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On stable Taylor vortices above the transition to wavy vortices
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The transition from Taylor to wavy vortices is revisited for parameter values in the range of new
laboratory experimentELin et al, Phys. Fluidsl0, 3233(1998]. The dependence of the critical
Reynolds number with the axial wavelength of the Taylor vortices is obtained for azimuthal wave
numbers from 1 to 5, and for five different values of the radius ratio. We show how islands of stable
Taylor vortices above the transition to wavy vortices form. 28602 American Institute of Physics.
[DOI: 10.1063/1.1465423

I. INTRODUCTION dard Taylor vortices and that they could also be obtained
quasi-statically, for certain values of the radius ratio, if a

The Taylor—Couette system can exhibit a multiplicity of mechanism of modifying the axial wavelengs in Ref. 9
stable solutions for a given value of the parameters, once ti\g available

basic Couette flow becomes unstable. Experimental evidence

of this behavior has been reported, among other authors, by

Coles in 1965. He discovered that different wavy vortex |l THE TAYLOR—COUETTE PROBLEM

flow states, characterized by their axial and azimuthal wave  \y.e consider the flow of an incompressible fluid confined
numbers could be achieved by approaching the final Reypeyeen two coaxial cylinders. The geometry of the system
nolds number with different accelerations. Jc?rfesalculated _is specified by the inner and outer radius of the cylindérs
the transition curves from steady axisymmetric Taylor vorti- 5 g r*, with gap widthd=r* —r* . The inner cylinder ro-

ces to wavy vortices when both have an axial wavelength ofyes with angular velocitg; and the outer cylinder is at rest
twice the gap between the cylinders, the outer cylinder is af, ) the cases we will consider. The nondimensional param-
rest and for values of the radius ratio from 0.6 to 1. HiSgters for the problem are the radius raje-r*/r* , and the
results illustrate the complex behavior of these transitiong,er Reynolds number associated with the tangential veloc-
when different radius ratios and azimuthal wave numbers 'y of the inner cylinder R=dr*Q, /v, wherew is the kine-
taken into account. He found that the neutral stability curveg, ic viscosity. We used as I(Iangth scale and®/ v as time

allow the existence of stable Taylor vortices above the ons&l je The dimensionless Navier—Stokes equation and the in-
of azimuthal waves in a range of radius ratio between 0'7%ompressibility condition are then

and 0.8. This was confirmed experimentally by Paike

found that, for a radius ratio of 0.782 and when the inner ~ dV+Vv-Vv=—Vp+Avy, V-.v=0. @
Reynolds number is increased quasi-statically, a wavy vorteyye will assume infinite cylinders and periodic solutions in
flow with azimuthal wave numben=2 is obtained that re- - the axial direction with axial wavelength. The boundary

turns later to the Taylor vortex state. conditions are
The initial wavelength of the Taylor vortices is also an .
important parameter, which affects the boundaries of the sec- V=Ri€& at r=r;, andv=0 atr=r,, 2

ondary instabilities, as was demonstrated by Mullin andyherer; andr, are the dimensionless radii of the cylinders.
Benjamir? and Lorenzeret al® We examine here the onset
of wavy vortices for a wide range of axial wavelengths, and
for systems with five different radius ratios between 0.72 anc!“' TAYLOR VORTICES AND THEIR STABILITY

0.8. We compare our numerical results with those of Jénes,  We will only give a brief description of the method we
and with the experimental works of Burkhalter andhave used to compute the Taylor vortices and to examine
Koschmiedef and Lim et al® The latter authors studied the their stability. It is fully detailed in Refs. 10 and 11.

