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Abstract The steady and oscillatory dynamics of binary fluids contained in slots
heated by the side is studied by using continuation methods, and stability analysis.
The bifurcation points on the branches of solutions are determined with precision
by calculating their spectra for a large range of Rayleigh numbers. It will be seen
that continuation and stability methods are a powerful tool to analyze the origin of
the hydrodynamic instabilities leading to steady and time periodic flows, and their
dynamics. The role played by the shear stresses of the steady field, and the solutal
and thermal buoyancies, at the onset of the oscillations is studied by means of the
energy equation of the perturbations. With the parameters used, it is found that the
shear is always the main responsible for the instabilities, and that the work done by
the two buoyancies can even help to stabilize the fluid. The results also show that
binary mixtures of Prandtl number order one, like pure gases, present multiple stable
periodic flows coexisting in the same range of parameters, since several unstable
leading multipliers remain attached to the unit circle and go back into it. However,
at lower Prandtl numbers only the first branch of periodic orbits bifurcating directly
from the steady state is found to be stable, because some of the unstable multipliers of
the other branches quickly increase their modulus and never re-enter the unit circle.
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1 Introduction

1.1 Double-Diffusive Convection in Slots

The thermal convection in rectangular cavities with horizontal heating has received
great attention in the past. Among other industrial applications it is worth mentioning
the growth of single liquid crystals [30], convective motions must be damped in order
to maintain the melt as steady as possible, and to avoid the growth of perturbations
leading to transitions to time dependent flows [55]. The knowledge of the properties
of the thermosolutal convection in a wide range of Prandtl numbers is also important
for getting an optimal performance of the thermoacoustic engines, since the thermal
penetration depth is an important factor to take into account in the design of this type
of engines. In fact, the best working gases are mixtures of helium and xenon that can
reach low Prantl numbers and the highest ratio of specific heats at pressures lower
than 4.5 MPa [52]. Other examples are the design of large-scale laser systems in order
to minimize the optical distortion due to buoyancy-driven flows [13], and the optimal
heating or cooling and isolation of buildings. Despite its importance the number of
articles devoted to double-diffusive convection in tall cavities is not as large as that
for pure fluids. See for instance Refs. [39, 49, 62, 63, 77, 90, 115, 120, 122, 125],
among many others, that study the 2D-approximation. A good review of the state
of knowledge in infinite vertical layers, and in three-dimensional convection up to
2010, can be found in the book of M. Lappa [61]. In addition, some new contributions
devoted to study the transition to chaos of the three-dimensional convection between
two vertical plates have recently appeared [33, 34].

The onset of steady convection of pure fluids of moderate Prandtl number (Pr &~ 1)
in tall slots gives rise to a global circulation with hot fluid rising near the heated side,
and the internal core remains almost stably stratified. The instability of this state
gives rise to trains of waves travelling by the boundary layer, from the middle of
the domain to the lids, where they diffuse [77, 122, 123, 125]. Several stable waves
of this type coexist at different intervals of the Rayleigh number, Ra, because the
unstable Floquet multipliers remain attached to the unit circle, becoming stable at
successive Hopf bifurcations before increasing their modulus definitively. The period
of the oscillations is of order 10~3 in thermal units (d2/«). At low Pr the behavior of
the flows is completely different. The velocity field of the steady solutions consists
of a vertical alignment of vortices turning in the same direction, whose number
depends on the length of the box [94]. The changes of the steady and time periodic
flows by using Pr as continuation parameter was analyzed in Ref.[94] for a slot
of I' = 8. It was found that for 0.2 < Pr < 0.3 the time periodic flows are slow
internal oscillations due to the shear, consistent of transients between the global
circulation and the formation of the vortices. These oscillations have periods two
orders of magnitude higher than those of the travelling waves. At even lower values
of Pr < 0.1 secondary vortices appear between the main. At low Ra the work done
by the buoyancy force can even help to stabilize the steady flows.
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Continuation methods and stability analysis are used in this work to study the
behavior of the steady and time periodic flows of binary mixtures contained in a
rectangular slot of aspect ratio I" = 8, heated by the side, and with adiabatic lids.
The parameter is defined as I" = h/d, h and d being the height and width of the box,
respectively. Double-diffusive convection with Soret effect, and the two buoyancy
forces not in balance, is considered. This effect measures the generation of concen-
tration gradients due to the temperature gradients. As far as we know, this general
case, has not been studied before. The power of the continuation methods will be used
to analyze the oscillatory instabilities, and the periodic flows and their bifurcations,
either under a physical point of view, or as a dynamical system. Continuation meth-
ods have important advantages versus time-dependent simulations for these types
of regimes. The critical parameters corresponding to the threshold are only affected
by the truncation error. They are obtained faster than if they are deduced from the
transients of the time integrations, specially when oscillatory flows are involved.
Another advantage is that the computation of unstable branches of orbits allows to
understand more easily the transients among branches, and the origin of the stable
quasiperiodic flows found by time evolution [33, 77, 100].

Since the experimental work of J. Lee et al. [64] in moderate aspect ratio boxes,
doubly diffusive convection was studied numerically by several authors with different
boundary conditions for the temperature and the concentration, and non-slip sides.
N. Tsitverblit [107] studied numerically the origin and structure of the multiple steady
solutions existent for several values of the salinity Rayleigh number, with salted water
of Prandlt number Pr = 6.7 as convecting fluid. He showed that they exist as a result
of nondegenerate hysteresis points and isolas of asymmetric solutions forming as Ra
is increased. A complete study of the convection when a lateral temperature gradient
is applied to a motionless liquid layer, which is stably stratified through a constant
vertical salinity gradient, was carried out in Ref. [56]. They focussed their objectives
in determining the large scale effects that double-diffusive layered structures have
on the vertical transport of fluid constituents.

By enforcing equal and opposite thermal and solutal buoyancy forces (buoyancy
number N = —1) K. Ghorayeb and A. Mojtabi demonstrated that there exist a trivial
equilibrium solution, initially linearly stable if the vertical derivatives of the temper-
ature and concentration gradients are imposed to vanish at the lids [41], as it happens
for instance in a periodic vertical layer. They calculated the steady states bifurcated
from the trivial one for gaseous mixtures of Pr = 1 and Lewis number Le > 1. Their
investigations showed that the onset of double diffusive convection corresponds to a
transcritical bifurcation point, and that the result is weakly dependent on Le.

The same two-dimensional problem with the constraint N = —1 was studied in
Refs. [6, 7, 68, 124] with vertical periodic boundary conditions. In the first paper, the
calculations of S. Xin et al. showed that, with the preceding parameters of the above
paragraph and constant temperature and concentration at the sides, the onset of con-
vection corresponds to a subcritical pitchfork bifurcation. The branch of the steady
solutions loses stability to waves traveling in the vertical direction via a supercritical
drift pitchfork bifurcation. The calculation of the branches of this steady solutions by
A. Bergeon and E. Knobloch [6, 7] showed the presence of spatially localized states
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that the authors linked with the phenomenon of homoclinic snaking. Recently, the
same problem, with no net vertical mass flux and Robin boundary conditions for the
concentration at the sides, was revisited in Ref. [68]. As in the preceding works, steady
localized states organized in ‘snakes-and-ladders’ were found. In addition, a family
of travelling pulses disconnected from all the other known states was obtained. How-
ever, waves travelling up or down a sidewall, like in the general case, were obtained
by relaxing the balance of horizontal gradients. Secondary bifurcations from these
states give rise to spatially modulated travelling states, and to spatially localized trav-
elling pulses. Localized states were also found in Ref. [5] in a three-dimensional box.
In this case, two snaking branches of symmetric steady solutions, bifurcating simul-
taneously from the trivial state, undergo secondary symmetry breaking bifurcations
generating secondary snaking branches of localized states.

1.2 Continuation Methods for Partial Differential Equations

The study of numerical models in Fluid Mechanics consisted during many years,
after the first high speed digital computers became available, in writing and running
time evolution codes to explore the dynamics of the resulting discretized systems of
partial differential equations (PDEs). Even the computation of steady solutions was
performed by letting the system evolve, passing a transient, to reach the equilibria.
This was forced by the small size of the computers memories, which prevented
in many cases the use of algorithms to solve nonlinear systems of equations. The
landmarking and still very good introductory book by P.J. Roache [83] presents the
state of the art at that time. Only linear systems of equations are mentioned there,
obtained after the discretization by means of finite differences of the stream function
equation or in the context of implicit time integration methods. They were solved by
direct methods in case of tridiagonal systems or by highly efficient block methods,
tensor product methods, Fourier series methods, etc. A review of what was available
at that time for this purpose can be found in Ref. [27]. These methods were considered,
at that time, to require large storage. Iterative Richardson, Jacobi, Gauss—Seidel, or
alternate directions methods were also used and preferred due to the low storage
required.

