to the non-axisymmetric

KEDs, K/Kna, poloidal Rossby number, Rop, modified Nusselt number, Nu∗,

axisymmetric Rossby number, Roa, and zonal Rossby number 〈vϕ〉E with rint =

ri + (ro − ri)/7, rmid = ri + (ro − ri)/2 and rout = ri + 6(ro − ri)/7.

mental to understand the dynamics, because by taking into

account Eqs. (12)-(14) and that Rac ∼ E−4/3 (see Dormy

et al. (2004); Net et al. (2008, 2012), among others) Ra∗
Q
∼

(Ra/Rac)E
5/3(Nu − 1)σ−2, and for small but finite Ra∗

Q
, when

E → 0, (Ra/Rac)(Nu − 1)σ−2 → ∞. Since it is expected that

(Nu − 1)σ−2 remains bounded, Ra/Rac must tend to infinity.

The power laws, Y = a(Ra∗
Q

)b, with their statistical errors

are shown in Table 8 and Eqs. (15-19) and (22). The first five

equations are

Ro = 1.34(Ra∗Q)0.35, (15)

K/Kna = 0.31(Ra∗Q)−0.24, (16)

Rop = 1.14(Ra∗Q)0.42, (17)

Nu∗ = 0.089(Ra∗Q)0.54, (18)

Roa = 0.96(Ra∗Q)0.35. (19)

The scaling of the Nusselt number agrees very well with that

given by Christensen and Aubert (2006) for a thermal-driven

dynamo with non-slip boundaries. Translated to our parameter

they found

Nu∗ = 0.095(Ra∗Q)0.53, (20)

Since at very high Ra the difference is very small, and in agree-

ment with Soderlund et al. (2012), our results confirm that the

heat transport remains almost unperturbed under the presence

of a magnetic field. In contrast that for Ro,

Ro = 1.01(Ra∗Q)0.41 (21)

does not match so well. Since the presence of a magnetic field

almost does not change the modified Nusselt number, Nu∗ and

decreases Ro, it might damp the zonal part of the velocity field.

As said before, Figs. 5e,f show that Roa and −〈vϕ〉E seem

to tend to constant values for sufficiently large Ra∗
Q

and non-

vanishing E, i.e. in the high Rossby number limit. As a con-

sequence of this behavior there is a change in the sign of the

slope of K/Kna, already found by Christensen (2002) for stress-

free boundary conditions. Beyond the maximum of K/Kna, the

regime of fully developed convection without equatorial sym-

metry and the highest heat transfer rates begin. For E = 10−4,

the maximum is close to Ra∗
Q
= 3× 10−4, namely it is about six

times the critical.

Our scaling relations for the mean zonal flow given by Fig. 5f

at θ = 3π/8 are

−〈vϕ〉E = 0.14(Ra∗Q)0.29 if r = ri + (ro − ri)/7, (22)

with and error about 4% for the exponent and 9% for the prefac-

tor. At other radial distances (not shown in the figure) we have

found

−〈vϕ〉E = 0.15(Ra∗Q)0.35 if r = ri + (ro − ri)/2, and (23)

〈vϕ〉E = 0.15(Ra∗Q)0.42 if r = ri + 6(ro − ri)/7. (24)

In agreement with the quasi-geostrophic theory of Gillet et al.

(2007) the radial dependence of 〈vϕ〉 on r is very strong. The

mean zonal flow is negative everywhere, but close to the outer

boundary. The Rossby number based on it (Ro〈vϕ〉 = |〈vϕ〉|E)

is of the same order of magnitude at Ra∗
Q
= 10−2 for all r, but

for lower Ra∗
Q

it decreases outwards very fast. For instance at

Ra∗
Q
= 10−15 it changes from 6.25 × 10−6 near the inner core to

8.44 × 10−7 at the center of the shell and to 7.5 × 10−8 near the

external surface.

The Rossby number Ro〈vϕ〉 at r = ri + (ro − ri)/7 exhibits

a different power law dependence than the mean axisymmetric

Rossby number Roa given by Eq. (19). The ratio of the latter

to the former decreases slowly from 5 at Ra∗
Q
= 10−2 to 1 at

Ra∗
Q
= 10−15, meaning that at very low Ra∗

Q
, the contribution of

the axisymmetric poloidal (radial and colatitudinal) component

of the velocity field becomes smaller. In fact the axisymmetric

poloidal component is, at least, 89% smaller than the toroidal

(see Table 2).

The flow patterns of the solutions computed before (Ra =

106) and after (Ra = 2× 106) the maximum of K/Kna, i.e., near

Ra∗
Q
= 3 × 10−4 in Fig. 5 are shown in Figs. 6 and 7. The first

shows, from top to bottom, a sequence of six snapshots taken at

times t = 0, t = 0.0002, t = 0.0004, t = 0.0006, t = 0.0008 and

t = 0.001. Three projections of the deviation of the temperature

with respect to its average on a surface of the same radius, i.e.

T (r, θ, ϕ, t) − 〈T 〉S (r, t), are displayed in the left group of plots.

The radius of the spherical surfaces is r = ri + 0.275d, although

they are represented with the same size as the other sections. It
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Figure 5: Mean (a) Rossby number, Ro, (b) ratio of the total to the non-axisymmetric KEDs, K/Kna, (c) poloidal Rossby number, Rop, (d) modified Nusselt number,

Nu∗, (e) axisymmetric Rossby number, Roa, and (f) scaled mean zonal flow, −〈vϕ〉E, versus the flux-based Rayleigh number, Ra∗
Q

. The symbols mean: ⊡ (σ = 0.1,

E = 10−4), ∗ (σ = 0.1, E = 3.162 × 10−5), + (σ = 0.1, E = 8.165 × 10−6), � (σ = 0.025, E = 10−5) and ⊙ (σ = 1, E = 3.162 × 10−5). The laws corresponding to

the solid lines are in Table 8.

corresponds approximately to the radius where the temperature

perturbation is maximum. The middle projections are taken on

the equatorial plane, and the right ones on a meridional section

through ϕ = 0. The scale of greys (colors online) is the same

for all the contour plots corresponding to each solution, with

white (red) meaning hot fluid. The same projections are taken

for the kinetic energy density (right group of plots), but with

the spherical projections taken close to the outer boundary at

r = ri + 0.975d with a polar point of view. In these contour

plots the time intervals are selected to see the breakings and

mergings of the cells and vortices.

