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We present a numerical algorithm for the continuation of periodic orbits of high-
dimensional dissipative dynamical systems. It is based on single shooting and

Newton-Krylov methods. A non-trivial fluid dynamics problem, which after a
pseudo-spectral discretization gives rise to a system of dimension O(104), has been

used as test. The efficiency of the algorithm, which allows the unfolding of a
complex bifurcation diagram of periodic orbits, shows the suitability of the method

for large-scale nonlinear dissipative partial differential equations.

1. Introduction

Many researchers have benefited from the availability of continuation and

bifurcation packages such as AUTO1 to compute fixed points, periodic or-

bits and other invariant manifolds of dynamical systems. Due to the small

size of the systems they are designed for, they implement direct solvers for

the linear problems involved in the computations. The extension to high-

dimensional problems is not straightforward; the main obstacle being the

computational cost of the linear algebra. The development of modern tech-

niques, many of them based on Krylov or Arnoldi methods, allow the study

of large systems such as those in computational fluid dynamics. In particu-

lar, continuations of periodic orbits in large-scale dissipative systems have
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been performed in a few problems2,3 of moderate dimension. These studies

use the Newton-Picard2 algorithm. In this work, we present an alternative

to that method. We apply Newton-Krylov techniques to obtain the fixed

points of a Poincaré map. Because of the dissipative nature of the problems

the method is addressed to, their Floquet multipliers are clustered around

the origin. This is the reason why the convergence of the iterative methods

we employ is fast.

2. Continuation method for periodic orbits

Consider a finite dimensional dynamical system with governing equations

ẋ = f(x, λ), (1)

with (x, λ) ∈ U ⊂ Rn×R, and where λ is a parameter on which the problem

depends.

Periodic orbits of (1) are obtained as fixed points of a Poincaré map. Af-

ter a Poincaré section Σ, which for simplicity is taken as an hyperplane de-

fined by g(x) = ω>σ (x−xσ) = 0, is selected, the Poincaré map, P : V ⊂ Σ→

Σ, is defined as P (x, λ) = ϕ(t(x), x, λ) where x ∈ V, ϕ(t, x, λ) is the solution

of ẋ = f(x, λ) with initial condition x = ϕ(0, x, λ), (∇g(x), f(x, λ)) > 0,

and t(x) verifies t(x) > 0, ϕ(t(x), x, λ) ∈ Σ, (∇g, f)|ϕ(t(x),x,λ) > 0, with

t(x) being minimal with these conditions.

The periodic orbits are then given by

x− P (x, λ) = 0, x ∈ Σ. (2)

Predictor-corrector parameter and pseudo-arclength continuation methods

are used to study the dependence of the solutions of (2) on the parameter λ.

Second degree polynomial extrapolation is used as predictor and Newton’s

method as corrector. Both methods admit an unified formulation by adding

a normalizing equation

n(x, λ) ≡ θω>x (x− x0) + (1− θ)ωλ(λ− λ0) = 0, (3)

(x0, λ0) being the predicted point along the curve of solutions. In the case of

pseudo-arclength continuation (ωx, ωλ) is an approximation to the tangent

to the curve of solutions (x(s), λ(s)) at (x0, λ0), which can also be obtained

by extrapolation, and 0 ≤ θ ≤ 1 is a parameter that controls the relative

weight of x and λ in the normalizing equation. For parameter continuation

θ = 0 and ωλ a non-zero arbitrary constant.

The system that determines a unique solution is then

x− P (x, λ) = 0, n(x, λ) = 0, x ∈ Σ, (4)
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and the linear system to be solved at each Newton’s iteration, (xi+1, λi+1) =

(xi, λi) + (∆xi,∆λi), is

(

I −DxP (x
i, λi) −DλP (x

i, λi)

θω>x (1− θ)ωλ

)(

∆xi

∆λi

)

=

(

−xi + P (xi, λi)

−n(xi, λi)

)

. (5)

The linear system (5) is solved iteratively by matrix-free methods

that only require the computation of products by the matrix. We used

the restarted generalized minimum residual method (GMRES). There-

fore a procedure to compute products of the form DxP (x, λ)∆x
i or

DxP (x, λ)∆x
i + DλP (x, λ)∆λ

i must be available. They can be obtained

from the first variational equation

ẏ = Dxf(x, λ)y +Dλf(x, λ)µ, (6)

with y(0) = ∆xi and µ = ∆λi. The term Dλf(x, λ)µ must be included in

(6) only if pseudo-arclength continuation is used. Details on how to obtain

the action of differential of the Poincaré map from the integration of these

variational equations can be found in Ref. 4.

Once the periodic orbits have been obtained, we study their stability

by computing their dominant Floquet multipliers by subspace iteration or

by Arnoldi’s method using the ARPACK library5. This needs, also, the

integration of the 2n-dimensional system (1), (6).

3. The test problem: thermal convection in an annulus

The method have been tested on a two-dimensional thermal convection

problem of a Boussinesq fluid in an annulus with inward gravity and heated

from the inside. The domain has inner and outer radii Ri and Ro. The

three non-dimensional parameters of the problem are the radius ratio, η =

Ri/Ro, the Prandtl number, σ = ν/κ, and the Rayleigh number, Ra =

α∆Tgd3/κν, where ν, α and κ are the kinematical viscosity, the thermal

expansion coefficient, and thermal diffusivity of the fluid respectively. ∆T

is the temperature difference between both boundaries, g a constant radial

gravity, and d the radii difference. All the results shown correspond to

η = 0.3 and σ = 0.025, and Ra is the moving parameter. Let u and T

be respectively the velocity and temperature fields. The conduction steady

state uc = 0, Tc(r) = Ti + ln(r/Ri)/ ln η is a solution for any value of Ra.