The application of continuation methods in large-scale systems, to study the
dependence of equilibria with parameters, started very probably in the field of struc-
tural mechanics with the name of the method of incremental loads [82]. A one-
parameter dependent increasing load was the continuation parameter to reach the
final deformation state starting from the unloaded trivial case. The non-linearity
comes in this case not necessarily from the constitutive laws, but from the geome-
try of the structure when the displacements cannot be considered to be very small.
Examples of non-trivial curves of solutions with folds can be obtained in the case of
shallow domes [121].

In the case of Fluid Mechanics, an early example of the application of continu-
ation methods can be found in Ref.[73] after, but close in time to, the pioneering
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work by H.B. Keller on the pseudo-arclength method [53]. They studied the Taylor
vortices in the Couette—Taylor system, a classical problem consisting in the study of
the flow between two coaxial rotating cylinders. There are contributions by several
authors to this problem using continuation methods [2, 22], using an initial version
of AUTO [23] in the first case. A.K. Cliffe [14, 15] not only computed the depen-
dence of Taylor vortices on the Reynolds number of the inner cylinder, but also
tracked saddle-node and pitchfork bifurcations curves, and detected the presence of
cusp points. He used the finite elements (FEM) library ENTWIFE, he contributed to
develop. This is, as far as we know, the first direct computation of bifurcation loci in
a Fluid Mechanics problem.

In all the above mentioned cases the calculations were possible thanks to the
sparse structure of the matrices of the linear systems, which allowed using adapted
direct solvers. New linear solvers as GMRES and BiCGStab, based on Krylov
subspaces [88, 104], allowed the study of larger systems, and using also spectral
or pseudo-spectral methods. Inexact Newton—Krylov matrix-free methods [20, 78]
have been used to find steady states and traveling waves, and subspace iteration or
Arnoldi’s methods to study their stability [4, 9, 10, 31, 69, 71, 74, 80, 100, 109,
116]. In the latter case the Krylov subspaces generated during the GMRES iterations
can be recycled to obtain information on the stability [37]. Preconditioning is usu-
ally needed to overcome the difficulty in achieving fast convergence of these iterative
methods when computing equilibria [86, 93].

There are, at least, three freely available software packages for the computation of
equilibria of PDEs which allow tracking them and, in the first case, also loci of their
generic codimension-one bifurcations. LOCA [89] is a general-purpose package,
included in the C++ Trilinos huge library. It is intended for large-scale systems using
all the parallelizing tools provided within the Trilinos solvers. Oomph-lib [48] is
also a C++ object-oriented, open-source finite-element library for the simulation
of multiphysical problems. The Matlab code pde2path [110] is mainly for one and
two-dimensional problems since it is based on the FEM toolbox pdetoolbox.

More time was needed to see the first attempts to compute other types of invariant
objects in an efficient and systematic way. In the case of periodic orbits, the mon-
odromy matrix is no longer sparse, no matter the method used to discretize the system
of PDEs. Therefore matrix-free methods are mandatory in the case of large-scale sys-
tems. Newton—Picard algorithms were implemented to compute them giving rise to
the package PDECONT [70], used also in Ref. [106] for the flow in a lid-driven cavity.
The algorithm was based on a previous idea consisting in removing the growth along
the unstable directions of an equilibrium during a time integration [103]. Broyden’s
method was used in Ref. [112] in the study of chemical reactors, and Newton—Krylov
techniques were first introduced in Refs. [96, 97]. This latter method has become the
standard used by several authors in different applications due to its simplicity and
efficiency [28, 36, 42, 45, 77, 80, 114, 117, 118]. An extension of pde2path for
the continuation of cycles, by using collocation in time as in AUTO, has been very
recently developed. The same technique was also used, by coupling the generic con-
tinuation package Coco [18] to the FEM library COMSOL [17], to study cycles of
periodically forced nonlinear models of a beam [32].
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An improved algorithm for the continuation of periodic orbits, using multiple
shooting and parallelism, was presented in Ref.[91], and applied in Ref.[117] to
study acoustic resonances in a thermoacoustic system. The equations of the multiple
shooting were solved by Newton—Krylov methods, but it was seen that a direct appli-
cation, with each partial shoot computed in a different processor, did not provide any
substantial speedup. To achieve a linear speedup some kind of preconditioning for
the linear systems had to be used. It was shown how this could be done from the
information on the stability of nearby periodic orbits. This information is usually
available from the continuation and bifurcation analysis, since the stability is com-
puted frequently. Therefore the preconditioner can be obtained at a low extra cost.
This idea of using the information on the stability to accelerate the convergence was
the key ingredient of the variants of the Picard iteration described in Ref.[103], for
equilibria, and in Ref. [70] for the computation of periodic orbits.

More sophisticated computations of invariant objects came later. Newton—Krylov
methods for computing invariant tori for large-scale applications were first considered
in Ref. [99]. An improved parallel algorithm appeared in Ref. [92]. The idea was to
compute a single point on the surface of the two-dimensional torus, or a set of points
approximating an arc of the invariant curve on a Poincaré section. The computation of
segments of two-dimensional unstable manifolds of periodic orbits was developed in
Ref.[113]. The idea was solving a boundary-value problem, introduced in Ref. [57]
following the ideas presented in Ref. [58], to compute stable or unstable manifolds
of vector fields.

The computation of loci of bifurcations of equilibria in Fluid Mechanics [15]
has already been mentioned. The theory on the extended systems used to follow
bifurcations of steady states of low-dimensional systems is well developed and can
be found, among others, in Refs. [16, 44, 46, 75, 84, 101, 119]. The bordered systems
for periodic orbits, based on boundary value problems, are analyzed in Ref. [26]. In
this latter case piecewise collocation in time is used instead of shooting methods
together with adapted direct linear solvers. The continuation of codimension-one
bifurcations of periodic orbits for high-dimensional systems using Newton—Krylov
techniques has been developed only recently [76]. It requires integrating up to second
order variational equations, but it was shown that for Navier—Stokes equations they
do not differ much from the original because only quadratic non-linear terms are
present. The thermal convection of a mixture of two fluids in a two-dimensional
rectangular box was used as test problem. A non-trivial diagram of periodic orbits
was first deployed, by varying only a parameter (the Rayleigh number), and some
of the bifurcations found on the main branch of cycles were followed by adding a
second parameter (the Prandtl number). Several codimension-two points were found.
It was also shown how the boundaries of resonance regions (Arnold’s tongues) can
also be continued.

The bibliography on generic continuation methods is very extensive. Their devel-
opment can be followed in Refs. [1, 18, 19, 24, 44, 54, 59, 60, 81, 102]. Some rel-
evant references, in the case of recent applications to large-scale problems, are [16,
21, 25, 50, 51, 93]. They are always implemented as predictor-corrector methods. A
first approximation is first obtained by extrapolation from previous points along the
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curve of solutions, which is corrected by any variant of Newton’s method. As far as
know, the only attempt to improve this methodology is described in Ref. [3] were the
PAMPAC algorithm is described. It is a parallel method for adapting the step length
employing several predictor-corrector sequences of different step lengths, computed
concurrently. The algorithm permits intermediate results of correction sequences
that have not yet converged to seed new predictions, generating a tree of corrections
which branches are spawned or pruned according to the speed of convergence of
Newton’s method, using a sophisticated algorithm.

In the remaining of the paper, after the introduction, the equations are derived
in Sect.2, and their numerical treatment by Newton—Krylov methods is discussed
in Sect. 3, which also includes the checking of the codes. Section4 contains a brief
comparison of the steady solutions and time periodic orbits bifurcated and their
stability, of a pure fluid and a gaseous binary mixture of the same Pr = 0.683. In
Sect.5 a detailed study of the behavior of the steady and periodic flows bifurcated
from the first, for four different binary mixtures of Pr < 1 is undertaken. It includes
an analysis of the energetic balances leading to the oscillations. The paper finishes
in Sect. 6 with the conclusions obtained from the results.

2 Mathematical Formulation

The dynamics of binary mixtures filling a slot, §2, of width d, height 4, and aspect
ratio I' = h/d = 8 is studied. The boundaries are taken non-slip, the vertical sides
are maintained at uniform temperatures, and the top and bottom are enforced to be
insulating. No mass flux through the boundaries is considered. The fluid is subject to
avertical gravity, g = —gj, j being the unit vector pointing upwards. The Boussinesq
approximation of the mass, momentum and energy equations is extended to that of
the concentration for the denser component of the mixture. Accordingly, the density
in the buoyancy force is taken as

p=0(l—a(T —T)+B(C-0)), (1)

o and B being the thermal and the solutal expansion coefficients, respectively, mea-
sured at the temperature of reference 7" and concentration C to which the density is
p. They are defined as

1 /0dp 1 /0dp
a=——=|— and B=—-[— . 2)
p \OT Jr_7 p\3C ) _¢

The equations are nondimensionalized by taking d, the difference of tempera-
ture between the left and the right sides of £2, AT, and d? /K, k being the thermal
diffusivity, as units of longitude, temperature and time, respectively. In addition,
the concentration will be rescaled with —K;AT/T, in order to help decoupling
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the boundary condition of the concentration. In the preceding expression Kr is the
thermal diffusion ratio.

