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Abstract

A method to compute invariant tori in high-dimensional systems, obtained as
discretizations of PDEs, by continuation and Newton-Krylov methods is de-
scribed. Invariant tori are found as fixed points of a generalized Poincaré map
without increasing the dimension of the original system. Due to the dissipative
nature of the systems considered, the convergence of the linear solvers is ex-
tremely fast. The computation of periodic orbits inside the Arnold’s tongues is
also considered. Thermal convection of a binary mixture of fluids, in a rectan-
gular cavity, has been used to test the method.
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variational equations, Newton-Krylov methods, resonances.

1. Introduction

Invariant tori arise in general continuous or discrete dynamical systems, usu-
ally, when a branch of periodic orbits loses stability at a Neimark-Sacker bifur-
cation. The case of Hamiltonian systems is more subtle: invariant tori appear
typically around a (totally or partially) elliptic fixed point, periodic orbit or
lower dimensional torus (see, e.g. [1],[2]). In a general dissipative system at-
tracting 2D invariant tori can be created by a Neimark-Sacker bifurcation of
a periodic orbit. Later on, as illustrated in Section 6.1, the invariant tori can
have a cascade of period-doubling bifurcations leading to chaos. Typically only
a finite number of period doublings is found before the chaotic range is reached
(see, e.g., [3] in the context of fluid mechanics). Another common possibility
is the occurrence of a second Neimark-Sacker bifurcation and 3D invariant tori
are created by bifurcation of a 2D torus which becomes unstable. When the
dynamics on an attracting 3D torus comes close enough to a double resonance
one can expect the occurrence of strange attractors. This is the well-known
Ruelle-Takens route to turbulence. A description of the mechanisms leading to
these attractors can be found on [4] for a family of 3D diffeomorphisms. Hence,
invariant tori play a relevant role in several routes to chaos for dissipative sys-
tems.
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For low-dimensional conservative or dissipative systems, several algorithms
have been developed in the past. In a local case, close to a fixed point, Lindstedt—
Poincaré methods can be used, see [5, 6], even to compute the invariant man-
ifolds for partially normally hyperbolic tori [7]. Far away from fixed points
different methods have been proposed, see for instance [8, 9, 10, 2, 11], in-
cluding finding a point on an invariant curve as a fixed point of a generalized
Poincaré map, or expanding the tori or the invariant curves in Fourier series.
We address the interested reader to the historical introduction in [12] which in-
cludes some examples. In the case of high-dimensional systems, tori are usually
computed by time evolution of the equations. Only attracting tori are obtained
by this method. Therefore it is very expensive to study their dependence on
parameters, specially near bifurcations, where due to the weak attraction the
transients are very long.

We report here a method to compute stable or slightly unstable invariant
tori which, with minor differences, has been used in the past in low-dimensional
dissipative [9] and the conservative [10, 2] cases. Up to now, these methods have
never been used for problems coming from discretizations of partial differential
equations, because the matrices of the linear algebra involved are full, no matter
the spatial discretization employed. For instance, suppose a system of differen-
tial equations has the form &; = f;j(x;—1,%;,241), ¢ = 1,--- ,n, with periodic
conditions g = x,, and x,,+1 = x1, and an initial condition :I:?. The Jacobian of
the system is always tridiagonal. If it is integrated from ¢ = 0 with an explicit
Euler method with step At, after the first step x;(At) depends on z¥_;, 2, and
z) "1, after the second it will depend on five of the initial conditions, and after
(n —1)/2 steps, on all initial conditions. Then 81?901'(15) # 0 for all ¢ and j, if
t > (n — 1)At/2. If an implicit Euler method is used, this holds from the first
step. This gives a full Jacobian for the time evolution operator, and for any
derivated operator as, for instance, the Poincaré map.

Instead of using direct methods to solve the linear systems we use iterative
Krylov methods. Due to the dissipative nature of the problems the method is
addressed to, the number of iterations required is very small, and the full version
of GMRES can be used, which is optimal among the family of projection Krylov
methods [13]. The technique generalizes that described previously in [14] for
the computation of fixed points and periodic orbits.

In order to perform the numerical experiments, we have applied the method
to the thermal convection problem of a binary mixture, filling a two-dimensional
rectangular domain. This problem has been studied widely by several authors,
mainly in large aspect ratio domains. From weakly nonlinear theory, laboratory
experiments and direct numerical simulations (see [15, 16, 17, 18, 19] among
many others) it is well known that the onset of convection is subcritical and
oscillatory below a critical negative value of the separation ratio, and that,
depending on I', it can give rise to a very complex dynamics. Although the
analysis of the physical problem is out of the scope of the paper, it is worth-
while to mention that this is the first time the unstable branch of periodic orbits
bifurcated from the steady basic state, and branches of invariant tori have been
computed, and their stability analyzed. Therefore the continuation techniques
shown in this paper, applied to the computation of complete bifurcation dia-
grams, can help to confirm the validity of the existent theories about the origin
of the weakly non-linear, but complex time-dependent states, found when the



convection of a binary mixture sets in.

In general, there is a broad range of areas in which multi-diffusive convection
has to be taken into account to understand the nonlinear behaviour, not only
in nature (Oceanography, Astrophysics, Geophysics, Geology, etc.), but also in
Engineering (Metallurgy, Materials Science, etc.) (see[20] for a detailed review).
Moreover, as it was said before, the continuation techniques described below
can be applied to any dissipative process, which admits a mathematical model,
for instance, those that occur in many Biological and Medical or Ecological
systems.

Section 2 sums up the generic continuation method used for fixed points of
maps. Section 3 explains the computation of Poincaré maps, and the action by
their differentials. In Section 4 the generalized Poincaré map is introduced, as
well as the way of computing the action by its differentials. The problem used
as test for the method is presented in Section 5. The results of the computation
of invariant tori in the test problem are summarized in Section 6. Some data
on the efficiency of the problem are given in Section 7, and, finally, we end with
the conclusions in Section 8.