effect of the angular acceleration on the critical wavelength  We have adopted a formulation based on potentials in
of the bifurcated flow and found that stable vortices aboveyhich the velocity field is written as

the quasi-static transition to wavy vortices can be obtained. . . - - -

These vortices have axial wavelengths shorter than those ob- v=rfeg+he,+VX(geytye) +VXVX(¢e), ®)
tained after a quasi-static transition from Couette flow. Wewheref andg depend orr,z), h depends onr(6), and
show here that these solutions are connected with the staand¢ depend on the three coordinatesé,z). This velocity
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field is divergence-free and the Navier—Stokes equations fowritten asiy= ¢°+ ¢° and p= ¢+ ¢° and after substituting
velocity and pressure are substituted by zlewmponents of into the equations, a detailed study of the parity of their
their curl and double curl written in terms of the potentials.terms shows that the system can be separated into two kinds
This formulation is general for three-dimensional flows andof eigenvalue problems. One of them only depends on the
will be used later to find the eigenvalue problem needed t@otentialsy® and ¢° and does not disturb the flat boundaries
study the stability of Taylor vortices. In the particular case ofbetween Taylor vortices. This is the case in the transition of
Taylor vortices, as they are axisymmetric and the boundariethe twisted vortices which appear in a co-rotating system and
between cells are flat3) can be greatly simplified and the were studied in Ref. 11. The other eigenvalue problem de-
velocity field can be expressed as pends orh, ¢°, and ¢°¢,

V(1 2) =18+ VX (g8). ph(r)=Agh(r) = Po(1=P )8, by yo e (5)
The system to be solved to find the steady Taylor vortices is
- AnO(r,2)=AALYO(r,2) +(1—Pye,- VXby 4o ge 6
Rf——g,D.f+,D.q, mALYO(r,2) hpo(r,z) +( 0)€ h, 0, ¢ (6)

HAALPE(r,2) = AAA4e(r,2)

~—~ 1 ~ ~
= — 2 —_
AAg= 1 0-f"+D.gAg,~0.D - Ag, —(1=Py)(1=P)&, VXV Xby oy (7)

with the corresponding boundary conditions and corresponds to transitions to wavy solutions in which the

f(r)=R;, f(ry)=0, D,g=g,=0 atr=rj,rq boundaries oscillate. In these equationdA,=D_ D

+ 1235, =V Xxv is the vorticity,P, and P, are the av-
erage operators in the two periodic coordinates, and the no-
tation by, 40 4 has been used for the tertn=w, Xv+w

XV, when the perturbation of v, is that corresponding to

. . this case:
In order to solve the equations for the potentials we have

used pseudo-spectral methddsThe potentials have been v=he,+ VX (4°8,)+ VXV X ($%,).

expanded using Chebyshev polynomials in the radial direc-

tion, and a Fourier expansion in the axial direction. The dis-  The corresponding set of boundary conditions are
cretization of the equations for the potentials is obtained by

and where the operators are

1 -
D=d;, D.=D=*_, A=DD, +4d2,

collocation methods in both coordinates. As the Taylor vor-  h=0, (8)
tex flow is stationary it can be computed using continuation

methods varying different parameters. The discretized steady J%°=¢°=A,¢°=0, 9
Navier—Stokes equations can be written in the form

F(X,p)=0, wherep is the continuation parameter Br \. my°+1d;,¢°=0, (10)
These equations implicitly define a curve of solutiods

=X(p) wherever deDyF(X,p))#0. A description of the MAAp@°—=rD Az, Y°=0, (11)

general continuation techniques can be found in Ref. 13. e
The linear stability of the computed Taylor vortices has® " _li o

been studied. We consider non-axisymmetric perturbations of 'Lhe e|genvalu3 problem Tas arl]s?j beer(; dlscrtlauzled b‘l}/ uls-
v, of the same axial periodicity, Ing the same pseudo-spectral method used to calculate Taylor

_ vortices. The main difficulty is that, in this case, the coupled
Vp(r,60,2,)=V,(r,2) +v(r,z)e*'e™’, (4 boundary condition$10) and (11) make the basis functions
for ¢y and ¢ to be also coupled. A discrete generalized eigen-

me Z being the azimuthal wave number of perturbation. In
value problem of the form

terms of the most general scalar potenti@)

fo(r,z,t)y="f,(r,2)+f(r,z)e*, ApX= pmBmX
9p(r,z,t)=9,(r,2) +9g(r,2)e", is obtained where\,, and B,,, are complex matrices which
hp(r,e,t)=h(r)eim"e’“, depend on f[he azimutha_l wave numtmzrz_;md the e_igenv_ec-

. tor X contains the amplitudes of the eigenfunctions in the
zpp(r,a,z,t)=zp(r,z)e'm(’e‘“, aforementioned basis. It is solved by using the subroutine