Liquid mixtures of 3He-*He that, according to Ref.[105], have Pr = 0.707 and
Le = 0.076, of Fe-Si at high temperature and pressure that, based on data extracted
from Ref.[79], have Pr = 0.046 and Le < 0.01, and a mixture of Pr = 0.1 and
Le < 0.05, taken ad hoc to cover a more complete range of parameters, will be
studied. In addition, a gaseous mixture of Ar-CO, of Pr = 0.683 and Le = 1.085
will be also analyzed. It is known that in gaseous mixtures the Dufour effect could be
relevant [47]. However, for the values of the parameters of the gas mixture selected,
Liu and Ahlers showed in Ref. [67] that, even with a Dufour coefficient as large as
37.83, the Dufour effect is very small, because, in fact, it depends on products of the
parameters. Then the Dufour term will be excluded from the formulation, and only
the Soret term will be taken into account.

In non-dimensional units £2 = [0, 1] x [0, I']. Let x and y be the horizontal and
vertical coordinates, respectively. The system is written by splitting the nondimen-
sional temperature and concentration into a linear x-dependent function and their
perturbation & or X as

Tx,y,t)=(1—-—x)+06O(x,y,t) and 3)
C(xﬂyvt)=_(1_x)_2(x’y’t)7 (4)

in order of having homogeneous boundary conditions on the vertical walls. Then the
system that describes the problem is

V.v=0, 4)
0 +Vv-V)v=—-VIT +PrAv — RaPr[(1 4+ Se)(x — @) — Se nl}j, (6)
0 +v-V)O = AO + v,, @)
@ +v-V)n=LeAn — ABO, (8)

where n = ¥ — @, v = (v, v,) is the velocity field, and T contains terms coming
from the dependence of p on T and C, and on the splitting of these magnitudes. The
problem depends on four physical parameters, the Rayleigh, Ra, Prandtl, Pr, and
Lewis, Le, numbers, and the separation ratio, Se. They are defined as

ag ATd? v K D
Raz 28474 p ¥V g _BET . _D )
VK K aT K

v being the kinematic viscosity, and D the solutal diffusion coefficient. The Rayleigh
number will be used as control parameter in the continuation of the branches of
solutions.

The boundary conditions considered can be written as

v=0 on 052, (10)
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®=0onx=0,1 and 9,0 =0 on y=0,T, (11
3,m =0 on 342, (12)

where 02 means the contour of the domain, and 9, the normal derivative to any side.
Equations (5)—(12) are rewritten in terms of a stream function, i, related with the
velocity field by v = (3,v, —9,). They become

Ay — J(Y, AY) = PrA%y + RaPr[(1 + Se)(1 — 3,0) — Sed,n)], (13)
0,0 — J(Y, ) = AO + 9, (14)
on—J(,n) =LedAn — AO, (15)

with J(f, g) = 0x f9,8 — 9, f0x g, and the boundary conditions for v translate into
Y =0,% =0 on 9£2. (16)

In this way the incompressibility condition is identically fulfilled, and the number of
unknowns is reduced.

Equations (13)—(15) together with boundary conditions (16), (11) and (12) are
Z,-equivariant, i.e. they remain invariant under the change

(tv-xﬂvav@an)_)(Ll_-xap_ya'(ﬁ’_@ﬂ_n)' (17)

3 Numerical Methods

To obtain the numerical solutions, the functions v, ® and n were approximated by a
pseudo-spectral collocation method on a mesh of n x n, Gauss—Lobatto points. To
discretize the system, the spatial operators are transformed into matrices operating on
the values of the functions at the collocation mesh points. Their actions are calculated
by means of matrix-matrix products using a high-performance implementation of the
DGEMM subroutine of the BLAS library (see [43]). The stiff system of ordinary dif-
ferential equations (ODEs), obtained after the spatial discretization, is integrated by
means of fifth order semi-implicit backward-differentiation-extrapolation formulas
as described, for instance, in Ref. [35].

The branches of stationary and periodic solutions were calculated by using con-
tinuation methods for large-scale dissipative systems, based on the Newton—Krylov
techniques proposed, among others, in Refs.[11, 29, 76, 96, 97]. These techniques
are summarized in the following paragraphs and subsections.

Consider a general large-scale system of nonlinear equations, depending on a
parameter p,

H(iz,p)=0, (z,p)e? CcR" xR, (18)
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Fig. 1 Scheme of the z
pseudo-arclength condition
taken during the continuation
process

(o, Gp)

obtained by discretizing a system of PDEs. Several methods are available to track
the dependence of its solutions with the parameter p. The pseudo-arclength continu-
ation method is described here. Assume that a curve of solutions and corresponding
parameters is written as a function (z(s), p(s)) of the arclength s. Then, given an
initial solution (z(0), p(0)), advancing along the curve can be accomplished by the
combination of two stages, a predictor step in which an initial guess to a new point on
the curve is computed by extrapolation from the previous solutions (see Fig. 1), and a
corrector step in which the prediction is refined. In order to determine simultaneously
a unique pair (z, p), the equation

o(z, p) =(0z,2—20) +0p(p — po) =0 19)

isaddedto the system (18), (2o, po) and (o, 0,,) being the predictions of the new point
and the tangent to the curve of solutions, respectively. The hyperplane o (z, p) =0
will cut it transversely if the prediction is not far away from the previous point. This
algorithm allows passing turning points if they are present. Therefore the system that
determines a unique solution, (z, p), is

H(z, p) =0,
o(z,p)=0.

These nonlinear systems are usually solved by Newton’s method. Starting from
the initial prediction (zg, po) a sequence of approximations

(Zit1, Piv1) = @i, pi) + (Azi, Apy),

are computed, where (Az;, Ap;) satisfies the linear system

D H(z;, pi) DpyH(zi, pi)\ (Azi\ _ (—H(zi, pi) (20)
o] op Ap)  \-0@i.p))’

4

The way this linear system is solved depends on the size and spatial discretization of
the initial PDE. For low-dimensional systems direct solvers based on the LU decom-
position are used. In high-dimensional cases obtained after finite differences, ele-
ments or volumes it is still possible to use sparse direct solvers (see for instance [38]).
When the size is very large or in the case of non-sparse matrices, iterative methods
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are mandatory. The combination of Newton’s method with iterative solvers is known
as inexact Newton’s methods. If the linear solvers are based on Krylov subspaces
(GMRES(m), BiCGStab, FOM, TFQMR, etc., see for instance [87]) they are also
called Newton—Krylov methods. The term matrix-free methods is also used when the
linear solvers only require the user to provide products by the matrix of the system,
without any explicit manipulation of its elements. GMRES (m) was used in this work.
These methods do not need to be convergent for an arbitrary system, and they hardly
do when looking for equilibria of discretizations of systems of parabolic PDEs. It
is necessary then to use preconditioners to improve the convergence. In the case of
discretizations by finite differences, volumes or elements, the use of incomplete LU
decompositions usually provides efficient preconditioners, because of the sparsity
of the matrices involved (see [74, 86, 95] for instance). For spectral discretizations
of incompressible fluid problems, the use of the Stokes operator as preconditioner
was suggested in Ref. [108] and has been used by several authors. When a pseudo-
spectral method is employed, using preconditioners based on discretizations by finite
differences or finite elements, on the same mesh, is a possibility (see [12]). Some
iterative linear solvers require the action by the transpose of the operator. In most
applications implemented using spectral methods neither the matrix of the operator
nor the action by its transpose is available, although the adjoint operator has been
explicitly discretized, for instance, to study energy transient growth rates [8], or to
compute the coefficients of normal forms [98].

In the context of periodic orbits, other iterations based on Newton—Picard [70]
and Broyden [111] algorithms have also been proposed in the past.