2. Continuation of fixed points of maps by Newton-Krylov methods

Consider a dissipative map
x— Gz, A), (x,A)elUdCR" xR, (1)

with n > 1. We are interested in its fixed points and their dependence on .
Predictor-corrector parameter or pseudo-arclength-like continuation methods
can be used to trace the curves (z(s), A(s)) of fixed points parameterized by the
arclength [21]. They admit an unified formulation by adding the equation of
the hyperplane

m(z,\) =60 < vg,x —x0 > +(1 —0)va(A—Xo) =0, (2)

(20, X0) and (v, vy) being the predicted point and the tangent to the curve
of solutions, obtained from previously computed points by extrapolation (see
Fig. 1), and 6 € [0,1] . If 8 = 0 the equation fixes A\ to the predicted value
Ao, and if § = 1/2 the hyperplane m(x, \) = 0 is approximately normal to the
curve. The hyperplane will cut the curve of solutions if the prediction is not
too far away from the last computed point. Then, the system that determines
a unique pair, (z, ), is

o x=G(x,A) \ n o
F(x,A)( (o) >0€R R. (3)

The existence of a unique local solution follows from the Implicit Function
Theorem if DF is regular. System (3) can be solved by Newton’s method,
(LN = (28 %) + (Az?, ANY). At each iteration, the linear system

I—D,G(x',\') —DyG(x', X))\ [Az"\  [—at+ G(z,\Y) @)
Ov, (1 —0)vy AN ) T —m(xt, \Y) )

is solved iteratively by matrix-free methods (GMRES, GMRES(M), BICGSTAB,

etc.), which only require the computation of matrix products, i.e., products of

the form o _ o _
D,G(z', \')Az" + DyG(x*, \*) AN".



The key point to solve these linear systems, is that they need no precondition-
ing if the Jacobian D,G(z%,\") has most of its spectrum clustered around the
origin. This is what happens for the fixed points of dissipative problems we
want to compute. Dissipative systems contract volumes in phase space, namely,
trajectories near any invariant object (fixed points, periodic orbits, invariant
tori, etc.) tend to the object, except along its unstable manifold which we as-
sume will be of very small dimension compared with the total dimension of the
system. This makes the evolution operator be a contraction (except along the
low dimensional unstable manifold). The longer the time integration, the more
contractive along the stable manifold. This is also related to the fact that the
spectrum of a linearization of the field defining a system of dissipative differ-
ential equations is located on the left of the imaginary axis, except by a few
elements with non-negative real part.

X m(xA)=0
(X, A)
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Figure 1: Predictor-corrector continuation method.

3. Computation of Poincaré maps
Consider a system of ordinary differential equations (ODEs)
x:f(:Cv)‘)a (zaA)GUCRnXRv (5)

obtained after the spatial discretization of a set of parabolic partial differential
equations (PDEs), such as those governing reaction-diffusion or fluid mechanic
problems. We define the Poincaré map, P : V C ¥; — 31, for simplicity, on a
hyperplane
Y1 ={z2zeR"/ <wvi,z—x1 >=0}

by P(xz,\) = ¢(t(z),x), where ¢(t,x) is the solution of (5) with initial condi-
tion z, and ¢(z) > 0 is the first time at which the orbit starting at = intersects
3, again in the sense defined by the vector f(z,A). In some cases, depending
on the geometry of the orbits, instead of the first intersection one should con-
sider another one, or to look for intersections on a suitable target domain and,
furthermore, it can be convenient to change the Poincaré section when some pa-
rameter in the family changes. But this will not be considered in what follows.
When z is on a periodic orbit, ¢t(z) is its period. If the orbit doubles the period
t(x) is the second time it intersects ¥; and so on.

To avoid the construction of an orthonormal basis on ¥1, P can be parameteri-
zed as sketched in Fig. 2a. If k is the index of the largest component of v, and

Ry is the orthogonal projection from X; onto the hyperplane x; = 0, then we
define P: V C R"~! — R ! as

P(z,)) = Riu(P(R; (2), V). (6)



Details on the explicit computation of the map Ry, and its inverse are given in
[14]. There and in [22] periodic orbits of (5) were obtained by computing the
fixed points of P.

a) %
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Figure 2: Parameterized Poincaré map, and the action by its differential. a) The scheme shows
the process required to compute the parameterized Poincaré map. Starting from Z belonging
to the hyperplane z; = 0, x is computed as the point in 3; whose orthogonal projection onto
2z = 0 is Z. The Poincaré map is applied next to obtain P(z,A), which is finally projected
onto z3 = 0, providing P(#, \). b) The analogous process required to obtain the action of the
Jacobian of P on a vector AZ (see eq. (7)).

By applying the chain rule to (6), a matrix product of the Jacobian of P times
(AZ, AN), i.e., w = Dz P(Z,\)AZ + D) P(Z, \) A\, requires the computation of
<1,y >
-z

= D, P(z,\)Az + Dy\P(z,\)A\ =
v (,73 )x—i— A (x ) Y < U1,z >

(7)

where z = R;'(Z), Ar = DR, '()AZ, z = f(P(x,\),\), and y is the solution
of the first variational equation

&= f(z,A),

with initial conditions

z(0) =z,
y(0) = Az = DR, *(7)A%

at the time defined by the Poincaré map (see Fig. 2b). The second equality
in (7) can be obtained by an application of the implicit function theorem (see
[6] for the details, or [23], where, in addition, the derivatives of the Poincaré map
up to, and including third order, are given). Therefore, each matrix product
requires the time integration of a system of 2n equations.

4. Continuation of invariant 2-tori of ODEs (invariant curves of maps)

A map G is defined now, such that its fixed points are approximations to
points on invariant tori. We assume that the intersection of the 2D-tori with



the selected Poincaré section is a smooth invariant curve. The map we are going
to define can be seen as a synthesized return map of the curve to the vicinity of
an initial point.

Let P :V C ¥; — X1 be the Poincaré map defined, as before, on a hy-
perplane ¥, and s another hyperplane given by < ve,x — x2 >= 0. Let us
suppose it is transversal to 31 and to the invariant 2-tori we are interested to
find (see Fig. 3). We want to obtain the intersection of the invariant curve,
and X5. Suppose x is an initial point on the intersection ¥ N 35, and consider
the ball of radius € centered at z. A time integration with initial condition x
is started to find the first ¢ + 1 powers of the Poincaré map, P*/(x, \) with
j=1,---,¢+1 and, say, k1 < k2 < ...kg+1, which fall inside the ball (¢ = 3
in Fig. 3). Then we consider the polynomial which interpolates these points,
and its intersection with ¥5. This process defines a map G from U C Y1 N g
onto itself. Its fixed points are the approximations we are looking for. As in the
case of the Poincaré map P, the map G(x,\) : U C R"2 x R — R"~? can be
parameterized as follows. Suppose that j; is the index of the largest component
of v; for i = 1,2, and that R : ¥y N Yy — R"? is the orthogonal projection
from ¥, N X2 onto the subspace {z;, = 0, z;, = 0}. In practice, the map R
drops the components j; and js from a point in ¥ N X5, and its inverse fills
these components such that the resulting point is in ¥; N 3. Therefore G is

defined as
q+1

G(‘f’ A) = Rle(O)ij (Ril(‘f)’ A)s (8)

where the [;(u) are the Lagrange polynomials of degree ¢ at the points
Hj =< ’UQaij(R_l(i')a)‘)_‘TQ >, jzlaaq+1’ (9)