The velocity field u is written in terms of a mean flow f , and a stream-

function ψ, as u = f êθ + ∇ × (ψêz). The equations for f , ψ, and the
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temperature perturbation, Θ = T − Tc, are




I 0 0

0 I 0

0 0 ∆



 ∂t





f

Θ

ψ



 =





σ∆̃ 0 0

0 ∆ −(r2 ln η)−1∂θ
0 σr−1Ra ∂θ σ∆∆









f

Θ

ψ





+







Pθ

[

∆ψ∂θψ
]

/r

J(ψ,Θ)− f∂θΘ/r

(1− Pθ)J(ψ,∆ψ) + ∆̃f∂θψ/r − f∂θ∆ψ/r






,

(7)

where ∆ = (∂r+1/r)∂r+(1/r2)∂2
θθ, ∆̃ = ∂r(∂r+1/r), J is the determinant

of the corresponding Jacobian matrix in cylindrical coordinates, and Pθ
is the azimuthal average operator Pθg(t, r, θ) = (2π)−1

∫ 2π

0
g(t, r, θ)dθ. In

this formulation, the no-slip and constant temperature boundary conditions

become f = ψ = ∂rψ = Θ = 0.

A simple inspection reveals that the system isO(2)-equivariant; O(2) be-

ing generated by rotations and reflections with respect to diameters. These

symmetries are responsible for the large amount of bifurcations found in

the problem.

We use pseudo-spectral methods to discretize (7). The fields f , ψ and

Θ are approximated by Fourier series in θ and collocation on a mesh of

Gauss-Lobatto points in r. With the discretization we have employed the

total number of unknowns is 11582. For time integration we use fourth

order backward differentiation formulas (BDF) for the linear part of (7),

and fourth degree extrapolation formulas for the nonlinear terms.

4. Results

Fig. 1(a) shows the calculated branches of periodic orbits with dominant

azimuthal wave number n = 4. They are waves that are no longer reflection

symmetric, and consequently6 oscillate back and forth in the azimuthal di-

rection. Information about the origin and the physical behaviour of this so-

lutions can be found in Ref. 7. A weighted amplitude A =
∑4

n=0 wn|Θn(rp)|

of the first five azimuthal modes of the temperature perturbation, at the

time at which the orbit intersects Σ, versus the Rayleigh number has been

plotted. In A, rp is a fixed radial point, and the weights, wn, are selected

to clearly distinguish the different branches. Solutions related by the spa-

tial symmetries broken at the bifurcations, correspond to the same points

in the diagram. The branching points have been marked with full circles

(other intersections are due to the projection), the only Neimark-Sacker
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Figure 1. (a) Diagram of bifurcations of periodic orbits for the annulus problem. (b)
Parts of branches of periodic orbits used to study the efficiency of the method.

bifurcation (Ra = 18683) found in the interval of Ra considered is marked

with an asterisk, and a bifurcation where two complex conjugate multipli-

ers become real at +1, is indicated by a cross. A stable rotating modulated

wave emerges at this point.

All the calculations described in this article were performed on a Pen-

tium IV personal computer running at 1.8 GHz. The average total number

of GMRES iterations needed to compute the solutions along the portion of

branches displayed in Fig. 1(b) have been calculated. In all the cases, the

time step used was 10−4, and the stopping criterion for Newton’s method

was a relative difference between iterates below 10−7 and the norm of the

function also below 10−7. Four cases have been considered. Branch B1 was

calculated by using parameter continuation and a fixed parameter step size

of 200. This is a pure n = 4 branch, i.e., only a quarter of the unknowns

are non-zero so that, in fact, a system of dimension 2942 is being solved, al-

though we have not made use of this. For this branch the mean of the total

number of GMRES iterations is 17. Branch B2 was calculated with both

parameter and pseudo-arclength continuation and using automatic control

of the step size. The average number of evaluations of DP (x, λ)v was 41

and 44 respectively. On B3, computed with pseudo-arclength continuation

and automatic step size control, there are two turning points, and it ends at

a bifurcation point. The mean number of GMRES iterations increases up to

52. This branch is more expensive to compute because the solutions change

significantly through the turning points. The CPU times to complete each

of these calculations were 22.2, 37.5, 38.8 and 100 hours respectively. Each

evaluation of DP (x, λ)v took between 50 and 170 seconds depending on

the branch considered. Therefore the CPU time to compute each periodic
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orbit in the diagram of Fig. 1(a) has been from ten to ninety minutes.

5. Conclusions

We have shown that the Newton-Krylov method, applied to find fixed points

of Poincaré maps of high-dimensional dissipative systems, provides an effi-

cient, easy to implement, and robust tool to compute periodic orbits. By

using the Newton-Krylov method we retain the quadratical convergence

of Newton’s iterations except, of course, near bifurcation points. This is

important to minimize the number of evaluations of the differential of the

Poincaré map, where almost all the computing time is spent.

Other invariant manifolds could also be computed by using the same

ideas here described. In particular we are interested in extending these

techniques to compute invariant tori for, at least, moderate-dimensional

problems.
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