To study the stability of equilibria or periodic orbits it is necessary to compute
the eigenvalues of maximum real part of the Jacobian at the equilibria, or the mul-
tipliers of maximum modulus of the periodic orbits. Methods based on variants of
the power method are always used for high-dimensional systems. They provide the
eigenvalues of maximum modulus of a given linear operator, for which only its action
is required. There are mainly two options, subspace or Arnoldi’s methods [72, 85].
The implementation in the ARPACK package [65, 66] of the latter was used here. In
the case of periodic orbits the relevant multipliers of maximum modulus are exactly
those obtained by these methods. For equlibria it is necessary to apply matrix trans-
formations. For instance, to extract the eigenvalues of largest real part of a matrix
A, those of maximum modulus of (A — sI)~! can be found, s being a shift, which
can be real or complex. If y is an eigenvalue of large modulus of (A — sI)~! then
A =1/(n —s) is an eigenvalues of A close to s. If A is supposed to have a small
imaginary part, then s can be real and close to zero. If the imaginary part can be
large s must be complex, and it might be necessary to use several values of s to
avoid missing eigenvalues. Other transformations are possible which do not require
solving complex systems of linear equations (see [72] for a description of Cayley’s
transformation and additional information). Since we had to integrate the variational
equations for the computation of periodic orbits, an exponential transformation was
used to study the stability of the equilibria (see below).
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3.1 Periodic Orbits

Let
y=f0.p), (. p) e« CR"xR, (1)

be a large-scale set of ODEs, which depends on a single parameter p. For the current
problem y = (5, ©;;, 1;;) is the vector containing the values of the stream function
Y, the perturbation of the temperature @ and the function 7 at the collocation points,
the parameter p is Ra, and (21) is the system (13)—(16), (11), (12) after discretization.
Let ¢(¢, x, p) be the solution of (21) with initial condition x at ¢ = O for a fixed p.
It satisfies

Dt‘P(fa)ﬁp)If((P(tvx’P)’P)y and QO(O,)C,p):)C Vp

A point on a periodic orbit of the system is a solution of the system given by

h(t,x,p)=x—¢(t,x,p) =0, 22)
g(x,p) =0, (23)
o(t,x,p)=0, 24)

where g(x, p) =0 is a phase condition to select a unique point on the orbit. A
Poincaré condition was used here, i.e., the equation of a hyperplane, g(x, p) =
(vz, x —x*) =0, normal to a previously computed cycle. In the formula v, =
f(x*, p"), (x*, p*) being the last computed solution of the system during the contin-
uation process. It could also be a physical condition able to select, locally, a unique
point on each orbit. Equations (22) and (23) define a system H(z, p) = 0 as that of
Eq.(18), withm = n 4+ 1 and z = (7, x), to which continuation methods are applied.
Curves (7(s), x(s), p(s)) are then obtained containing points on periodic orbits, their
periods, and their corresponding parameter.
The pseudo-arclength condition now reads as

o(t,x, p) = 0:(T — 7) + (0x, ¥ — x0) +0,(p — po) =0, (25)

which includes the period, and where, as before, (7o, xo, po) is the extrapolated
prediction during the continuation process, and (o, 0y, 0;,) is an approximation of
the tangent to the curve of solutions. This equation is usually computed inside any
generic continuation code, so an user must only supply the evaluation of the left hand
side of the two first equations of system (22)—(24). The latter can also be managed
by the continuation code if it is the Poincaré condition.

Newton’s iteration becomes now

(Tigt1, Xig1, Piv1) = (T, Xi, pi) + (AT, Ax;, Ap;),

where (At;, Ax;, Ap;) is obtained by solving the linear system
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Dh(t;, xi, pi) Dxh(z;, x;, pi) Dph(z;, xi, pi)\ (At —h(t;, Xi, pi)
0 Dxg(xi, pi)  Dpg(xi, p;) Axi | = —gGi.p) |. (26)

o o) op Apj —o (Ti, Xi» Pi)

It must be stressed that even if the case of spatial discretizations by methods
giving rise to a sparse Jacobian D, f (y, p), the matrix in Eq. (26) is not sparse and
therefore it is not possible to apply tailored LU decompositions to solve the system
(see [96] for an explanation). Each iteration of a matrix-free linear solver requires
only the action of the Jacobian on vectors. One could try to approximate them by
finite differences, but to enhance the convergence it is much better to compute the
products of the form

8x — Dyp(z, x, p)ét — Dyo(T, x, p)dx — Dyo(t, x, p)dp, 27
Dyg(x, p)dx + Dyg(x, p)dp, (28)

for an arbitrary (87, §x, 8p), by using the same spatial and temporal discretization
as for the original system. Finite differences can be used just to check the right
calculation of the action by the Jacobian in complicated two- and three-dimensional
problems.

The evaluation of the product (28) is straightforward, and the second term of (27)
is D,p(t,x, p)ét = f(y(1), p)dt, with y(r) = ¢(t, x, p). The matrix product
D,o(z, x, p)dx + D,o(t, x, p)§p can be computed by integrating a first variational
equation.

Let us suppose that x and p are fixed, and let us name y(¢) = ¢(¢, x, p) and
vi(t) = Do(t, x, p)dx + D,¢(t, x, p)dp, then y; satisfies

yi=Dyf(y,p)y1+D,f(y, p)dp and y(0)=dx,

because ¢ (0, x, p) = x. Consequently, by integrating a time t the system

y=f©.p)
yi =Dy f(y, p)y1 + D, f(y, p)ép

with initial conditions y(0) =x, y;(0) =éx, the sum D,¢(z, x, p)éx + D,
(1, x, p)dp = y1(7) is obtained.

Taking into account that Ra will be used as continuation parameter, the action of
(D:h(z, x, p), Dch(t, x, p) Dph(t, x, p)) on (87, §x, 8p) is obtained from the first
variational equations of system (13)—(15), which for (i1, @1, ;) and §Ra are

O Ay — J (Y, AY1) — J (W1, AY) = PrAyy — RaPr[(1 + Se)(8xO1) + Sedxn) ]+
+ 6RaPr[(1 + Se)(1 — 9x®) — Sedxn)], 29)
001 —J (Y, 01) —J(Y1,0) = AO1 + 3y V1, (30)
dnt — I, m) — J (Y1, n) = Ledn — A0y, (31
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with boundary conditions

Y1 =0,¥1 =0 on 082. (32)
® =0o0nx=0,1 and 9,0, =00n y=0,T, (33)
d,n =0 on 0%2. (34)

3.2 Fixed Points

Equilibria can be computed by the continuation methods described at the beginning
of this section, applied to the equation f(x, p) = 0. As stated before, this requires
good preconditioners to accelerate the convergence of the linear solvers. They can
also be obtained with the above procedure for periodic orbits. This was done, for
simplicity, in the computations of the present work. If x is an equilibrium then
it also solves the equation x — ¢(z, x, p) = 0 for any t, which can be chosen as
a characteristic known time (of the order of the period of the periodic orbits for
the convection problem, for instance). Therefore it is no longer an unknown of the
problem, the phase condition (23) is not needed, and the 7 derivatives do not appear
in the action by the Jacobian (27). The advantages, compared with the continuation
methods for equilibria described for instance in Refs.[29, 71, 86], are that the same
code can be used for solving cycles and steady states, and that the requirement of
preconditioners is avoided. The main disadvantage is that the method is, in general,
more expensive.

3.3 Stability of the Periodic Orbits

The leading Floquet multipliers of a periodic orbit of Eq.(21), of which a point
x and its period T are known for a parameter p, were computed as the leading
eigenvalues (largest modulus) of the linear map u — D, ¢(T, x, p)u, by using the
package ARPACK, which, as stated before, only requires the action of the operator
on vectors to provide the eigenvalues of maximum modulus. The matrix product was
computed by integrating a first variational equation. If

y(@) = o, x, p) (35)
y1(t) = Dyo(t, x, pu, (36)

then y, satisfies y; = D, f(y, p)yi, with initial condition y;(0) = u, because
(0, x, p) = x. By integrating the system
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y=f,p) (37)
y1=D,f(y, Py (38)

a time T, with initial conditions y(0) = x, and y;(0) = u, the product D, ¢(T, x, p)
u = y;(T) is ready to be supplied to ARPACK. The number of multipliers used to
study the stability might depend on the branch of periodic orbits studied. The larger
the number of unstable multipliers, the larger the number required to have at least an
stable one. In the present study it was between 16 and 26. In some cases 22 of them
were unstable.

3.4 Stability of the Fixed Points

The leading eigenvalues A (largest real part) of D, f(x, p) for a fixed point x and
parameter p, of the system (21) were computed as the logarithms of the leading
eigenvalues u = exp(tA) (largest modulus) of the map u — exp(t D, f(x, p))u, by
means of the ARPACK package, as before. This is an exponential transform, which
maps the eigenvalues A of Dy, f (x, p) of largest real part to those of largest modulus
of exp(r Dy f (x, p)).

In this case, since y(¢) = x, and then the matrix D, f (x, p) is constant, the solution
of the system y; = D, f (x, p)yi, with initial condition y;(0) = u is

yi(t) =exp(D, f(x, p))u. (39)

The matrix product exp(t Dy f (x, p))u = y1(7) can therefore be computed by inte-
grating only the first variational equation for a time t. The integration time 7 has to
be selected large enough to clearly separate the transformed p to have a fast conver-
gence of the Arnoldi’s methods, but as short as possible to reduce the computational
cost of the integration. The same holds when the equilibria are computed as roots of

x—¢(t,x, p)=0.