1 being the projection of the points inside the ball onto a line normal to ¥q
(see Fig. 3). The action of the Jacobian of G on a vector (7, u) reduces to the
case of the differential of the Poincaré map, which we have already seen. By
differentiating (8) it can be seen that

q+1
DG(z,N)(0,p) = R | 1:(0)DP¥ (2, )

q+1
+ P*i(2,0) Y 9 Li(0)vg DP™ (2, 0) | (DzR™(2)D, 1), (10)

j=1

with z = R71(%).

The basic idea of the construction presented here is that if the invariant
curve of the Poincaré map is analytical and reducible (that is, the linearized
map can be reduced to constant coefficients with a suitable change of variables),
then the interpolating functions in (8) give better and better estimates of the
synthesized return map when ¢ decreases, and (10) gives a correct approximation
of the differential of the return map. Of course, in practice, these theoretical
improved estimates can be affected by increasing round-off errors.

The reducibility assumption is essential in the sense that, otherwise, the
differential of the return map is not well defined in general. Anyway, if the



zj= Pk (x,A)

Figure 3: Map defining an approximation of a point on the torus. The solid line represents the
invariant curve in X1, and its intersection with ;1 N X2 is the point we want to approximate.
Note that the points u; on the direction of v2 need not to appear ordered as illustrated in the
figure.

“lack of reducibility” is small and the rotation number of the invariant curve
satisfies some Diophantine Condition, still a formal process aiming at obtaining
reducibility can be used. The process will not be convergent, but will produce
good approximations to a reducible system. The interested reader can check
theoretical results and applications in [24] and [25]. Far away from reducibility
one can not even be sure of the existence of the invariant torus. The lack of
reducibility can also produce “non-typical” behaviour, as can be shown by the
evolution of Lyapunov exponents (see, e.g. [3]).

A fixed point of the map G(Z,\) corresponds, via the map x = R~(Z),
to an approximation to a point of the invariant 2-tori in X3 N 39. The map G
depends on the radius € and the powers k;. Several strategies can be adopted to
ensure that the interpolation has the same number of points at both sides of Yo,
or to discard a point P* (R™!(z)) inside the ball if it is too close to a previous
one. To make the process adaptive, € must be changed during the continuation.
The method we have employed in the example shown below uses an initial ¢,
and, once a torus has been found, it is set to a fraction of the diameter of the
invariant curve passing through the fixed point of G. The continuation process
will always start from an initial known condition. The initial diameter, and ¢ can
be estimated, from a time integration, by computing enough Poincaré sections
to complete a turn on the invariant curve. If the continuation starts close to a
Neimark-Sacker bifurcation, the diameter grows proportionally to v A — A., Ac
being the value of the parameter at the bifurcation. During the computation
of the tori the diameter can be estimated by calculating the distances from the
initial z to the powers of the Poincaré map obtained during the computation of
G.

There are two reasons that prevent this process to be considered as a “typi-
cal” continuation. The first is that the function G varies during the continuation
process because the rotation number of the invariant curve changes, and so do
the powers which define G. So we do not follow the fixed points of a single map,



but those of a family of maps which change with the parameter A. The sec-
ond is that the objects found during the continuation will have different nature.
The invariant curve will correspond to a quasi-periodic regime if the rotation
number satisfies some Diophantine conditions. This occurs for a Cantor subset
of the parameter interval. Otherwise the invariant curve can be the union of
the unstable invariant manifolds of the saddle periodic points of the Poincaré
map restricted to the invariant curve in case the rotation number is rational.
These manifold meet at the periodic points of node type. For non-rational and
non-Diophantine numbers a remnant of the invariant curve can subsist as a
Cantor set. As mechanisms describing the destruction of the invariant curve
in the rational case, one can mention the fact that the manifolds of the saddle
points do not enter the nodal ones (and then they typically give rise to strange
attractors) and the fact that the nodal points become focus and, later on, they
have a period doubling. We can refer to [26] for theoretical study and numerical
examples of these and other possibilities.

5. Thermal convection in binary fluid mixtures

The thermal convection of a binary mixture, filling a two-dimensional rect-
angular domain {2 heated from below is studied. The problem is governed by
the mass, momentum, energy, and one of the concentrations (the denser in
what follows) equations [27]. To write them in non-dimensional form the height
of the domain h, the thermal diffusion time h?/k, r being the thermal diffu-
sivity, the temperature difference between the top and bottom sides AT, and
C(C —1)D'AT/D, C being the volume-average concentration, D > 0 the mass
diffusion coefficient, and D’ the thermal diffusion coefficient, are taken to scale
the problem. In non-dimensional units 2 = [0,T] x [0,1], T being the width
l to the height ratio, and x and y are the horizontal and vertical coordinates,
respectively.

The basic conductive and linearly stratified state, which is a solution of the
equations for any value of the parameters, is given by zero velocity v, = 0,
and non-dimensional linear profiles for the temperature T, = T;(0) — y, and the
concentration Cy, = Cp(0) —y. The values T,(0) and C(0) are related constants
because of the boundary conditions defined below.

The Boussinesq approximation of the equations for the perturbation (v, 9, %),
of the basic state (vy, Ty, Ch), are

v+ (v-V)v=—-Vr+ V>3 +oRa(O + SX)é,,
90 + (v- V)0 = V0 + v,

KT+ (v-V)E = L(VZE - V?0) + v,

V-v=0,

where v = (vg,vy). The term —LV?0, which appears in the third equation is
the Soret term, and is responsible for the generation of flows of matter caused
by temperature gradients. The reciprocal term (Dufour term) in the © equation
which would give rise to heat flows caused by concentration gradients has been
neglected because for liquids it is much less important than for gases.