; ZGEEYV from the LAPACK library.
bp(r,6,2,0)= ¢(r,z)eMer, The code we have developed studies the stability of each
where the subscript refers to the potentials of the Taylor solution obtained during the continuation process, and stops
vortex flow. It can be seéhthatf andg only contribute to  when the real part of the leading eigenvalue is zero. The
axisymmetric instabilities that can be detected during thaletails about the implementation of the spectral methods, the
continuation process to calculate the Taylor vortices. So, weonstruction of the basis functions verifying the coupled
have putf =g=0. In addition the eigenvalue problem can be boundary conditions, and the study of the convergence of the
split into two parts by separating the potentials into its evercritical Reynolds number with the numerical resolution are
and odd parts in the vertical coordinatelf s and ¢ are  provided in Ref. 11.
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FIG. 1. Neutral curves for the transition to wavy vortices obtained by Jones A

(Ref. 3.
FIG. 3. As for Fig. 2 withyp=0.746 05.

IV. RESULTS AND DISCUSSION

Figure 1 shows a detail of the neutral stability curves forthis limit (see Ref. 1L Each vertical dotted line at=2
the transition of wavy vortices of differenh obtained by corresponds to one of those of Fig. 1. Their intersections
Jones’ The ratio R/R;, at which Taylor vortices bifurcate to with the neutral curves have been used to compare our re-
wavy vortices is plotted against the radius ratioR,. is the  sults with Jones calculations. We have digitalized his results
critical inner Reynolds number for the transition from Cou-and the difference in RR;; between both calculations is
ette flow to Taylor vortices. In this figure the axial wave- below 3% for all the aforementioned intersections except for
length of the Taylor vortices is always=2d. The vertical one of them that reaches a 6%. This point corresponds to
dotted lines indicate the value of the radius rati727, m=1 and »=0.8032 and, as can be seen in the original
0.746 05, 0.7651, 0.784 15, and 0.8D22 which we have figure in Ref. 3, it is difficult to be obtained from the plot
studied the dependence of the transition withThe former because it is very near the intersection with another neutral
and the latter have been considered in order to compare the@urve.
with experimental result$Refs. 7 and 8, respectivelythe For values of»=0.727 andn=0.746 05, the dominant
other three are equally spaced between the extreme valudgansition is to azimuthal wave number=3 above a certain
This range corresponds to the region of strong dependence wélue of \. The critical Reynolds number depends strongly
the transition to wavy vortices withy. on the axial wavelength of the vortices, and o¢2 the ratio

The plots in Figs. 2—6 show the stability boundaries forthe ratio R/R;; decreases with. Below this value, the tran-
the onset of wavy vortices of azimuthal wave numiper sition to wavy vortices is above the range of the Reynolds
from 1 to 5 in the parameter plane. R /R;.). Each plot numbers of the plots, leaving a wide region of stable Taylor
corresponds to one of the above-mentioned values dhe  vortices. Burkhalter and Koschmiedabtained these low-
neutral stability curves with azimuthal wave numbers abovesolutions in a Taylor—Couette system wii=0.727, even
those of the figures have not been plotted because they afer R/R; up to 7. In these experiments the inner cylinder
above R/R,.=5. The numerical resolution used in all cal-
culations has been checked to give accurate results below
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FIG. 4. Neutral stability curves for the transition to wavy vortices.
FIG. 2. Neutral stability curves for the transition to wavy vortices. »=0.7651. The dashed regions correspond to stable Taylor vortices
7=0.727. (USTV).
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FIG. 5. As for Fig. 4 with»=0.784 15. FIG. 7. Detail of the neutral curves fay=0.8032. The diamonds, taken

from Lim et al. (Ref. 8 correspond to the STVF. Symbols surrounded by
circles, squares, and diamonds correspond to different intervals of the maxi-

was brought from rest to a supercritical Reynolds numbefal growth rate(see text
(Ri>R;¢) in less than 1 s. The minimum they obtained is
near 1.4 for R/R,.~4.