3.5 Numerical Tests

To check the reliability of the results and the resolution needed for the calculations,
the gaseous mixture of Pr = 0.683, Le = 1.085, Se = —0.08 was mainly used. The
stability of the basic branch of steady solutions, and of the first branch of periodic
orbits bifurcated from it was computed with three meshes. Table 1 shows either
three eigenvalues, A;, or three multipliers, u;, with i = 1, 3, 5, when both types of
solutions are already unstable. It can be seen that a mesh of n, x n, =40 x 140 is
sufficient in the interval of Ra considered to have errors less than 0.5% in the values
of the eigenvalues and multipliers, and that the order of the bifurcations is preserved.
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Some additional calculations were done for the very low parameters Pr = 0.046,
Le = 0.01, Se = —0.01 with the two finest meshes. It was, checked that the order of
the modes that become successively unstable is the same when the number of points
is increased, and that at Ra = 1.975168 x 103, which corresponds to the critical
Rayleigh number, Ra., where the basic branch of steady solutions loses stability, the
relative error of the critical frequency, w,, is less than 0.08%. Moreover, the relative
errors of the real and imaginary parts of the third pair of eigenvalues of the spectrum
are 0.8 and 0.07%, respectively. Consequently, a grid of (40, 140) points was used
for any value of Pr.

4 Gaseous Mixtures. Comparison with Pure Gases

4.1 Steady Flows and Their Stability

In contrast to the studies with buoyancy number N = —1, as soon as the fluid is
heated from the side a non-trivial steady velocity field appears in the domain. The
dynamics and stability of this basic steady flow of a pure fluid of Pr = 0.683 (PF), and
the binary mixture (BM) of the parameters of the preceding section, are compared
here. As for the pure gaseous fluids (see [77]), the convection in the mixture starts
as a single stationary vortex filling the domain, and giving rise to a temperature
gradient with comparable horizontal and vertical components close to the center of
the slot. The fluid goes up near the hot side and down at the cold, developing vertical
boundary layers. This basic flow, like that of the PF, is center-symmetric, i.e.,

(W,@, n)(tvl_x9r_y)=(l//9 _@a _n)(t7x9y)v (40)

which implies
(Vx’Vy)(tal_va_)’):_(vay)(t»xa)’)- (41)

In general, an eigenfunction or a solution fulfilling these relations will be named
symmetric. Otherwise, if

W O.mt. 1 —x,I"=y)=(=¢.0,n) x,y), (42)
which implies
Ve v) (@ 1 —x, I' = y) = (v, vy) (£, X, ¥), (43)
it will be called antisymmetric. The symmetries of the eigenfunctions at the bifurca-
tion points of the steady solutions determine the dynamics of the periodic flows.

Figure 2 shows the averaged heat flux through the vertical side calculated at x = 1
and the kinetic energy for both fluids. They are defined as
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Fig.2 Comparison of a the averaged heat flux, and b the kinetic energy versus the Rayleigh number
of the basic steady branches of solutions and their stability for a pure fluid (PF) of Pr = 0.683 (black
online), and a gaseous binary mixture (BM) of the same Pr and Le = 1.085 and Se = —0.08 (red
online). Solid lines mean stable solutions, and dashed lines unstable

1
r

1
K:—/V-vd.Q. (44)
282 Jo

Online, red lines refer to the mixture, and, from now on, solid lines will indicate
stable solutions, and dashed unstable.

For Pr = 0.683, the steady flows lose stability through Hopf bifurcations. The
double-diffusive flow becomes unstable at lower Ra, and at the onset of the oscillatory
convection the period increases around 4%. The pure fluid does it at the critical
Rayleigh number Ra, = 3.279674 x 10° with critical period T, = 7.6920 x 1073
while the mixture does it at Ra, = 3.107694 x 10° with period T, = 7.9511 x 1073,

Six Hopf bifurcations giving rise to stable segments on five branches of POs
were found, up to Ra, = 5 x 10°, on the branch of SSs of the PF. This result is
in agreement with that found in Ref.[77] for Pr = 0.71. The bifurcation points,
Rai, i =1, 6, together with the frequencies at the beginning of the oscillations,
!, are given in Table2. The critical points were calculated by inverse polynomial
interpolation of degrees ranging from three to ten. Concerning to the mixture, the
results are shown in Table 3. From the comparison, one can state that the third and
fourth bifurcations maintain the tendency of the first one, i.e., the mixture has lower
Rai and a)é However, the sixth of the PF has an anomalous low frequency, like that
of the second and the fifth of the BM. This characteristic will be analyzed in Sect. 4.2.
On the other hand, the second, fourth and sixth eigenfunctions of the PF, and the
second, third and sixth of the BM are symmetric, and the bifurcations give rise to
the appearance of POs that also maintain the symmetry at any time (F-cycles). In
contrast, the first, third and fifth eigenfunctions of the PF, and the first, fourth and fifth
of the BM break it, although the eigenfunctions and, consequently, the bifurcated
branches of POs retain the following spatio-temporal symmetry

r
0, T = / 0, T dy, and
0

(w7 @a n)(ta 1 - X, r— y) = (w9 _@9 —77)(Z+T/2»x’ y)9 (45)
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Table 2 Critical Rayleigh number, Raf?, i =1, 6, and frequency, a)é, of the first six bifurcations
found on the branch of steady solutions of a pure fluid of Pr = 0.683 up to 5 x 10°

Ra) o) Ra? w? Ra} w?

327 967.45 816.84 329 034.81 879.78 35242841 972.62
Ra? o Ra} w? Ra® w?

388 712.51 1085.11 433 986.87 1212.66 486 017.92 1056.29

Table 3 Critical Rayleigh number, Raé, i =1, 6, and frequency, w’( of the first six bifurcations
found on the branch of steady solutions of the mixture upto 5 x 10°. The parameters are Pr = 0.683,
Le = 1.085, Se = —0.08

Ra! o} Ra?2 w? Ra’ w?

310 769.39 790.23 311 887.12 730.34 331453.40 877.09
Raﬁ wﬁ Rai wf Rag w?

370 140.18 989.10 373 860.45 726.84 430 463.10 1131.35

which means

(Vx’ Vy)(ts 1 — X, F - y) = _(V)m Vy)(t +T/2,X, )’) (46)

Therefore, the POs arising at these bifurcation points are symmetric cycles (S-cycles).
Advancing half a period in time is equivalent to applying the transformation (40).
This property allows to halve the computational cost of the time integration during the
continuation process, and to almost halve the time needed to obtain these branches.

A comparison of the steady velocity field and the contour plots of the temperature
of both fluids reveals that the double diffusion together with the Soret effect does
not change the main behavior of the gaseous mixtures of negative separation ratio of
order 1072, It becomes determined mainly by Pr.

4.2 Periodic Orbits and Their Stability

The branches of POs and their spectra for the PF and the BM have been calcu-
lated from the bifurcation points up to Ra = 5 x 103, or up to the points where the
multipliers detach definitively from the unit circle (this will be the procedure along
the present study). In this case, the bifurcations found are of Neimark—Sacker type.
Either in the PF or in the BM, only the first branch of periodic solutions is stable from
the bifurcation point where they arise. Each of the following has, initially, a pair of
complex-conjugate multipliers outside the unit circle more than the preceding. This
means, for instance, that the fifth has, at its origin, four pairs of unstable multipliers.
However, from the second to the fifth branch for the PF and to the fourth for the BM,
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Table 4 Critical Rayleigh number and period bounding the interval of stability of the branches of
periodic orbits bifurcated from the steady state in a pure fluid and a binary mixture, both of Pr =
0.683. The superscripts s and d mean stabilize and destabilize, respectively. The other parameters
of the mixture are Le = 1.085, Se = —0.08

Branch Type 107°Ral 103T.* 1075Ra? 10314
1 PF 3.2797 7.6920 3.3322 7.6311
2 PF 3.2934 7.1383 3.7804 6.6369
3 PF 3.6076 6.3790 4.341 5.683

3 PF 4.504 5.560 5.1549 5.2090
4 PF 4.0708 5.6377 4.4724 5.3024
5 PF 4.6619 4.9567 4.7729 4.8812
1 BM 3.1077 7.9511 4.3588 6.788

2 BM 3.2221 8.469 3.2941 8.380

2 BM 4.0477 7.6245 4.1703 7.5275
3 BM 3.4517 7.0209 4.6043 6.1247
4 BM 4.0776 6.0501 4.7073 5.6319

they are very close to the unit circle, and when Ra is increased they move back into
it, stabilizing the cycles.

Table4 contains the stability interval of each of the POs found. In the Table
Raj means the critical Rayleigh number where the orbits stabilize, and Raf where
they destabilize. The corresponding periods are T* and T¢, respectively. The third
branch of POs of the pure fluid stabilizes at Ra. = 3.6076 x 103 with period
T =6.3790 x 1073, and loses stability at Ra, = 4.341 x 10> with period T =
5.683 x 1073 when the first pair of leading multipliers getting into the unit circle gets
out. The modulus of the same multipliers decrease again stabilizing the branch of
POs at Ra, = 4.504 x 10° with period T = 5.560 x 1073, Finally, the POs become
unstable at Ra, = 5.1549 x 10° with period T = 5.2090 x 10~3. Something similar
happens with the second branch of the BM. It gains stability at Ra. = 3.2221 x 10°
with period T = 8.469 x 1073, and loses it at Ra. = 3.2941 x 10 with period
T = 8.380 x 1073. The short stability interval is due to the only pair of multi-
pliers that initially has modulus larger than one. It gets into the unit circle, and
quickly moves out. The branch regains stability at Ra, = 4.0477 x 10° with period
T = 7.6245 x 1073 when the same multipliers become stable. Finally another differ-
ent pair cross the unit circle at Ra. = 4.1703 x 103 with period T = 7.5275 x 1073
and destabilizes the orbit. A plausible explanation of the origin of the short inter-
val of stability of the second branch of POs of the BM will be given later. The sixth
branch of the pure fluid, and the fifth of the mixture never gain stability in the interval
considered.