The problem depends on the aspect ratio, the non-dimensional Rayleigh,

Prandtl and Lewis numbers, and the separation ratio, defined as
in, Ra:’yaATh3, O':K, L:B, S:C(I—C’)ﬂD’

h KV K K aD
respectively. In the definitions of the parameters v means the kinematic viscos-
ity, and « and 3 (taken positive) are the thermal and solutal expansion coef-
ficients respectively. The Prandtl and Lewis numbers represent ratios of time
scales involving the viscous, thermal and solutal diffusions, but the separation
ratio is also related with the temperature and concentration gradients of the
flow. As usual, the Rayleigh number represents the ratio between the gravita-
tional potential energy released when the light fluid rises (and the heavier falls),
and the viscous and thermal dissipation of energy. The physical parameters
must be evaluated at C, T', and p.

In the continuation experiments we fix I' = 4, ¢ = 0.6, L = 0.03 and
S = —0.1. The last three values correspond to a mixture of two isotopes of
Helium in liquid state. According with the definition of S, D’ < 0, and initially
the concentration gradient is stabilizing in opposition to the destabilizing tem-
perature gradient. Then, if S is below a negative critical value, as it is in the
test problem, the primary bifurcation from the basic state is a Hopf bifurcation,
and, when convection sets in, the denser component tends to migrate towards
the hotter region. The Rayleigh number, which is proportional to the difference
between the bottom and top temperatures, will be the control parameter.

The boundary conditions taken are non-slip for the velocity field (v = 0
on 0f), constant temperatures at the top and bottom sides, insulating lateral
sides, and non-porous boundaries.

The above equations are rewritten in terms of a stream-function, ¥, i.e.,
v = (—0y, 0;¢), and an auxiliary function = ¥ — ©. They are

V2 + J (1, V2Y) = oV + cRa[(S + 1)8,0 + 58,1,
90 + J (1, 0) = V?O + 9,9,
Om + J (i, m) = LYy — V*6,

with J(f,9) = 0,f0y9 — 0y f0zg, and the boundary conditions become

=0,y =0,n=0 on 01,
©=0 on y=0,1,
0,©=0 on z=0,T.

In this way the incompressibility condition is identically fulfilled, the boundary
conditions for © and ¥ decouple, and the number of unknowns is reduced.

The group of symmetries of this system is Zo X Zo generated by the reflections
R, and R, with respect to the vertical, and horizontal mid-planes, i.e., changing
x by I' — x and the sign of ¥, or changing y by 1 — y and the sign of all three
functions, leaves the system invariant. These symmetries give rise to pitchfork
bifurcations of fixed points, periodic orbits, and also of invariant tori, at which
any of the two symmetries can be broken.

To obtain the numerical solutions, the functions ¥, ©, and n are approxi-
mated by a pseudo-spectral method. Collocation on a mesh of n, xn, = 64 x 16



Gauss-Lobatto points has been used in all the calculations shown. This gives a
total dimension n = 3072. This mesh is enough to have a good accuracy in the
interval of Ra considered because the solutions are quite smooth. Finer resolu-
tions with n, x n, = 96 x 24 (n = 6912), and n, x n, = 128 x 32 (n = 12288)
have also been used to check some of the results. Details on the accuracy of
the calculations are given in Section 7. The stiff system of ODEs obtained after
the spatial discretization can be written as Bu = Lu 4+ N(u), where the vector
u = (¥ij,0;;,m:;) contains the values of ¢, © and n at the mesh of collocation
points. The operators L and N represent the linear and non-linear terms in
the equations. They are integrated by using fixed-time-step sixth-order BDF-
extrapolation formulas

k—1 k—1
1 X .
tB <Vou”+1 2_0: aiun—z> 2_0: Bz N(un—z) [un-i-l,

where the superscripts indicate the time step. The coefficients, up to sixth
order, are given in [14]. The initial points required to start the time integration
are obtained by a fully implicit BDF method. The subroutine DLSODPK of
the ODEPACK package [28] has been used.

The size of the fixed time-step is limited by stability reasons. It has been
selected as large as possible. For the mesh n, x n, = 64 x 16, At = 1073
has been used. Finer meshes up to n, x n, = 128 x 32 require halving it. In
the interval of Ra considered, the period of the periodic orbits, on the branch
from which the tori bifurcate, ranges from 1.4 to 4 non-dimensional time units,
approximately. Therefore, it takes O(1000) time steps to complete a period.

To compute the Poincaré map, the function defining the hyperplane ¥;, <
v1,x —x1 >, is evaluated during the integration. When there is a change of sign
in the right direction, the intersection is computed by interpolating the curve
using the available previous points required by the multistep time integrator,
and substituting the interpolation polynomial interp(t) into < v1, Tinterp (t) —
x1 >= 0. This gives a scalar polynomial equation, which is solved by a secant
method. This determines the arrival time (the period in the case of a periodic
orbit), and the intersection.

6. Invariant tori

Fig. 4(a) shows a part of the bifurcation diagram for the thermal convection
problem, which contains the main branch of periodic orbits, and the bifurcated
branches of tori. The Euclidean norm of the solution is plotted versus Ra. The
points shown correspond to the intersection of the solution with the hyperplane
¥ if it is a periodic orbit, and with 7 N X4 if it is a torus. Solid and dashed
lines mean stable and unstable solutions, respectively.

Before describing the diagram, it is important to notice that the sequence
of bifurcations leading to invariant tori takes place in a short interval of the
parameter Ra compared with the classical Rayleigh-Bénard problem. Moreover,
due to the narrow region in which the periodic orbits are stable, the first regime
which would be observed in a laboratory experiment in a short box, by slowly
increasing Ra, would probably be quasi-periodic.

The horizontal line in Fig. 4(a) corresponds to the basic state which loses
stability at a subcritical Hopf bifurcation, where a branch of periodic orbits
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Figure 4: a) Bifurcation diagram. The horizontal line corresponds to the basic state. It loses
stability at a Hopf bifurcation (H). The periodic orbits become stable at a saddle-node (SN)
and again unstable at a Neimark-Sacker (NS) bifurcations. Three pitchfork bifurcations of pe-
riodic orbits (PPO) are found along the branch of periodic orbits, and a pitchfork bifurcations
of tori (PTO) at almost the end of the branch of tori. b) Detail of the branch of invariant tori.
¢) Detail of the pitchfork bifurcation of invariant tori. Only one of the two stable branches is
shown. d) Estimation of the rotation number along the main branch of tori.