Despite the complex time dependence of the solution of

Fig. 6, the contour plots retain remainders of regular patterns.

The z-dependence of the flow shown in the meridional sections

is weak, and the flow is symmetric with respect to the equa-

torial plane. The polar convection starts to be noticeable (see

the spherical sections in the left column of Fig. 6). Another re-

markable feature of the contour plots of T−〈T 〉S is that the cells

of convection tend to increase their radial and azimuthal exten-

sion when Ra increases, in agreement with the results of Tilgner

and Busse (1997) and Aubert et al. (2001). As a consequence

a double-layered pattern is formed. On the other hand, a two

cylindrical layer structure with spiraling vortices can also be

discovered in the contour plots of |v|2. By observing the vor-

tices of the spherical and equatorial sections in the right column

of Fig. 6 (but easily with the help of a movie) one can see that

the maximum of |v|2 moves from the equatorial inner (first row,

equatorial plot) to the nearly polar outer boundary (fourth row,
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Figure 6: At left, contours of the deviation of the temperature from its average, T (r f , θ, ϕ, t)−〈T 〉S (r, t), on a spherical surface, the equatorial plane and a meridional

section for six snapshots corresponding to the evolution of a spatio-temporal chaotic solution, and at right contour plots of the kinetic energy density, on polar,

equatorial and meridional projections. From top to bottom, the snapshots are taken at t = 0, t = 0.0002, t = 0.0004, t = 0.0006, t = 0.0008 and t = 0.001. The

Rayleigh number is Ra = 106 before the maximum of K/Kna.

polar plot) along a column.

The spherical sections for T − 〈T 〉S in Fig. 7 are taken at

r = ri+0.3625d, and those for |v|2 at r = ri+0.9625d. As can be

observed in the meridional sections, the equatorial symmetry is

broken, and the z-dependence of the flow is enhanced, although

a rough quasi-geostrophic structure still remains. In this case

one can observe hot plumes towards the outer boundary, their

expansion in the direction of rotation and progressive cooling,

while new cells are emerging at the hot boundary. When the

plumes rise and expand spiralling in the prograde direction they

can reconnect with others at larger longitudes forming a shell

of hotter fluid in the external part. The boundary of the two

regions is located around r ≈ ri + d/3. On the other hand, the

convection in the polar regions is now clearly developed as can

be perceived in the contour plots of |v|2, as well as in those of

T − 〈T 〉S on the spherical projections.

6. Comparison with previous experimental results

In this section the numerical fittings of the time-averaged

quantities will be compared with the scalings obtained in pre-

vious experimental and numerical studies with water (Aubert

et al. (2001)), liquid gallium (Aubert et al. (2001); Gillet et al.

(2007)) and liquid sodium (Shew and Lathrop (2005)), and set-

ups of radius ratio near 0.35. In each case we adopt estimators

close to those used in each work.

6.1. Aubert et al. (2001)

The Ekman number used in Aubert et al. (2001) falls in the

range 10−7 < E < 10−6. Although it is up to two orders of mag-

nitude smaller than ours, and their σ = 7 and 0.023 differ in one

order, significant similarities are found, some of them already

commented in the preceding sections. To quantify the inten-

sity of the flows, Aubert et al. (2001) measured local quantities.
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Figure 7: Same contour plots as in Fig. 6. From top to bottom, the snapshots are taken at t = 0, t = 0.0001, t = 0.0002, t = 0.0003, t = 0.0004, and t = 0.0005. The

Rayleigh number is Ra = 2 × 106 after the maximum of K/Kna.

For the convective part they employed the absolute variance of

the radial component of the velocity field σ̃vr
=

√

(vr − vr)2

at the radial distance r = rmax where σ̃vr
is maximal, which

falls near the inner boundary. As zonal flow they measured a

time-average of the longitudinal component vϕ of v. On the

other hand, our dimensionless parameters, as well as time and

length scales, are the same as those of them, so the comparison

is straightforward.

All the flow patterns described in Aubert et al. (2001) for the

liquid gallium are turbulent, even at Ra = 1.2Rac. This contrast

with our results in which periodic and quasiperiodic motions

appear near the onset of convection even with σ = 0.025. The

discrepancy is probably due to the experimental set-up that was

not well suited for measurements of flows near the onset, so it

was difficult to find experimentally periodic motions in the low

range of parameters.

The set of scaling laws derived in Cardin and Olson (1994),

under the assumption of quasi-geostrophic flow and negligible

dissipation in the outer Ekman layer, were adopted in Aubert

et al. (2001) when the inertial terms dominate the dynamics,

i.e. when RaQT
E3/2σ−2 > 1, RaQT

= RaNu being the Rayleigh

number based on the total heat flux. In order to validate that this

condition is fulfilled in our calculations, the product is plotted

versus Ra/Rac − 1 in Fig. 8a for E = 10−4, E = 3.162 × 10−5,

and E = 8.165 × 10−6 and σ = 0.1. For any of the solutions

plotted the values are larger than 10, so the inertial terms play a

significant role.