The movies of the time evolution of the POs of the BM show that for Pr = 0.683
the boundary layers are much more stable than for the pure fluid of Pr = 0.71 studied
in Ref. [77] (see below).
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5 Binary Mixtures

5.1 Steady Solutions and Their Instability

The basic branches of SSs of the four BMs mentioned in Sect.2 are shown in Fig. 3.
It shows the averaged heat flux through the vertical section x = 1, and the kinetic
energy, K, versus Ra. The upper figures correspond to mixtures of Pr ~ 0.7. The
main difference between them is the Lewis number. The liquid (Pr = 0.707, Le =
0.076, Se = —0.098) destabilizes before than the gas (Pr = 0.683,Le = 1.085,Se =
—0.08),atRa, = 2.780481 x 10° with frequency w, = 715.1441, despite its slightly
higher Pr (see figure caption). Although Fig.3a, b correspond to two very different
fluids, there are not important differences in the values of the heat flux, and only K
is slightly higher for gases. The lower Fig. 3¢, d show the same plots for mixtures of
Pr=0.1,Le = 0.05 and Se = —0.05, and Pr = 0.046, Le = 0.01 and Se = —0.01.
In this case, the mean values increase their difference when Ra is increased. The
mixture of Pr = 0.1 loses stability at a Hopf bifurcation at Ra, = 6.158415 x 10°
with frequency w. = 18.33334, and that of Pr = 0.046, at Ra, = 1.975168 x 103
with frequency o, = 4.366489.

As said before, the contour plots of the steady flows of the mixtures of Pr (1)
show the global circulation of the pure fluids, with tongues of cold (dense) fluid,
placed near the heated side, penetrating into the hottest (lightest), located in the left
and upper parts of the slot, and vice versa, at the other side, tongues of hot (light)
fluid extend to the region of coldest (densest) fluid (see Fig. 4a—d). The concentration
near the center remains almost uniform, mainly for the liquid mixture.

For low Pr fluids the global circulation breaks down (see Fig.4e—h), and a central
and two upper and lower vortices appear in the I" = 8 slot when the flows are stable.
The hot (cold) fluid is dragged by the vortices to the center of the box in their upper
(lower) part, but keeping a remnant of a x-linear temperature stratification. However
the concentration behave completely different. The three vortices confine the fluid
maintaining the highest concentration at the bottom, and the lowest at the top of
the box. At very low Pr the concentration remains much more uniform, and wider
tongues of light (dense) fluid go down (up), connecting with the neighbor vortex.

To evaluate the physical mechanisms contributing to the instability of the SSs,
giving rise to time periodic oscillations, the total work done by the possible sources
of instability, and the viscous dissipation, are calculated from the mechanical energy
equation of the perturbations, as in Ref. [49]. In addition, local values of these magni-
tudes are also computed for the four mixtures of Fig. 3 at the first bifurcation points.
The energy equation for the eigenfunction at a Hopf bifurcation can be obtained
from the Navier—Stokes equation written in terms of the velocity field v, the full
temperature, 7', and concentration C

(0; +v-V)v=—Vr +PrAv+RaPrTj+ RaPrSeCj, A7
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Fig.3 Averaged heat flux and kinetic energy, K versus the Rayleigh number of steady branches of
solutions and their stability. In a and b for Pr = 0.683, Le = 1.085, Se = —0.08 and Pr = 0.707,
Le = 0.076, Se = —0.098, and in ¢ and d for Pr = 0.1, Le = 0.05, Se = —0.05 and Pr = 0.046,
Le =0.01, Se = —0.01

by splitting the velocity field as v = vy + v/, the modified pressure as m = 7y +
7/, the temperature as T = Ty + T, and the concentration as C = Cy + C’, where
(vo, mo, Ty, Cp) are the velocity, pressure, temperature and concentration fields of
the SS and (v/, 7/, T', C’) their perturbations. By adding the dot product of the
linearization of Eq.(47) about v, times v'* to its conjugated, it turns out that the
kinetic energy equation of the perturbation is

(VW V) =R(—=V*(vo- VIV —=V* (V- V)vg —V* - V' + Prv™* . AV
+v*-RaPrT’j+ v*-RaPrSeC’j), (48)

which is a real equation. In the case of real eigenvalues v'* = v/, and the equation is
also valid.

If the perturbation v'(r,?) = (v{(r), v(r)) exp((A + iw)t) corresponds to an
eigenfunction, the left hand side of Eq.(48) gives its growth rate A. At the bifur-
cation points (A = 0), and with non-slip boundary conditions, the spatial average of
this equation is just a balance between the rate of kinetic energy generated by the
shear of the steady field,
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Fig. 4 Velocity field overlapped to the contour plots of a stable steady solution of a and ¢ the tem-
perature and b and d the concentration for Ra = 2.7 x 10°, Pr = 0.683, Le = 1.085, Se = —0.08
and Ra = 2.6353 x 105, Pr = 0.707, Le = 0.076, Se = —0.098, and of e and g the temperature
and f and h the concentration for Ra = 3.4009 x 103, Pr = 0.1, Le = 0.05, Se = —0.05, and
Ra = 1.8142 x 103, Pr = 0.046, Le = 0.01, Se = —0.01, respectively. Dark (light) grey means
low (high) temperature and concentration, except at the left side where the temperature is the
highest (online, red (blue) means high (low) temperature and concentration)

_ 3v;
K., = m(— / vf*v/—vm), (49)
2

! ’axj

by the work done by the thermal buoyancy per unit time,
Kyr = ER<Ra Pr fg Vi*T'8in d.Q), (50)
by that done by the solutal buoyancy,
Kpc = %(Ra Pr Se fg Vi*C'8in dﬂ), (51

and the rate of energy dissipated by viscosity,
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Ky = SR(—ZPr / eie]; dQ), (52)
2

because the rate of change of the total kinetic energy

K = (/ %v?‘v’dﬂ) (53)

of the periodic perturbations is zero, and the pressure term of Eq.(48), and the
term comming from the advection of the perturbation by the steady field can be
written in flux-divergence form. Consequently, they represent spatial transport and
globally neither can generate nor dissipate kinetic energy. In Egs. (49)—(51) v; are the
components of the velocity of the steady field at the bifurcation points, v;, T’, and
C’ those of the critical eigenfunction, and * means complex conjugation. In Eq. (52),
e means the strain rate tensor of the perturbation. Above but near a critical point,
A > 0 and the terms will be out of balance. However, if one of them is much larger
than the rest at the onset, and almost in balance with the diffusion term, the relative
weight of the terms of Eq. (48) would not differ very much from that at the transition.
Consequently, this leading term will be the responsible for the instability.

When working with the mechanical energy equation one has to take into account
that the term of Eq.(48) containing the laplacian does not give locally the energy
dissipated by viscosity because it can be splitinto a transport term and the true viscous
dissipation term. On the other hand, notice that Eq. (48) depends on the solution of a
linearized problem, and then the results are resolution dependent because the norm
of the eigenvectors does. However the normalized values K /?ds, Kpr /de and
K /K 45 giving the percentage of the rate of kinetic energy generated or dissipated
are independent of the grid.

Table 5 contains the values given by Eqs. (49)—(52) for the first six bifurcations
found on the branch of SSs of the mixture of Pr = 0.683. The total work done by the
solutal buoyancy, K ¢, contributes to the stabilization of the fluid and that done by
the thermal buoyancy, K , 7, to the destabilization, although both in a low percentage
in front of the viscous dissipation, K 4, and of the generation of kinetic energy by
shear, K ;. The best ratio corresponds to the kinetic energy generated by the thermal
buoyancy at the fifth bifurcation, which corresponds to a 11% of the total. Table 5
also shows that there are two types of balances. The first, third, fourth and sixth have
an increase of K, and a decrease of K7 and of the dissipation due to K pc when
Ra increases. In the second and fifth bifurcations K ,;, decreases with Ra, while K 7
and the absolute value of K ¢ increase. Moreover, the values of K, are lower than
for the other bifurcations, and those of K 7 and the dissipation due to K ,¢ higher.