emerges. The periodicity of the solutions consists in reversals of the direction of
rotation of the vortices which fill the box, each half period. The latter becomes
stable after a saddle-node, and, very near, there is a Neimark-Sacker bifurcation
giving rise to the branch of invariant tori we have computed as test. The tan-
gency of the curves of periodic orbits and invariant tori at the Neimark-Sacker
bifurcation in Fig. 4(b) is just an effect of the scalings of the figure, which
disappears as the figure is zoomed. After the Neimark-Sacker, the branch of
periodic orbits has secondary pitchfork bifurcations, marked in Fig. 4(a) with
three more dots. A detail of the branch of tori is given in Fig. 4(b). It starts at
Ra =~ 2066.74, and it is stable up to the pitchfork bifurcation at Ra ~ 2115.92,
which can be seen in more detail in Fig. 4(c). Only one of the two stable
branches of tori after the pitchfork has been computed and shown in the di-
agrams. This stable branch has been continued until Ra ~ 2116.02. At that
point the continuation method could not find additional tori, for a narrow range
until Ra ~ 2116.15. At that value the arclength step becomes too small for the
method to progress efficiently due to the closeness to a 1/8 resonance, which
is also very close to the previous pitchfork bifurcation. At Ra = 2116.15 a
torus was found by forward integration and a subsequent passage through the
1/8 resonance at 2116.18 < Ra < 2116.20 could be studied using continuation
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again. The results concerning that passage will be shown in Section 6.3

We have been able to compute a small portion of the unstable branch after
the pitchfork bifurcation at Ra ~ 2115.92 (see Fig. 4(c)). It was started with
an initial condition obtained by a continuation of the stable branch with a large
arclength step, which allowed to cross to the other side of the pitchfork. The
gap in the unstable branch is also due to the difficulty in computing the tori,
with a reasonable arclength step, so close to the pitchfork bifurcation, and to
the 1/8 resonance, which is also present on the unstable branch. Fig. 7 shows
the transition, obtained by time evolution, from a torus of the unstable branch
at Ra = 2117.4954 to another of the stable branch, symmetric to that shown in
Fig. 5. From now on, the values of Ra given with four decimal figures correspond
to solutions obtained with the pseudo-arclength continuation code.

The rotation number p along the main branch of tori, shown in Fig. 4(d),
decreases by increasing Ra, starting near but below 1/6. The estimations of p
are computed by a method which provides lower and upper bounds. We refer
to the Appendix for details on the method and error estimates.

During the continuation, to compute the rotation number we use only the
points corresponding to the powers required to construct the map (8), which are
selected by the algorithm. This is the reason why the curve looks irregular. If
more precision is required, as is the case in Section 6.3, longer time integrations
are needed. In Fig. 4(d) the mean of the two bounds is plotted. There is a
1/7-resonance interval at approximately 2102.79 < Ra < 2102.80. It can be
recognized in Fig. 4(d) by a peak in the curve. Close to this resonance the
powers used in (8) are 7, 14 and 21, and, as they are small, the estimation is
worse than for nearby points at which higher powers are selected.

6.1. A period-doubling route to chaos

After the 1/8-phase-locking interval and again on the stable branches which
appear at the pitchfork, there are two period doubling bifurcations at Ra ~
2118.40 and Ra = 2118.55, and, finally, a breakdown of the tori at Ra ~ 2118.60.
The corresponding orbits have been found by forward integration. This sequence
can be seen in Fig. 5, on one of the stable branches. We have checked that the
same sequence of events is obtained along the conjugated branch. In all the
figures representing an invariant curve or a strange attractor, n at (x,y) =
(3.89,0.45) versus n at (x,y) = (3.14,0.45) is shown. The rotation numbers
of the tori of Fig. 5 indicate that near Ra = 2117.5 there is a 1/9-resonance
interval. For Ra = 2118 p = 0.104164, very close but below the 5/48-resonance.
We have checked that if the time integration is prolonged, the iterates tend to
fill the curve. Furthermore, for 2118.40 < Ra < 2118.55, 0.1007 > p > 0.0998,
i.e., p =~ 1/10, predicting the presence of a new resonance.

For the values Ra = 2118.6, Ra = 2118.7 the rotation number is not defined,
in contrast with the case of existence of an invariant curve. The upper and
lower bounds provided by the method differ by a significant amount. But one
can estimate a kind of “average rotation number” p. The idea is to consider some
of the variables of the problem at a given (z, y) point, and look for the number of
relative maxima (or minima) after a large number of Poincaré iterates. The ratio
of maxima to iterates provides an estimate of p. In this way for Ra = 2118.6 one
obtains p &~ 0.09936 and for Ra = 2118.7 the value p ~ 0.09819. These values
have little changes when the function of the point is changed. This suggests that
the strange attractors observed in the simulations are strongly related to the
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Ra=2117 Ra=2118 Ra=2118.4

Ra=2118.55 Ra=2118.6 Ra=2118.7

Figure 5: Breakdown of the tori on one of the stable branches after the pitchfork bifurcation of
tori. The small segments in the plots for Ra = 2118.6 and Ra = 2118.7 indicate the common
section used to show the transversal structure of the strange attractors in Fig 6. In all the
plots the domain shown is [—0.28, —0.06] x [—0.08,0.14], corresponding to the values of the
function n at the points (3.89,0.45) (horizontal axis), and (3.14, 0.45) (vertical axis) of Q.

manifolds of unstable invariant curves having rotation numbers close to these
values.

Fig. 6 shows the transversal structure of the strange attractors for Ra =
2118.6 and Ra = 2118.7. The points in a thin angular sector of half a degree of
width, with vertex at the barycenter of the set of all the computed points, are
selected. The position of the section is shown in Fig. 5. It was chosen to contain
as much points as possible and to clearly display the shape of the attractor. The
points selected are plotted using two new variables, which correspond to the
values of the stream-function, ¥, at (z,y) = (3.62,0.45) and (z,y) = (3.14,0.45).
Although the number of points in the figure is not very large, the structures
are reminiscent of a quasi-periodic Hénon-like attractor [29]. Notice that for
Ra = 2118.6 it has two separated pieces, which have joined for Ra = 2118.7.
See [30] for the geometric explanation of this “fusion” of attractors. In the same
way that the Hénon attractor sits on the closure of the unstable manifold of a
hyperbolic fixed point, it seems reasonable to expect that the present attractors
sit on the closure of the unstable manifolds of unstable invariant curves, as
pointed out before.
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Ra=2118.6

7
/

Ra=2118.7

£

Figure 6: Detail of the transversal structure of the chaotic attractors at Ra = 2118.6, and
Ra = 2118.7. The dots corresponding to Ra = 2118.6 have been displaced vertically 0.003
units, to make the figure clearer. The domain shown is [—0.153, —0.143] x [—0.442, —0.424],
corresponding to the values of the function 1 at the points (3.62,0.45) (horizontal axis), and
(3.14,0.45) (vertical axis) of Q.