In the experiments with gallium they obtained an asymptotic

law for the Rossby number Roσ̃vr
= σ̃vr

E, based on the r.m.s.

radial velocity, Roσ̃vr
∼ (Ra∗

QT
)2/5, which agrees with our nu-

merical results for Rop (see Eq. (17)), although the latter is

volume-averaged and computed with the advected heat flux.

Moreover, in Fig. 8b, −〈vϕ〉, computed near the inner bound-

ary and close to the equator (see figure caption), is shown ver-
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Figure 8: (a) The flux-based Rayleigh number, RaNu, normalized with

E3/2σ−2, and (b) time average of the azimuthally-averaged azimuthal compo-

nent of the velocity field, −〈vϕ〉, at r = ri+(ro−ri)/7 and θ = 3π/8, both plotted

versus Rac/Ra−1. The symbols mean: (⊡) E = 10−4, (∗) E = 3.162×10−5 , and

(+) E = 8.165 × 10−6. The Prandtl number is σ = 0.1. Moreover, (.▽) and (⊙)

correspond to experimental measures in liquid gallium and water, respectively,

taken from Aubert et al. (2001).

sus Ra/Rac − 1. To facilitate the comparison, the dimensional

measures of −vϕ
d with gallium for E = 1.5 × 10−6 and water

for E = 2.4 × 10−6, extracted from Aubert et al. (2001), are

non-dimensionalized and superposed in the same figure. They

were taken at the equator and near the inner boundary. In spite

of dealing with global and local quantities for different E, the

order of magnitude of −〈vϕ〉 and −vϕ and the tendency of the

curves are coherent. Our curves fall between those experimen-

tal, reflecting the intermediate σ value, and the relatively high

E for which they were computed. On the other hand, as it has

been shown in Sec. 5, for each decreasing E there is an increas-

ing Ra from which −〈vϕ〉 remains constant. When E → 0 the

saturation of the solutions could be delayed to Ra→ ∞.

6.2. Gillet et al. (2007)

In Gillet et al. (2007) the relation between the volumetric

r.m.s radial velocity and mean zonal flows, defined as

Ũ =

[

1

V

∫

V
(σ̃vr

)2 dv

]1/2

and Û =

[

1

V

∫

V
(vϕ)

2 dv

]1/2

,

respectively, was analyzed experimentally and checked with

a quasi-geostrophic model. The experimental apparatus was

100 

101

102

103 

104 

105 

100 101 102 103 104  

R
ea

Rep

| |

t

||

Figure 9: Mean axisymmetric toroidal Reynolds number, Rea
t , plotted versus

the mean poloidal Reynolds number, Rep. The symbols stand for: (⊡) E =

10−4, (∗) E = 3.162 × 10−5, and + E = 8.165 × 10−6, and σ = 0.1.

composed by and external sphere, but the internal boundary

was a cylinder, so probably it favoured the appearence of quasi-

geostrophic flows. To compare with their results the zonal

motions will be quantified by using the mean axisymmetric

toroidal Reynolds number, Rea
t , defined in Table 12 because

our 〈vϕ〉 is only spatially averaged in longitude. The convective

motions are estimated with the mean poloidal Reynolds num-

ber Rep because it is the closest volumetric quantity we have

monitored.

The results are shown in Fig. 9, for the three Ekman num-

bers considered and σ = 0.1. Three different regimes can be

identified. At weak supercritical conditions, Rep ∈ [1, 30], the

dependence (shown by the solid line) is nearly quadratic, i.e.

Rea
t = 0.05(Rep)1.96, within a 7% error in the exponent and

50% in the prefactor, in agreement with Gillet et al. (2007). For

values Rep > 30 we have obtained Rea
t = 1.86Rep

0.99
(dashed

line), within a 3% error in the exponent, and 16% in the pref-

actor. The zonal contribution starts to be important in the solu-

tions belonging to this range, and thus the ratio K/Kna of Fig. 5

reaches the highest constant value and starts to decrease. At

sufficiently high Rep, Rea
t saturates as 〈vϕ〉 does.

This behavior differs from that described in Gillet et al.

(2007) for Û versus Ũ. They only found two σ-independent

regimes, at the lowest Re, Û ∼ Ũ2, and Û ∼ Ũ4/3 at the high-

est, which corresponds to our intermediate case Rea
t = 2Rep.

The difference between the powers 1 and 4/3 is in part due

to the quasi-geostrophic model, but also to the different es-

timators used. For instance Rea
t does not include the non-

axisymmetric poloidal component of vϕ, and the poloidal com-

ponent of the velocity field contains contributions of vθ and vϕ.

The main difference is that our almost linear relation breaks

down when the equatorial symmetry of the solutions is lost,

i.e. when the slope of the ratio K/Kna becomes negative (see

Fig. 5b). Consequently, this saturation cannot be present in the

two-dimensional quasi-geostrophic simulations of Gillet et al.

(2007).

Figure 9 also allows to compare the strength of the zonal flow

versus that of the convective vortices with non-slip boundary
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Figure 10: From left to right snapshots of the isosurfaces of T (hot and cold respectively), |v|2 , and vϕ. From top to bottom, the Rayleigh numbers are Ra = 3.43×105 ,

Ra = 106 and Ra = 107, and E = 10−4, σ = 0.1.

conditions and that found by Christensen (2002) with stress-

free boundaries, σ = 1 and E = 10−4. At low Ra the convec-

tive vortices dominate over the mean zonal flow, as was already

seen in Fig. 5 in the ratio K/Kna in agreement with the preced-

ing study. When Rep > 30 the slopes also match very well,

although with a small prefactor in the case of the non-slip con-

ditions.