By inspecting the local values of these magnitudes for the two types of balances
the qualitative differences are not significant. The surface and contour plots of the
energy terms at the first and second bifurcations resemble those of Fig.5, which
correspond to the first. The generation and dissipation of K takes place, mainly,
near the upper left and lower right corners of the slot. However, while the viscous
dissipation happens in the boundary layers, K is generated in an elongated interior
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Table S Rate of kinetic energy generated by the shear of the SSs, K, and by the buoyancy forces,
Kpr and K pc, and dissipated, K 45, by the perturbations at the bifurcation points. The parameters

are Pr = 0.683, Se = —0.08, Le = 1.085. A means antisymmetric eigenfunction, and S symmetric.
Notice that at the transition the four terms are in balance
N bif. Symmetry 10~°Ra, K Kyr Kpc K s
1 A 3.10769 22.35355 1.100092 —0.153183 | —23.30045
2 S 3.11887 18.78545 1.333486 —0.182650 | —19.93629
3 S 3.31453 26.25428 1.021661 —0.132786 | —27.14315
4 A 3.70140 30.93177 1.001029 —0.116418 | —31.81638
5 A 3.73860 15.45759 1.863884 —0.268702 | —17.05277
6 S 4.30463 36.92729 0.948408 —0.105350 | —37.77034

“‘W";

,

Fig. 5 Surface and contour plots of the rate of generation of kinetic energy by shear, K, thermal
buoyancy, K7, solutal buoyancy, Kpc, and rate of energy dissipated by viscosity, K45, at the first
Hopf bifurcation for Ra = 3.10769 x 10%, Pr = 0.683, Se = —0.08, Le = 1.085. The horizontal
axes are not at the same scale to see the details better

layer separated from the sides of the slot by a dissipation zone. The contribution of
the concentration to stabilize the fluid takes place just where the mechanical energy
by shear and by thermal buoyancy is produced, and vice versa. In this case there is
also a smaller creation of net positive K parallel to the top and bottom sides. The fluid
in the body of the box remains unperturbed. However, it will be seen that the two
different balances have important consequences on the stability of the POs bifurcated
from the SSs.

Table 6 shows the energy balance for the BM of Pr = 0.707. In this case the three
terms contribute to the instability with an increasing weight of the generation of K by
shear and by the solutal buoyancy, and a decreasing of that of the thermal buoyancy,
by increasing the order of the bifurcation. However the percentage of positive work
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Table 6 Idem Table5 for Pr = 0.707, Se = —0.098, Le = 0.076

N bif. Symmetry |10~Ra, | Ksp K1 Kic Ky

1 S 278048 2063761 | 1.184208 | 0371983 | —22.19379
2 A 279227  [24.11443 | 1.018217 |0.465282 | —25.59792
3 S 3.01721 28.13520 | 1.027475 |0.482663 |—29.64532
4 A 326018 3275240 |0.984464 | 0.534142 | —34.27098
5 A 357044 3838525 |0.842410 |0.632888 | —39.86051
6 A 396416  |45.24046 |0.588907 |0.788476 | —46.61781

i
i

W

|
]]JMI

Fig. 6 Idem Fig.5 for Ra = 2.78048 x 10°, Pr = 0.707, Se = —0.098, Le = 0.076

done by the buoyancies is lower than before. It barely exceeds the 7% at the first
bifurcation. The surface plots of K, K7, Kpc and K45 of Fig. 6 resemble very much
those of Fig.5, the main difference coming from that of K,c. Now the production
and dissipation of energy takes place locally in the same zone as that of K7, and in
addition the fluid of the lower left part of the domain, and that of the upper right part
remain almost unperturbed.

Table 7 gives the balance of energies for the BM of Pr = 0.1. The lack of a clear
pattern reflects very well the different types of instabilities found. The first is a Hopf
bifurcation giving rise to the only branch of stable POs bifurcated from the SS. As
can be seen the three terms contribute to the instability for any of the six bifurcations,
and, for the first, the sum of the work done by both buoyancies arrives to 21% of
the total, although K¢ is one order of magnitude lesser than K 7. The third and
sixth bifurcations are of saddle-node type because of the double fold of Fig.3c. In
these bifurcations the percentage of K generated by the buoyancies decreases when
Ra is decreased, but that of the shear increases by 18%. The second, fourth and five
are Hopf bifurcations. The first two have the highest and similar ratios of energy
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Table 7 Idem Table 5, but with 1072K ¢, for Pr = 0.1, Se = —0.05, Le = 0.05

N bif. Symmetry |1073Ra. | Ky Kpr 10 2Kpc | Kas

1 6.158414 0.350650 0.090591 0.256005 —0.443803
23.60057 1.530737 0.453646 1.082218 —1.996949
24.13063 1.000072 0.256315 0.746396 —1.267125
23.80020 1.465969 0.455562 1.374090 —1.939601
22.52853 1.035993 0.101941 0.597505 —1.144304
21.25583 1.181268 0.035765 0.623779 —1.223271
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Fig. 7 Idem Fig.5 for Ra = 6.15841 x 103, Pr = 0.1, Se = —0.05, Le = 0.05

supplied by the work done by the buoyancy forces, arriving to near 24%. They are
similar because, as it will be seen, they give rise to a close branch of POs, starting
before the first turning point and finishing after it. The fifth is a Hopf bifurcation
between the two saddle-nodes. In this case the instability is due to the shear in 91%.

The surface plots of the rate of energies of Fig. 7 show that the main maxima are
located in the middle of the slot around the central vortex of Fig. 4e, f. There is also a
small contribution around the lateral vortices. The dissipation of energy occurs again
in the boundary layer near the generation of K. A few isolated local extrema start to
appear near the center for this low Pr. As for the binary mixtures of Pr = (1) the
production and dissipation of energy is constrained to very narrow layers.

Figure 8 shows that, at the second bifurcation, the origin of the instability is much
more localized in the central vortex, with a fraction of K, penetrating to the interior
of the vortex. Consequently, there is also some dissipation in this zone. The upper
and lower parts of the slot remain unperturbed. At the fifth bifurcation the generation
of instability (not shown in a figure) takes place around all the vortices of Fig. 4e, f,
with some dissipation between them, although the most important part occurs in the
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Fig. 8 Idem Fig.7 at the second bifurcation, Ra = 2.36006 x 10*

boundary layers, along the sides. However the thermal buoyancy force acts primary
around the central vortex. In contrast, a small input of positive K due to the solutal
buoyancy affects also the surroundings of the other two vortices.

Table 8 contains the same information as the preceding tables for the binary mix-
ture of Pr = 0.046, which corresponds to a liquid metal. As for Pr = 0.1, the three
terms contribute to the instability of the steady state, but the balance of kinetic ener-
gies is different for each of the four bifurcations considered. However, in any case the
work done by the solutal buoyancy is around a 0.06%, the smallest of the mixtures
studied. The first bifurcation, with the lowest relative K 7, near 0.5%, is the only
one giving rise to a stable PO in the range of Ra considered. Its period, initially
T = 1.4390, almost triples that of the other unstable POs. At the other bifurcations
the energy supplied by the shear of the steady field is reduced.

To analyze the origin of such differences, the surface and contour plots of the
energies entering in the first two balances are shown in Figs.9 and 10. The first
shows that for this low Pr the generation and dissipation of energy extends along the
slot for any of the terms of Eq. (48), with the extrema concentrated again around the
vortices. The dissipation of energy is more important near the absolute maxima of
the shear, i.e. in (x, y) =~ (0,4) and (x, y) = (1, 4). The location of the maxima at
the second bifurcation is completely different from the preceding cases. Although

Table 8 Idem Table 5, but with 10~2K ;7 and 10_4f;,c, for Pr = 0.046, Se = —0.01, Le = 0.01

N bif. Symmetry | 10~3Ra, K 102Ky |107*Kpe | Kas

1 A 1.975168  |0.246070 |0.114012 | 1.491760 | —0.247364
2 S 2.833397 |0.193500 |2.279006 |0.813263 | —0.216388
3 A 3.050286 | 0.203243  [2.121481 |0.991435 | —0.224573
4 S 3.491323 | 0.260762 [3.096843 | 1.811358 | —0.292092
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Fig. 10 Idem Fig.9 at the second bifurcation, Ra = 2.83339 x 103

the perturbation extends along the slot, K;, K7 and K¢ have the absolute maxima
near its upper and lower sides. The dissipation behaves as usual, it is concentrated
in the lateral boundary layer adjacent to the maxima with two thin interior layers.
The third bifurcation (not illustrated) gives rise perturbations with the characteristics
shown in Fig. 10, but with a flatter central part. Finally, the surface plots of the fourth
(neither shown) displays most of the variation of the kinetic energy close to the center
of the box, as the first, along two slim bands located at y &~ 3.5 and y &~ 4.5. The
perturbations outside this region are much less important.
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As a summary of the bifurcations analyzed, either of Hopf or real type, it is
possible to state that the main source of the instabilities is the shear of the steady
field. The work done by the thermal and solutal buoyancies is at most the 25% of
the total contribution, and the work done by the solutal buoyancy can even help the
viscous dissipation to stabilize the fluid in gases, although in a small percentage. The
perturbations of the steady field are predominantly located in thin layers around the
vortices, and the dissipation in the lateral boundary layers. Moreover, no relation has
been found between the symmetries of the perturbations, and their energy balances
and positions in the slot. The location of the generation of kinetic energy determines
the features of the oscillations.