Ra=2117.4954

Figure 7: Evolution from an unstable to a stable torus at 2117.4954. The domain shown is
[—0.28,—0.025] x [—0.08,0.14], corresponding to the values of the function 7 at the points
(3.89,0.45) (horizontal axis), and (2.61, 0.45) (vertical axis) of Q.

6.2. Symmetries of the tori

To check which are the symmetries of the tori, and which are broken at
the pitchfork bifurcation we proceed as in [31]. The distance function d(t) =
[|Tuw(0) — u(t)|]| has been computed for the transformations 7 = I, R,, R,
and R, R, indicated respectively with the symbols +, o, x and OO in Fig. 8. A
symbol is plotted only when d(t) becomes less than 0.04. The norms, ||u(0)]],
of the four initial conditions, are 5.40, 5.42, 5.43, and 5.74, respectively. The
first plot at Ra = 2110.5948 indicates that, before the pitchfork bifurcation,
the tori are invariant, as sets, with respect to all the symmetries of the group.
Notice that all the symbols peak near zero for some long enough time. The
second plot at Ra = 2115.9241 seems to be still before the bifurcation, because
all the transformations peak at the same level. However, the third plot, at
Ra = 2115.9596 shows that the symmetries R, and R,[RR, have been broken.
The symbols corresponding to these symmetries can still be seen in the upper
part of the plot, because the torus is very near the bifurcation. These two
figures give the best determination we have of the location of the bifurcation
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point. At Ra = 2116 the torus is away enough from the bifurcation, so that
only the symbols corresponding to I and R, can be seen.
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Figure 8: Distances of the transformation, 7, of an initial condition on a torus to the trajectory
with that initial condition. The symbols +, o X and [J correspond, respectively, to 7 = I,
Rz, Ry and Ry Ry. The average return times (the times between two consecutive sections of
the Poincaré map) is between 1.77 and 1.80 for the four cases in this figure.

The position of the symbols in Fig. 8 can be explained as follows. Starting
from u(0), the trajectory passes close to u(0) after a certain time 7" which, for
instance, is near 10000 for Ra = 2110.5948. The time it takes to pass close
to Ryu(0) is approximately 77/2, i.e., Ryu(0) ~ w(T’/2). This is inherited
from the periodic orbits from which the tori bifurcate, which are symmetric
periodic orbits, i.e., Ryu(0) = u(T/2) , T being the period ( T is close to 1.5 at
the Neimark-Sacker bifurcation). The same relation holds between R,u(0) and
R,R,u(T'/2) (bear in mind that R, and R, commute). Moreover the distance
in time between u(0) and R,u(0) is small compared to T”. The change in the
time it takes to pass again close to the initial condition u(0), between the upper
two plots in Fig. 8, is due to the variation of the rotation number. The first plot
has a rotation number which is different from the rest, which are very similar
to each other.

To check that the two stable branches, born at the pitchfork bifurcation of
tori, are conjugated by the symmetry broken at bifurcation, d'(¢) = ||7u1(0) —
us2(t)|| has been computed as a function of time, u; and us being two trajectories
one on each branch, and both at Ra = 2118.2 (see again [31]). The transfor-
mations and the symbols used to designate them are the same as before. Fig. 9
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shows the two invariant curves, and Fig. 10 the distance d’ as a function of time.
It indicates that the tori are conjugated by the transformations R, and R, R,.
As the tori are invariant under Ry, if they are conjugated by R, they also are
by Ry R,.

Ra=2118.2 Ra=2118.2

Figure 9: Two invariant tori conjugated by R, and R;Ry. In the plots the domain shown is
[—0.28,—0.06] x [—0.08,0.14] (left), and [—0.28, —0.025] x [—0.08,0.14] (right), corresponding
to the values of the function n at the points (3.89,0.45) (horizontal axis), and (2.61,0.45)
(vertical axis) of €.
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Figure 10: Distances of the transformation, 7', of an initial condition on a torus to a tra-
jectory on another torus on the conjugated branch. The symbols +, o x and [J correspond,
respectively, to 7 = I, Ry, Ry and Rz Ry.

6.3. Inside the p =1/8 Arnold’s tongue

Figure 11(a) shows the dependence of the rotation number, p, with the pa-
rameter Ra close to the 1/8 resonance, with the characteristic parabolic profile
close to the boundaries of the resonance interval. The dots indicate the com-
puted p.

Figure 11(b) shows the continuation of the periodic orbits inside the Arnold’s
tongue. With n, x n, = 64 x 16 the interval of resonance is 2116.1760 < Ra <
2116.1981 (see section 7). This diagram was computed with the continuation
code of periodic orbits, with a single initial condition. Sixteen saddle-node bi-
furcations of periodic orbits were found at each limit of the interval, before
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the continuation curve closes. Therefore, for each value of Ra in the resonance
region, the Poincaré map has 32 points of period 8, corresponding to the inter-
section of 4 periodic orbits with the Poincaré section. This non-generic situation
is due to the remaining symmetry, R,, of the tori. Fig. 11(c) shows the 32 in-
tersections for Ra = 2116.1872. The symbols +, and X correspond to stable
periodic points, and * and [J to the unstable.
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Figure 11: a) Rotation number as a function of Ra close to the resonance interval of p = 1/8.
b) Branches of periodic orbits inside this resonance interval. c¢) Periodic points of the Poincaré
map for Ra = 2116.1872 in the middle of the resonance interval. The domain shown is
[-0.28,—0.025] x [—0.08,0.14] corresponding to the value of the function 1 at the points
(3.89,0.45) (horizontal axis) and (2.61,0.45) (vertical axis) of . The symbols + and X
correspond to the two stable periodic orbits, and * and [J to the two unstable.