The change of slope from weak to high supercritical regimes,

as was mentioned in Sec. 1, was attributed in Christensen

(2002) to a decorrelation of the Reynolds stresses due to a grad-

ual loss of geostrophy. However, it was also observed in the

quasi-geostrophic model of Gillet et al. (2007). According to

these authors, this happens because the mean zonal flow sur-

passes the non-zonal convection as a consequence of the in-

crease of the characteristic length scale of the convection. Our

results confirm the breakdown of geostrophy, and show that at

very high Ra/Rac and E → 0 the mean zonal flow and the con-

vective velocity differ by a factor, i.e. the Rhines theory applied

in Gillet et al. (2007), which gives a larger exponent, is scarcely

fulfilled.

Characteristic solutions for three states found are shown

in Fig. 10. The snapshots of the isosurfaces of the tempera-

ture T = Tc + Θ, |v|2, and vϕ are plotted for the parameters

indicated in the figure caption. At Ra = 3.43 × 105 the so-

lution is representative of flows in the first stage. The isosur-

faces of T ∈ [1.8 × 106, 5.3 × 106], taken at T = 4.1 × 106

and T = 2 × 106, those of |v|2 ∈ [1.9 × 10−11, 2.7 × 104] at

|v|2 = 4.5 × 103, and those of vϕ ∈ [−1.5 × 102, 1.2 × 102]

at |vϕ| = 5, resemble very much the eigenfunctions of the lin-

ear problem. In the second row Ra = 106. The isosurfaces

of T ∈ [5.4 × 106, 1.5 × 107] correspond to T = 1.1 × 107

and T = 5.8 × 106, those of |v|2 ∈ [2.8 × 10−10, 1.3 × 106] to

|v|2 = 1.5 × 105, and those of vϕ ∈ [−1.1 × 103, 5.9 × 102]

to |vϕ| = 1.1 × 102. As can be seen, in the second region the

zonal flow gains intensity, and the advection of the temper-

ature deforms their isosurfaces, but the non-vanishing veloc-
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ity field remains concentrated in a cylindrical shell. Then the

quasi-geostrophic approximation can still capture mean prop-

erties of the flow. The figures in the third row are plotted for

Ra = 107, which belong to the zone of saturation. The isosur-

faces of T ∈ [5.3 × 107, 1.5 × 108] are taken at T = 8.8 × 107

and T = 6.5 × 107, those of |v|2 ∈ [3.5 × 10−3, 5.1 × 107] at

|v|2 = 1.2 × 107, and those of vϕ ∈ [−7.1 × 103, 5.2 × 103] at

|vϕ| = 1.7 × 103. Now the reflectional symmetry of the solu-

tions with respect to the equator is broken and strong turbulent

convection fills the spherical shell. Although the mean zonal

flow maintains its strength, its ratio to the convective part has

decreased (see Fig. 5).

6.3. Shew and Lathrop (2005)

Figure 11 contains several curves computed in order to com-

pare with the experimental results of Shew and Lathrop (2005)

with liquid sodium (σ = 0.010) in a set-up similar to that used

in Aubert et al. (2001) but with a slim rotation axis and an in-

ternal sphere, which breaks the cylindrical configuration. For

the comparison ES = E/2 and RaS ≡ Ra will be taken into

account, the super-index S meaning values used in Shew and

Lathrop (2005). In the definition of the Rayleigh number their

centrifugal acceleration (Ω2r) plays the role of our gravity ac-

celeration (γr).

Small scale convective, as well as large scale zonal flows,

were observed in Shew and Lathrop (2005). The latter being

determined from the time average of the azimuthal velocity,

(vϕ)
d (in m/s), collected from temperature probes situated close

to the inner surface near the equator. They found retrograde

mean zonal flows fulfilling the relation (|vϕ|)d = (7κ/d)RaSES,

already mentioned in the introduction. In viscous units it gives

|vϕ| = 350RaSE for σ = 0.010. Notice that an additional factor

(2) must multiply their dimensional Eq. (8)1.

As it is well know (Tilgner and Busse (1997), Aubert et al.

(2001), among many others) low σ fluids do not transfer heat

efficiently. In the experiments with liquid sodium the Nusselt

number never exceeded 2. Following Grossmann and Lohse

(2000) and Shraiman and Siggia (1990), they derived the scal-

ing relation (Nu − 1)RaSσ−2 ∼ (ReS)2(ES)−1/3 by taking the

thickness of the laminar boundary layer, E1/3d, as length scale

and balancing the global and the local energy dissipation of the

convective cells. They found a very good agreement between

the theory and the experimental data by estimating the convec-

tive velocity as the final velocity acquired by a parcel of fluid

moving a distance d into a neighborhood of different tempera-

ture. In our case, with the larger σ = 0.1, Nu is already lower

than 14 (see Table 6), and very similar to that found by Chris-

tensen (2002) for σ = 0.3 and stress-free boundary conditions.

In order to find out if Prandtl numbers O(10−1) fulfill the above

scaling, Fig. 11a shows (Nu−1)Raσ−2 plotted versus the global

Rep

2
E−1/3 for σ = 0.1. The numerical power law of the solid

line gives

(Nu − 1)Raσ−2 = 218(Rep

2
E−1/3)0.98, (25)

1Private communication from the authors
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Figure 11: (a) Convective heat flux (Nu − 1)Raσ−2 plotted versus Rep
2
E−1/3.

(b) Frequency spectra of the temperature perturbation for E = 3.162 × 10−5 .

They correspond from bottom to top to Ra = 4 × 106, Ra = 8 × 106 and

Ra = 5 × 107 , respectively, and σ = 0.1. (c) Knee frequency fc plotted versus

Ra. The Prandtl number is 0.1. The symbols mean: (⊡) E = 10−4, (∗) E =

3.162 × 10−5, and (+) E = 8.165 × 10−6. The solid line is our fitting, and the

dashed that of Shew and Lathrop (2005) with σ = 0.010

with a 9% error in the exponent and 40% in the prefactor, agree-

ing with the experiment at small and moderate Rep, but a ten-

dency to a larger tilt at high RepE−1/3 is found when E de-

creases. The new relation estimated from the dashed line is

(Nu − 1)Raσ−2 = 0.038 × 10−2(Rep

2
E−1/3)1.47, (26)

with a 6% error in the exponent and 20% in the prefactor. Be-

side σ, a first source to explain this difference could be the pos-

sible dependence of the heat transfer on the latitude observed

by Shew and Lathrop (2005). In addition, our convective heat
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transfer is computed over the whole outer boundary, including

the polar regions, where convection is strongly developed at

high Rep and the design of the apparatus prevents the develop-

ment of convection there.