When 7 is increased above 0.75 approximately, a newUSTV) is now well separated from the lower region by all
transition curve ofm=1 appears as can be seen in Figs. 1the transition curves, and it is confined to lower axial wave-
and 4. This becomes the first instability for a broad range ofengths. _ _
axial wavelengths. The tongue-shaped curve allows the exis- [N @ recent paper, Linet 3'-8 studied the effect of the
tence of a region of stable Taylor vortices above it. It hasicceleration of the inner cylinder on the final state in a
been dashed in Figs. 4—6 and labeled as USTV. It is stilfaylor—Couette system witty=0.8032, an aspect ratio of
connected with the region below the tongue fpr0.7651.  20.54, and a free surface top boundary. When the accelera-
In this case the vortices in the dashed region could be odion (dR;/dt) is above 2.2's", they found a regime of stable
tained quasi-steadily from the standard squared Taylor vortiJaylor vortices with axial wavelengths shorter than those ob-
ces following a suitable path, if a mechanism of varying thetained quasi-steadily. They refer to it as secondary Taylor
axial wavelength is availableslowly filling or emptying the ~ VOrtex flow (STVF). If the acceleration is lower, wavy vor-
gap between cylinders, as shown by Snytfer, example. tiges are obtained in the same range of Rey_nolds numbers.l In

By further increasingy, new transition curves appear at Fig. 7 we show a detail of Fig. 6 together with some experi-
the turning points of the curves in Fig. 1, with azimuthal mental data obtalngd from Ref._8. chh symbol corre_sponds
wave numbers up tm=>5. Some of them have folds which, to one of the solutions found in their stud$TVF), with
in the casesn=1 andm=2, grow from left to right asy is wavelengths between 1.5 and 1.9 and for a range; bRR
increased. For 8m<5 they grow in the opposite direction form 1.8 to 3.1. They were obtained by accelerating or de-
(see Figs. 4—p Figure 5 shows how the stability curves Celerating the cylinder with 2.2°8<|dR;/dt|<110 s*.
have separated the region of stable Taylor vortices in two If our computational model included all the features of
disconnected components. Finally, Fig. 6 shows the situatiof'€ experiment, all the experimental points would lie inside

at 7=0.8032. The upper region of stable Taylor vorticesthe dashed regioflJSTV) of Fig. 7. Actually, or model as-
sumes exact periodicity in the axial direction and so ignores

end-effects. It is known that the critical Reynolds numbers
for the onset of wavy vortices can be extremely sensitive

n=0.8032 to variations in the aspect ratio. Although the value in the
5 —— . . experiments of Limet al® is high (50.54 the infinite cylin-
; 5 . i mz der approximation we use does not reproduce the finite case
. / \ \\\ i Z; ) accurz_itely. _ _
L N —— om=4 It is usually found in the experiment that the end-effects
R/AR, [ — N

delay the transition to wavy vortices. Therefore they could be

modeled, in a first approximation, by a negative shift of the

growth rates we findi93(\) ]. We have computed the spectra

at the experimental points outside the stable redd&8TV)

in Fig. 7 and classified them according to the greater growth
B - rate. The points with maximal growth rate in the intervals

] \ : - - (0,0.3, (0.3,0.6, and (0.6,1.2 have been surrounded by a

circle, a square, and a diamond, respectively. The more un-

stable azimuthal wave number is always=3 or m=4 for

FIG. 6. As for Fig. 4 with»=0.8032. all these points.
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It can be seen in Fig. 7 that the region delimited bytive methods based on Krylov subspédcés solve the eigen-
R(N\) < e (labeled as USTV whee=0), which grows withe,  value problems. Spectral methods could also be used if the
includes five more experimental points wher0.3 (those  boundary conditions are regularized and Chebyshev or
surrounded by a circjeand seven more é=0.6 (those sur- Legendre expansions are used in the axial coordifiate
rounded by a squareTo include all experimental points  stead of trigonometric functions. We plan to use these tech-
must be 1.1. If, as mentioned before, the end-effects armiques for the finite Taylor—Couette problem but, even with
modeled as a maximal negative shift of the growth rates  this new approach, we do not expect to be able to simulate,
we could obtain the stable region frofR(\)<e. A shift of  in the near future, aspect ratios as large as those we compare
e=1.1 units is then enough to explain the discrepancies bewith in this article.
tween our calculations and the experiments. The value of
could be estimated from the delay in the first transition fromACKNOWLEDGMENTS
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