7. Efficiency and accuracy

All the computations shown were performed on a Intel Core 2 Quad machine
at 2.4 GHz, which has four cores (CPUs), although no parallelism was imple-
mented. The time integrations were performed by using BDF-extrapolation for-
mulas of order six. The Newton’s iterations to solve (3) were stopped when the
Euclidean norm of the difference between two iterates was below tol;, and the
Euclidean norm of the function on the last iterate was below toly. We took toly
and toly in the interval [107%,10~7], depending on the branch being computed.
Most of the main stable branch could be computed with tol; = toly = 107°.
The computation of the unstable branch required to use tolerances in the upper
limit. The reason is that, when the tori are unstable, any perturbation of the
initial condition grows exponentially with time. This makes less accurate the
computation of the map (8), and therefore the tolerances must be increased.
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The linear systems (4) were solved using GMRES, which was stopped when the
residual was below toly/10. The relation between this residual, and toly or toly
must be obtained by experimentation to keep the quadratic convergence of New-
ton’s method. Our particular selection proved to be enough for this purpose.
Reducing the residual of the linear systems to these values took no more than
eight iterations of GMRES. This fast convergence is easy to explain. GMRES
converges very quickly if the spectrum of the matrix is highly clustered around
a single point in the complex plane. In our case the linear operator D,G is
strongly contractive, because G is a linear combination of high powers of the
Poincaré map (see eq. (8)). Then I — D, G has all the spectrum clustered around
+1 if the torus is stable. In our computations we used second or third degree
interpolation in the definition of G (¢ = 2 or 3), and a value of the diameter
of the ball to select the interpolated points of 0.05D < ¢ < 0.1D, D being
the estimation of the diameter of the torus (see Fig. (3)). Then, the powers
k; in (8) were at least 7. If the torus is unstable, with an unstable manifold
of dimension three, as in the unstable case we have computed, D,G has only
a one-dimensional unstable direction which is quickly resolved by GMRES (see
the convergence analysis in the original paper on GMRES [13], or for the case
of periodic orbits in [14]).

To construct the map G, g + 1 points are required in the ball of radius .
Depending on the rotation number, the degree of interpolation ¢, and the size of
g, it can take more or less powers to obtain them. No limit is put, in principle,
to the power. If they become too large, it indicates that e is very small or
that p is close to some rational p/q, with ¢ not too large, but not so close that
just powers of the form P? could be used for the algorithm. Then & must be
increased. The maximal power arrived to 200 in some computations with ¢ = 3,
a small e, low tolerances and close to a resonance. It must be stressed that, if
€ is large and ¢ small, there is no sense in asking low tolerances in Newton’s
method. The solution obtained will still be a poor approximation to a point on
the torus.

Mesh | Hopf bif. S-N bif. N-S bif. | Mult. at the NS bif.
64x16 | 2074.7564 | 2061.8518 | 2066.7371 | 0.52015840.854069i
96x24 | 2074.7557 | 2061.8567 | 2066.7494 | 0.52013340.854085i1

Table 1: Comparison between the first two meshes, of the position of the Hopf, Saddle-Node,
and Neimark-Sacker bifurcations along the curve of periodic orbits, and of the multiplier which
crosses the unit circle at the Neimark-Sacker bifurcation.

Mesh | Lower bound | Upper bound

64x16 | 0.12500000 0.12500000

96x24 | 0.12508352 0.12508354
128x32 | 0.12508475 0.12508498

Table 2: Comparison, among the three meshes, of the bounds for the rotation number at
Ra = 2116.1870.

Several tests were performed to establish the accuracy of the calculations,

by using meshes with n, x ny = 96 x 24, and ng, X ny = 128 x 32. They required
computing some continuations of periodic orbits close to the bifurcation points,
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Mesh | Lower limit | Upper limit | Width
64x16 | 2116.1760 2116.1981 | 0.0221
96x24 | 2116.1965 2116.2189 | 0.0224

Table 3: Comparison, between the first two meshes, of the limits of the 1/8-resonance region,
and its width.

and in the resonance region of Fig. 11. In particular, the computation shown in
Fig. 11b was repeated with n; x n, = 96 x 24.

Table 1 shows the position of the Hopf, Saddle-Node, and Neimark-Sacker
bifurcations along the curve of periodic orbits, and the multiplier which crosses
the unit circle at the Neimark-Sacker bifurcation for n, x n, = 64 x 16, and
ng X ny = 96 x 24. The maximal relative error in the bifurcation points is
6 x 1076, and four exact significant digits are obtained for the multiplier.

To determine the sensitivity of the position of the interval in the Arnold’s
tongue with the resolution, we have compute the rotation number of a point
(Ra = 2116.1870) belonging to the 1/8-resonance interval with the coarser mesh,
and the bounds of the tongue with n, x n, = 96 x 24. Table 2 shows the
dependence of p with the size of the mesh. With the resolution employed (n, x
ny = 64 x 16) a relative error of 7 x 10~* is obtained in the determination of p.
Furthermore, as can be seen in table 3, this small difference shifts the position
of the interval by at least ARa = 0.0205, and its width is predicted with a
relative error of 0.013. So, a higher spatial resolution is required to stabilize the
value of its limits. In any case, the qualitative behaviour of the system does not
change, and, for the purpose of this paper, the estimated errors for the coarser
mesh used are sufficiently small as to allow to compute with n, x n, = 64 x 16
points.

Notice that the computations involve solving initial value problems (IVP),
and systems of equations by Newton-Krylov methods. The time integrator
should solve properly the IVP. If, say, a second order multistep method is used
for the time integrator, the initialization process must be accurate enough to
avoid adding first order perturbations that will ruin the rest of the integration.
As the integrations are carried out on long time intervals in the computation of
the map G, and also for the computation of rotation numbers, it is convenient
to use high order time-steppers to reduce the accumulated errors. On the other
hand, if one is interested in fine details, like the position of resonance regions,
it is clear from the above comparisons, that a high spatial resolution is needed.

The computation of the main branch of invariant tori, from the Neimark-
Sacker to the pitchfork bifurcation, took approximately six days of CPU. One
hundred points on the curve were obtained, giving an average of 1.4 hours per
computed tori. The solution of the linear systems and the calculation of the
dominant multipliers, to study the stability of the solutions, involve only basic
algebraic operations such as orthogonalization of basis of vectors. The expensive
part is the evaluation of matrix products, which involve time integrations. More
than 98% of the computing time was spent in the time integrations of the initial
system, and the variational equations. Therefore, any attempt to accelerate the
calculation should focus on this part of the process.
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8. Conclusions

We have shown that it is possible to perform numerical continuations of sta-
ble or weakly unstable invariant tori in large-scale systems. If they are strongly
unstable the map G cannot be computed before the time evolution has escaped
away from the tori.