As in Aubert et al. (2001), periodic or quasiperiodic motions

were not found in the sodium experiments. Shew and Lathrop

(2005) obtained always non-periodic frequency spectra from

the time series of the temperature taken also close to the inner

boundary and the equator. These spectra present a sharp change

of slope at the critical frequency, fc, which according to them

is f d
c = 2.0Ω(α∆T )1/2 Hz (knee frequency). The same behavior

has been observed in Schmitt et al. (2008) and Figueroa et al.

(2013) for the components of the magnetic field in experiments

of spherical Couette flow under a dipolar magnetic field gen-

erated by magnets placed inside the inner sphere. In Fig. 11b

three frequency spectra for the temperature perturbation Θ are

shown. From bottom to top, they correspond to Ra = 4 × 106,

Ra = 8×106 and Ra = 5×107, and the same E = 3.162×10−5.

In this case, a softer change of slope towards the high frequen-

cies, but also close to −5.7 (marked by the solid line), can be

recognized. In Fig. 11c fc is plotted versus Ra for the non-

periodic solutions. The points at θ = 3π/8 fit to

fc = 0.28Ra0.6 if r = ri + (ro − ri)/7, (27)

represented by the solid line. The exponent error is 4% and 40%

that of the prefactor. These large errors come from the uncer-

tainty in determining fc from Fig. 11b. Taking into account the

error propagation, the application of this law can lead to errors

larger than 100%.

We have found some variation of fc with the radial distance

for these turbulent flows, part of which could perhaps be due to

the above mentioned errors. In

fc = 0.39Ra0.57 if r = ri + (ro − ri)/2 and (28)

fc = 2.5Ra0.45 if r = ri + 6(ro − ri)/7, (29)

the exponents are obtained with errors of 3% and 6%, respec-

tively, but those of the prefactor reach 30% and 50%.

The knee frequency of Shew and Lathrop (2005) can be

rewritten in non-dimensional form as fc = 2(σ−1Ra)1/2 when

viscous units are used. With σ taken from the experiment, fc
gives

fc = 20
√

Ra. (30)

This fitting is included in Fig. 11c. In the range of parameters

studied it is approximately one order of magnitude higher.

As can be seen from the results included in Table 9 and

Figs. 6 and 7, it seems that the equatorial symmetry breaking

of the flow and the fully developed convection at very high

latitudes can be related with the existence of the knee fre-

quency in the spectrum. The sharp change of slope appears

for Ra very close to the breaking, independently of E. ’Criti-

cal’ Rayleigh numbers, Raesb, for the loss of symmetry in the

intervals [106, 1.5 × 106] for E = 10−4, [4 × 106, 6 × 106] for

E = 3.162× 10−5, and [1.5× 107, 3× 107] for E = 8.165× 10−6

were found.

E Ra/Rac fc S θ
1.08 − 1

1.62 − 1

2.69 − 1

5.39 800 1

10−4 8.08 1400 0

10.78 1800 0

16.16 2000 0

26.94 2800 0

37.70 4800 0

53.88 3600 0

1.26 − 1

1.57 − 1

3.14 − 1

6.28 1600 1

3.162 × 10−5 9.42 2800 0

12.56 3600 0

15.70 4400 0

31.40 4800 0

78.50 12000 0

109.91 18000 0

188.41 24000 0

1.21 − 1

2.77 − 1

5.28 3600 1

8.165 × 10−6 10.41 10000 0

20.81 12000 0

27.75 14000 0

41.62 18000 0

104.06 40000 0

173.43 46000 0

242.80 64000 0

Table 9: Ekman number, relative Rayleigh number, Ra/Rac, approximate knee

frequency, fc, and equatorial symmetry, S θ (1 with and 0 without symmetry)

for σ = 0.1.

7. Estimations for the Earth’s outer core

In this section, some of the scalings obtained in Secs. 5

and 6 are used to extrapolate some physical magnitudes for

the Earth’s outer core. Following Aubert et al. (2001) the flux-

based Rayleigh number RaQ is obtained from the total heat rate

at the core-mantle boundary (CMB), Q̇, that according to Gub-

bins (2001) falls in the range [1, 10] TW. However, recent es-

timations of Pozzo et al. (2012), based on new increased val-

ues of the thermal conductivity and considering several heat

sources, give Q̇ ≈ 15 TW. By taking Q̇ = 10 TW, the physical

coefficients given in Table 10, the radial width of the Earth’s

outer core d = 2.3 × 106 m, the Earth’s radius at the CMB

rCMB = 3.5 × 106 m, the radius at the internal core boundary

rICB = 1.2×106 m and γ = 1.54×10−6 s−2, the non-dimensional

parameter

RaQT
=
αg(rCMB)Q̇d5

4πrICBr2
CMB

kκν
,
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Property GSN13 A-M01 SL05 CA06

Q (TW) 10 10 − 2

ν (m2/s) 10−6 7 × 10−6 10−6 2 × 10−6

κ (m2/s) 8.6 × 10−6 4 × 10−6 5 × 10−6 8 × 10−6

α (K−1) 1.3 × 10−5 − − 10−5

k (W/K m) 100 − − −
d (m) 2.3 × 106 2.3 × 106 2 × 106 2.3 × 106

E 2.6 × 10−15 10−14 10−15 5 × 10−15

σ 0.1 1 0.2 0.25

RaQ or RaQT
2.8 × 1029 1030 − −

Table 10: Physical coefficients and parameters used in the predictions for the

Earth’s outer core (η = 0.35). In column GSN13 the parameters are taken

from Gubbins (2001) and Pozzo et al. (2012), in A-M01 from Aubert et al.

(2001), in SL05 from Shew and Lathrop (2005), and in CA06 from Christensen

and Aubert (2006).

written in terms of Q̇ is approximately RaQT
= 2.8 × 1029, and

RaQ ≈ RaQT
since Rac = (Rac)Q. The parameters of the table

were extracted from Wijs et al. (1998), Poirier (2000), Gub-

bins (2001) and Pozzo et al. (2012), and the constant k refers

to the thermal conductivity. On the other hand, taking into ac-

count the estimated Ekman number of the Earth’s outer core

E = 2.6 × 10−15 and that Ra∗
Q
= RaQE3σ−2, it results that

Ra∗
Q
= 5.0× 10−13, which approximately doubles 2× 10−13 (al-

ready written in our non-dimensional units) estimated by Chris-

tensen and Aubert (2006) from the scaling of Ro.

From Ra∗
Q

, the mean Reynolds and Rossby numbers, Re and

Ro, respectively, the mean dimensional velocity U = (ν/d)Re,

together with their poloidal, Up, and axisymmetric, Ua, contri-

butions, and the mean zonal flow |〈vϕ〉d | at r = ri + (ro − ri)/7

and θ = 3π/8 can be estimated. They are included in Table 11.

In addition their orders of magnitude are compared with the

global Reynolds number, ReA, the dimensional r.m.s. radial

velocity, σ̃d
vr

, and the dimensional local mean zonal flow, |vϕ|d,

obtained by Aubert et al. (2001), also with the convective-based

Reynolds number, ReS, and the convective dimensional veloc-

ity, US, given by Shew and Lathrop (2005), and finally with the

dimensional, UCA, and zonal, UCA
z , velocities of Christensen

and Aubert (2006) (see also Tables 10 and 11).

Equation (15) gives Ro = 6.6× 10−5, which is more than one

order of magnitude greater than that obtained by Christensen

and Aubert (2006) with magnetic field, and with Ro = ReE,

Re ≈ 1010 is obtained. It is two orders of magnitude larger than

ReA ≈ 108. One of the sources of this difference is that our Ek-

man number is one order of magnitude smaller. However, our

results agree with theirs by considering only the poloidal part

of the velocity field as a measure of the convective flow. From

Eq. (17) we obtain Rep ≈ 3.0× 109, and taking into account the

values of ν and d given in Table 10, our dimensional poloidal

velocity gives Up ≈ 1.3 × 10−3 m/s, which is of the same or-

der as σ̃d
vr
∼ 10−3 m/s. In contrast the convective-based ReS is

one order of magnitude smaller than ours. There is the same

difference between their US and our Up.

Our two estimators of the strength of the zonal flows are Ua

and |〈vϕ〉d |. With Roa given by Eq. (19), Ua ≈ 7.9 × 10−3 m/s.

Property GSN13 ABNCM01 SL05 CA06

Re 1010 − − −
Rep 109 − − −
ReA − 108 − −
ReS − − 108 −
Rea 1010 − − −
Ro 10−5 − − −
Rop 10−6 − − −
Roa 10−5 − − −
RoC

z − − − 10−7

RoCA − − − 10−6

UCA (m/s) − − − 10−3

Up (m/s) 10−3 − − −
Ua (m/s) 10−2 − − −
US (m/s) − − 10−4 −

UCA
z (m/s) − − − 10−4

|〈vϕ〉d | (m/s) 10−3 − 10−4 − − −
|vϕ|d (m/s) − 10−2 10−4 −

(σa
vr

)d (m/s) − 10−3 − −
Ua/Up 10 − − −
|vϕ|d/US − − 1 −
|vϕ|d/(σa

vr
)d − 10 − −

Ra 1023 − 1022 1023

Ra∗
Q

10−13 − − 10−13

Table 11: Comparison of the order of magnitude of some physical properties

and parameters estimated for the Earth’s outer core with those of the authors

of Table 10. The definitions of the physical properties are summarized in Ta-

ble 12, and the super-indices A, S and C indicate values found in Aubert et al.

(2001), Shew and Lathrop (2005) and Christensen and Aubert (2006), respec-

tively.

The ratio Ua/Up ≈ 6 approaches very well |vϕ|d/σ̃d
vr
≈ 10 ob-

tained in Aubert et al. (2001). However, from geophysical ob-

servations, Jault et al. (1988) found that zonal velocities lower

than the convective should be expected. The discrepancy could

be due to the absence of magnetic field, which would allow

stronger zonal flows. The electromagnetic stresses would tend

to damp the zonal flow much more than the convective, and

to reduce the azimuthal length scales. On the other hand, the

dimensional mean zonal flow |〈vϕ〉d | ≈ 6.3 × 10−3 m/s, ob-

tained from Eq. (22), is very similar to Ua despite Ua con-

tains radial and colatitudinal contributions, and in addition it

is volume-averaged. Notice that the mean zonal flow near the

inner core exceeds by one order of magnitude 5 × 10−4 m/s,

estimated from the westward drift of the secular variation of

the magnetic field. However by taking the scaling obtained

at point p9, near the CMB, it is quite accurate. We have ob-

tained |〈vϕ〉d | = 1.7 × 10−4 m/s from Eq. (24). Finally, it is

important to remark that the mean zonal flow, |〈vϕ〉d |, and the

poloidal velocity, Up, are of the same order. Specifically, we

obtain |〈vϕ〉d |/Up ≈ 4.8, which is also compatible with the ob-

servations of Jault et al. (1988) if pure thermal convection is

simulated.