The method we have used has the advantage that the size of the linear prob-
lems to be solved is the original size of the system. Moreover, the Jacobian of the
map considered is very well conditioned, so that Krylov-based iterative solvers
like GMRES converge very quickly. Other methods, for instance those based in
expanding the invariant curve in Fourier series, increase the size prohibitively
for high-dimensional systems, unless the tori are smooth enough so that the
number of terms in the expansion is small. In addition, in this method the
spectra of the linear operators spread in circles [11] complicating the solution
by iterative methods, as happens when multiple shooting is used to compute
periodic orbits [32]. A possible cure to this latter problem, for smooth tori,
could be to use a preconditioner for the linear systems, based on the knowledge
of the invariant subspaces corresponding to the leading eigenvalues. This tech-
nique has been used in [32], where optimal speedups were obtained when using
parallelism.

On the other hand, the method we have used can be computationally expen-
sive if high powers of the Poincaré maps are involved. For instance for very small
rotation numbers, or for rotation numbers rather close to a rational with small
denominator. In the first case, averaging techniques could be employed to elim-
inate the fast frequency, and, in the latter, one could switch to the continuation
of periodic orbits inside the resonance regions as has been done in Section 6.3.
It will be also computationally expensive when looking for higher-dimensional
tori, but this seems to be an intrinsic problem, independent of the method.
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Appendix: On the computation of p and error estimates

To estimate p for an invariant curve of a discrete map we use a method which
provides lower and upper bounds. If it is known that the curve really exists the
method can be simplified but, as it will be presented here, it allows to detect
if the curve is no longer existing. For a preliminary presentation see, e.g., [33].
The method is purely topological: it only depends on the relative position of
successive iterates along the invariant curve. This is relevant when the density
of iterates along the curve changes in a significative way.

We assume that there exists some projection of the invariant curve on a
2D-plane such that the domain bounded by the projected curve is starred with
respect to some interior point O. This allows to define an angle associated to
each iterate. Otherwise to introduce a “natural” angle requires more work. Let
a; € [0,27), i = 1,---, M, where M is the number of available points on the
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curve, be the angles between a reference line ¢ passing through O and the initial
point p; and that joining each point p; on the invariant curve with O. We take
an orientation such that the angles between successive iterates are increasing on
the lift.

Let n(i) be the number of turns along the invariant curve given to arrive
to the point p;, computed according to the rule: a; = 0, and if ;41 >
then n(i + 1) = n(i), otherwise n(i + 1) = n(i) + 1, fori =1,--- M — 1. The
angles are then sorted so that o;, < aj, < a;; < ---. Then the two bounds
are initialized as pmin = 0 and ppmq: = 1, and updated following the rule: let
¢ = (n(ij+1) — ni;))/(ij41 — i5), then, if ij41 > ij, pmin = max{pmin,¢;},
and otherwise pmqe; = min{pmasz,q;}, for j = 1,--- M — 1. If during the
computation it happens pmar < Pmin this gives evidence that the invariant
curve does not exist. At the end lower and upper bounds of p are obtained,
and its difference gives an indication on the “quality” of the determination. Of
course p € [0,1) and, by changing orientation if necessary, one can assume in
fact that p € [0,1/2].

To produce estimates of the error we rely on some elementary concepts.
We recall that a real number «, that we assume in [0, 1), satisfies a DC(c, 7)
Diophantine Condition if |o — p/q| > ¢¢™7 with ¢ > 0,7 > 2 for all p/q € Q,
p/q > 0. If « satisfies DC(e, ) it also satisfies DC(c, 72) for 72 > 71 and,
eventually, one can increase c. As it is well known, the measure of the set of the
DC/(¢,7) numbers in [0, 1] is zero if 7 = 2 and of the form 1 — O(c) for 7 > 2
when ¢ — 0. We shall also assume that the constant ¢ is optimal in the sense
that can not be replaced by any smaller quantity.

Given « one can compute the quotients of the continued fraction expan-
sion « : [¢1,492,¢s,...] and recover the approximants of the form 0/1,1/q,...,
Ng—1/Dg—1,Ni/Dy,.... We recall the elementary formulas for next approxi-
mant Nyy1/Dyq1 given by Niy1 = Nigr1 + Ni—1, D1 = Diqre1 + Di—1 =
Dy (qg+1 + o) for some o € (0,1) and the relation |NyDg_1 — Np_1Dg| = 1.

1

Qk+2+ Qk4-3+

Furthermore, if we introduce ¢x+1 = qx+1 + . which obviously

satisfies 1 < qr4+1 < Gr+1 < gr+1 + 1, then
o — NiGry1 + Npa
Diry1 + Di—1’
from which it follows the following expression for the error | — Ni/Dy| =

D;.?/(qry1 + 0) for some 6 € (0,2). Let us denote the error as e. Hence

_ (gr1+9)* @
Dl%-i—l(Qk—i—l +0) Dl%+1

if qx41 is large.

Now we want to estimate which is the last approximant Ny /Dy, that one can
obtain after doing the iterate number M. We should have Dy, < M —1 < Djy;.
Hence the problem is how big can be Dyy1, compared to Dy, for a DC(c, 1)
number or, in other words, to bound gr4+1. Combining the first equality for e
above with the DC(c, 7) condition we have g1 +0 < (Dry1/ (g1 +0)) > /e
Neglecting again the small values 6,0 in front of gx41 in the worst cases, we

have g | < Dj;1/c. Therefore £ < c’1/(7*1)D,(;_12)/(T_1)D;f1. Summarizing

we have proved the following

21



Proposition 1. If the rotation number p satisfies a DC(c, T) Diophantine Con-

diti

on, then the algorithm presented above to compute estimates of p has an error

e satisfying e < ¢~/ (T —T/ (1),

Remark 1. We can consider what happens in some cases.

e For quadratic irrational number or, more generally, for constant type num-
bers, the one which have all quotients qi bounded, one has T = 2 and,
hence, e = O(M~2).

e In a case with T = 5/2 then ¢ = O(M~%/3). The role of ¢ appears in the
O symbol.

e For given ¢, we can look for the measure of the numbers in (0,1) satis-
fying a DC(c,T) condition. A finite computation, taking into account the
overlap of intervals to be suppressed from (0,1), estimates on the remain-
der and suitable extrapolation provide the following examples:

1w(DC(0.01,2.1)) = 0.870..., u(DC(0.10,2.5)) = 0.63114 .. .,

1(DC(0.05,3.0)) = 0.8635141 ... .,

where | denotes the Lebesgue measure. Note that in the last two cases
the intervals suppressed around 0 and 1 are responsible for most of the
measure lost with respect to 1.
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