The Rayleigh number can be estimated from Eqs. (18) and
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(24) taking into account that Ra∗
Q
= RaE2σ−1Nu∗. It gives

Ra = 3.6 × 1023, which is one order of magnitude higher than

that estimated in Shew and Lathrop (2005), but in very good

agreement with the values of Christensen and Aubert (2006);

Olson (2011). In addition, by considering Eqs. (27)-(29), the

kinematic viscosity, the radial width of the Earth’s outer core

(see Table 10) and the above predicted Ra, a large variation of

the estimated knee frequency in the core, f core
c , with the radial

distance, at the lowest latitudes studied (points p7, p8, and p9),

is obtained.

Specifically, f core
c ≈ 7.2 × 10−6 Hz near the inner boundary,

2.0×10−6 Hz in the middle of the shell, and 1.9×10−8 Hz close

to the outer boundary, are found. We have obtained time scales

for the convective motions ranging from 1.5 days near the inner

boundary to nearly 2 years in the outer. According this result it

seems that the energy is injected into the flow at different time

scales depending on the radial distance. The first frequency is

nearly two orders of magnitude larger than 10−7 given in Shew

and Lathrop (2005), and calculated with the data also given in

Table 10 and Ra = 3 × 1022, therefore their characteristic time

for σ = 0.010 is 70 times higher than ours.

If f core
c is associated with the time scale of the convective

vortices it is possible to estimate their longitudinal length scale

taking into account that Up ≈ 1.3 × 10−3 m/s. It results that

near the inner sphere δr
c ∼ 180 m, in the middle of the shell

δr
c ∼ 660 m, and in the outer part δr

c ∼ 70 km. The latter

value is almost seven times larger than the 10 Km estimated

by Aubert et al. (2001) for motions near the CMB from their

inertial scaling (although the convective velocities are of the

same order in both studies). In addition, if the frequency of the

fluctuations is due to advection of the spatial structures in the

temperature field, as it is assumed in Shew and Lathrop (2005),

the length scale of the structures can be estimated by using the

mean zonal flow given by Eqs. (22)-(24). The velocities are

|〈vϕ〉d | ≈ 6.3 × 10−3 m/s, |〈vϕ〉d | ≈ 1.2 × 10−3 m/s, and |〈vϕ〉d | ≈
1.7 × 10−4 m/s, which gives δ

ϕ
c ∼ 870 m, δ

ϕ
c ∼ 630 m, and

δ
ϕ
c ∼ 9 km, close to the inner boundary, in the middle of the

shell, and close to the outer boundary, respectively. The length

scale determined by Shew and Lathrop (2005) is δc ∼ 1 km, not

much larger than our length scales near the inner boundary and

in the middle of the shell, however our results near the CMB

agree better with the 10 km of Aubert et al. (2001).

8. Conclusions

The numerical simulations of fully developed thermal con-

vection of fluids filling a rotating spherical shell subject to ra-

dial heating in laboratory conditions have been compared to

those of other experimental and numerical studies, either three-

dimensional with stress-free boundary conditions or quasi-

geostrophic with non-slip boundary conditions, and with nu-

merical geodynamo models.

Most of our results confirm those obtained by other authors

with similar parameters. The mean zonal flow, retrograde in

the inner boundary and prograde in the outer near the equator,

has been quantified. From Fig. 2 (E = 10−4) the growing of

the convection can be estimated. When it is fully developed

the prograde flows are confined at latitudes lower than 60o and

radius larger than r = ri+0.5(ro−ri). The rate of development of

the polar convection from the onset is faster inside than outside

the cylinder tangent to the inner boundary up to Ra ≈ 2.7Rac,

for which it gets a significant value.

Asymptotic power relations as a function of the parameter

Ra∗
Q

, independent of the diffusivities have been found. The

comparison with those of Christensen (2002) and Christensen

and Aubert (2006) indicates that the maximal zonal flow, gen-

erated before achieving the turbulent regimes with non-slip

boundaries, represents approximately the 50% of the total ki-

netic energy density, while those generated with in the stress-

free problem achieved 90%. On the other hand, it also shows

that the inclusion of a magnetic field tends to damp the mean

zonal flows more than the convective because the power law of

the Nusselt number with Ra∗
Q

does not change significantly.

According to the relation between the zonal and radial char-

acteristic estimators of the velocities, three regimes are ob-

served. The lower, of quadratic scaling between Rea
t and Rep,

is superseded by an almost linear dependence between both

Reynolds in agreement with Christensen (2002) and Gillet et al.

(2007), although the quasi-geostrophic results of the latter gave

a different power. Like in Shew and Lathrop (2005), evidences

that the mean zonal flow saturates at the highest Ra for any

E , 0 are found. This fact is consistent with the negative slope

of the ratio K/Kna. When this ratio decreases, the solutions

lose their equatorial symmetry and the fully developed turbu-

lent convection starts. This symmetry breaking has been related

with the change of slope of the frequency spectra at the critical

frequency fc. Its value depends on the radius, being larger near

the interior of the shell.

Finally, the fittings computed are used to extrapolate Earth’s

outer core values following the approach of Aubert et al. (2001),

i.e. departing from the geophysically predicted total heat rate at

the outer boundary. Using known values of the parameters rea-

sonable results for the velocity field are achieved, which resem-

ble very much those existing in the literature. For instance we

have predicted mean zonal flows |vϕ|d ≈ 2 × 10−4 m/s near the

CMB, which are half the value obtained from observations. In

addition we have estimated the size of the vortices of convection

at different levels of the shell from 〈vϕ〉(r), Up and fc(r), finding

that it increases with the radius. Their range is 180 − 870 m in

the interior, around 660 m in the middle, and 9−70 km near the

CMB. Obviously, as said before the presence of the magnetic

field and more realistic magnetic Prandtl numbers could change

these estimations, or they could even drive geodynamo models

to new regimes with unexplored energetic balances as Soder-

lund et al. (2012) or King and Buffett (2013) have pointed out

recently.
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Appendix: Definitions

Table 12 contains the parameters and definitions of the phys-

ical magnitudes used along the paper to compare with other au-

thors. Notice that the word mean is used only to indicate time

averaged quantities, while 〈· · · 〉 is left for spatial averages.

Symbol Definition

T Toroidal field, T = ∇ × Ψr

P Poloidal field, P = ∇ × ∇ ×Φr

v Velocity field, v = T + P

〈 f 〉 Azimuthal average of f , or axisymmetric part,

〈 f 〉(t, r, θ) = 1
2π

∫ 2π

0
f (t, r, θ, ϕ)dϕ

f̃ Non-axisymmetric part of f , f̃ = f − 〈 f 〉

vϕ Azimuthal component of the velocity field

〈vϕ〉 Azimuthal average of vϕ or zonal flow

〈vϕ〉 Time average of 〈vϕ〉 or mean zonal flow

Ta Axisymmetric toroidal field, Ta = 〈∇ ×Ψr〉

Tna Non-axisymmetric toroidal field, Tna = ∇̃ ×Ψr

Pa Axisymmetric poloidal field, Pa = 〈∇ × ∇ ×Φr〉

Pna Non-axisymmetric poloidal field, Pna = ˜∇ × ∇ ×Φr

K Kinetic energy density (KED), K = 1
2
〈|v|2〉V

Ka Axisymmetric KED, Ka =
1
2
〈|va|2〉V

Kna Non-axisymmetric KED, Kna =
1
2
〈|vna|2〉V

Kt Toroidal KED, Kt =
1
2
〈|T|2〉V

Ka
t Axisymmetric toroidal KED, Ka

t =
1
2
〈|Ta|2〉V

Kna
t Non-axisymmetric toroidal KED, Kna

t =
1
2
〈|Tna|2〉V

Kp Poloidal KED, Kp =
1
2
〈|P|2〉V

Ka
p Axisymmetric poloidal KED, Ka

p =
1
2
〈|Pa|2〉V

Kna
p Non-axisymmetric poloidal KED, Kna

p =
1
2
〈|Pna|2〉V

Re∗ Reynolds number, Re∗ =
√

2K∗

Ro∗ Rossby number, Ro∗ = Re∗E

U∗ Estimated dimensional velocities, U∗ = νRe∗/d

Table 12: Summary of symbols and definitions for the output data used. The

symbol ∗ means the type of KED used in the definitions of Re and Ro, and in

U .

20



Aubert, J., 2005. Steady zonal flows in spherical shell fluid dynamos. J. Fluid

Mech. 542, 53–67.

Aubert, J., Brito, D., Nataf, H.-C., Cardin, P., Masson, J.-P., 2001. A system-

atic experimental study of rapidly rotating spherical convection in water and

liquid gallium. Phys. Earth Planet. Inter. 128, 51–74.

Aurnou, J., Heimpel, M., 2004. Zonal jets in rotating convection with mixed

mechanical boundary conditions. Icarus 169 (2), 492–498.

Aurnou, J., Heimpel, M., Wicht, J., 2007. The effects of vigorous mixing in a

convective model of zonal flow on the ice giants. ICARUS 190, 110–126.

Aurnou, J. M., 2007. Planetary core dynamics and convective heat transfer scal-

ing. Geophys. Astrophys. Fluid Dynamics 101 (5–6), 327–345.

Aurnou, J. M., Olson, P., 2001. Strong zonal winds from thermal convection in

a rotating spherical shell. Geophys. Res. Lett. 28 (13), 2557–2559.

Cardin, P., Olson, P., 1994. Chaotic thermal convection in a rapidly rotating

spherical shell: consequences for flow in the outer core. Phys. Earth Planet.

Inter. 82, 235–259.

Christensen, U., 2002. Zonal flow driven by strongly supercritical convection

in rotating spherical shells. J. Fluid Mech. 470, 115–133.

Christensen, U., Aubert, J., 2006. Scaling properties of convection-driven dy-

namos in rotating spherical shells and application to planetary magnetic

fields. Geophys. J. Int. 166, 97–114.

Dormy, E., Soward, A. M., Jones, C. A., Jault, D., Cardin, P., 2004. The onset

of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 43–70.

Figueroa, A., Schaeffer, N., Nataf, H. C., Schmitt, D., 2013. Modes and insta-

bilities in magnetized spherical Couette flow. J. Fluid Mech. 716, 445–469.

Garcia, F., Net, M., Garcı́a-Archilla, B., Sánchez, J., 2010. A comparison of

high-order time integrators for the Boussinesq Navier-Stokes equations in

rotating spherical shells. J. Comput. Phys. 229, 7997–8010.

Garcia, F., Sánchez, J., Net, M., 2008. Antisymmetric polar modes of thermal

convection in rotating spherical fluid shells at high Taylor numbers. Phys.

Rev. Lett. 101 (19), 194501.

Gillet, N., Brito, D., Jault, D., Nataf, H.-C., 2007. Experimental and numerical

studies of convection in a rapidly rotating spherical shell. J. Fluid Mech. 580,

83–121.

Gillet, N., Jones, C. A., 2006. The quasi-geostrophic model for rapidly rotating

spherical convection outside the tangent cylinder. J. Fluid Mech. 554, 343–

369.

Grossmann, S., Lohse, D., 2000. Scaling in thermal convection: a unifiying

theory. J. Fluid Mech. 407, 27–56.

Gubbins, D., 2001. The Rayleigh number for convection in the Earth’s core.

Phys. Earth Planet. Inter. 128, 3–12.
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