A.Y. Gelfgat and S. Molokov studied in Ref. [40] the instability at Hopf bifur-
cations in a quasi-two-dimensional convection problem, derived from a three-
dimensional laterally heated box in a strong magnetic field normal to the main
circulation, under another point of view. They stated that the averaged complex
kinetic energy equation, namely that obtained by integrating over the volume the
dot product of the complex eigenvalue equation at the bifurcation times the conju-
gated eigenfunction, cannot be directly used to this purpose because the averaged
complex transport terms do not vanish, as happens for real perturbations. By using
the Helmholtz decomposition they first separated, if necessary, the potential part of
each term of the momentum equation (which globally does not transfer energy to
the perturbation) from the divergent-free part. Then, they compared the imaginary
and pure real parts of the dot products of the latter with the eigenfunctions, in order
to find out which contour plots of the divergent-free parts looked like those of the
eigenfunctions. In this way they determined which term was responsible for the oscil-
lations, and showed that the terms coming from the transport of momentum by the
steady field were important when the perturbations grow up in the boundary layers.
For instabilities developing in the bulk of the fluid this term is much less important
than the shear production.

In the preceding analysis the surface plots of the shear and the buoyancies might
include the potential parts, but as can be seen in the contour plots of Fig. 11a—d,
showing the kinetic energy of the perturbations, their maxima are located where the
rate of production (or dissipation) of this energy by shear takes place. Consequently,
in this case, it has not been necessary to extract the divergence-free term to compare
with the eigenfunction. The first two plots correspond to a boundary layer instability,
and must be compared with the first plot of Figs.5 and 6, and the two other to the
bulk instabilities showed in the first plot of Figs.7 and 9.

5.2 Periodic Orbits and Their Stability

In order to study the result of the above instabilities, the branches and stability of
the periodic orbits arising at the bifurcation points of the steady states have been
calculated following the methods described in Sect. 3.
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Fig. 11 Contour plots of the
kinetic energy, K, of the
eigenfunction at the points
where the steady branches
lose stability for

a Pr = 0.683, Se = —0.08,
Le = 1.085 at

Ra, = 3.10769 x 10°,

b Pr = 0.707, Se = —0.098,
Le = 0.076 at

Ra, = 2.78048 x 10°,
¢Pr=0.1, Se = —-0.05,

Le = 0.05 at

Ra, = 6.15841 x 10°, and
d Pr = 0.046, Se = —0.01,
Le =0.01 at

Ra = 1.97517 x 103. The
background means K = 0,
and the dark grey spots are
the maxima of K (online, red
means maximum K and blue
K =0)

5.2.1 Moderate Prandtl Numbers

In the case of the binary mixtures of Pr = &'(1) the time averaged kinetic energy
and heat flux of the POs almost overlap that of the corresponding steady flow shown
in Fig.3a, b. Then, the bifurcation diagram of POs is illustrated by means of their
period versus Ra. The leftmost point of each curve lays on the curves of the SSs.
Figure 12a shows the periods of the POs of the mixture of Pr = 0.683,Le = 1.085
and Se = —0.08. In agreement with the two types of balances found in Table 5, the
POs of branches labelled as 2 and 5 have two differences with respect to the others.
Their periods are longer, and the branches are more unstable. These properties can be
attributed to the decrease of K, at these bifurcations, mentioned before. The details
on the intervals of stability of the branches of POs are included in Table4 (BM).
Figure 12b displays the period of the branches of POs for a liquid of Pr = 0.707,
Le = 0.076 and Se = —0.098. In agreement with the results of Sect. 5.1, the period of
the POs is of the same order as that of the POs of Pr = 0.683 that have a very different
Le and similar Se. Then it seems that what determines T is Pr. Although it cannot
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Fig. 12 Period of the branches of periodic orbits versus Ra for a Pr = 0.683, Se = —0.08, Le =
1.085, and b Pr = 0.707, Se = —0.098, Le = 0.076

be appreciated in the figure the first branch is stable at the beginning, but very soon
loses stability. On the contrary, the POs of the second branch are initially unstable,
but becomes stable quickly. Now the branches of POs regain stability consecutively
by the mechanism explained until K ,;, doubles that of the first branch. The double
line at the end of branch 4 is due to a turning point found for Ra > 8 x 10°. As
happens in the convection of pure fluids of Pr & 0.7 there are multiple branches of
POs coexisting in the same range of parameters ([77, 122], among others). Moreover,
the multistability phenomena is also present, with two, three, and even four (see for
instance Fig. 12aatRa = 4.14 x 10° ) stable POs in some intervals of Ra, all of them
bifurcating from the same branch of steady solutions.

Snapshots of the time evolution of the velocity field, overlapped to the contour
plots of the full temperature are shown in the upper row of Fig. 13 for a stable PO of
the first bifurcated branch for the mixture of Pr = 0.683. The lower row depicts the
concentration. This solution is an S-cycle, so snapshots, like for instance the third
and the eighth, separated T/2 fulfill relations (45)—(46). By comparing the contour
plots with Fig. 4a, b it is clear that the perturbation affects mainly the left upper and
right lower parts of the slot where most of the kinetic energy is generated (see Fig. 5).
Instead of the waves propagating by the boundary layer described, for instance, in
Ref. [77], in this case the perturbation manifests as a pumping of tongues of cold fluid
up, and of hot fluid down, near the left and right boundary layers, respectively. The
stratification of the fluid is weak. Sheets of high (low) concentration go up (down)
by the heated (cold) side. The central part of the slot remains almost quiescent and
homogeneous.

The dynamics of the periodic orbits of the binary mixture of Pr = 0.707 is similar
to that shown in Fig. 13 for the temperature. The concentration remains almost homo-
geneous in the center of the box, as in Fig. 4d, but spots of high (low) concentration
are able to rise (fall) dragged by the velocity field and to turn at the top (bottom) of
the slot before diffusing into the hotter (colder) fluid. This fact is probably related
with the positive work done by the solutal buoyancy in the corners of the slot. The
boundary layers of both binary mixtures are more stable than those of a pure fluid

gelfgat@tau.ac.il



Stationary Flows and Periodic Dynamics of Binary Mixtures in Tall ... 203

Fig. 13 Snapshots of the velocity field (arrows) superposed to the contour plots of the full temper-
ature (upper row) and the concentration (lower row) in a period of a stable PO of the first branch.
The snapshots are taken at r =0, 7/10, T/5,37/10,27/5,T/2,3T/5,77/10,4T /5,97 /10, T.
The parameters are Ra = 4.06017 x 103 and Pr = 0.683, Se = —0.08, Le = 1.085
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of Pr = 0.71. The results are coherent because the instability for the mixtures of
Pr = 0.683 and Pr = 0.707 takes place in the same zone, and both have, near the
upper left and lower right corners, a zone of negative K, and K7 (see Figs.5 and
6) that dissipate energy and help the viscous dissipation to stabilize the boundary
layer. Then, it is probably that, for the parameters chosen, a narrower slot is needed
to have clear trains of waves travelling along the boundary layer.

5.2.2 Low Prandtl Numbers

The dynamics of the binary mixtures of low Pr has nothing to do with those of
moderate Pr because the velocity field keeps a three vortex arrangement along the full
period. Figure 14 shows the bifurcation diagram of POs for the mixture of Pr = 0.1,
Le = 0.05 and Se = —0.05. The averaged heat flux versus Ra is shown in Fig. 14a,
d, and the mean kinetic energy in Fig. 14b, c. Figure 14c, d are details of the former.
The onset of the oscillations increases both quantities. This feature is understood by
observing the dynamics of the orbits (see below).

The first branch of POs is supercritical, so it is stable from the bifurcation point
up to a Neimark—Sacker bifurcation located at Ra = 2.9899 x 10*. The period at
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Fig. 14 a and b Averaged heat flux and kinetic energy versus the Rayleigh number of branches of
the periodic solutions and their stability for Pr = 0.1, Le = 0.05, Se = —0.05. ¢ and d are details
of b and a, respectively
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the beginning of the oscillations is T = 0.34272. The other two branches of POs
computed never regain stability. That starting at the second Hopf bifurcation of
Table 7 has a turning point at Ra = 2.4743 x 10*, and connects again the steady
branch at the fourth Hopf bifurcation of the same table, after its first saddle-node.
The period of these orbits is lower than 0.07. The third branch followed (see
details in Fig. 14c, d) starts at Ra, = 2.2538 x 10, and it has two new consecu-
tive folds at Ra = 2.2852 x 10* and Ra = 1.9644 x 10*. It continues unstable up to
Ra = 3.8490 x 10*, where it undergoes the first of two new consecutive saddle-
node bifurcations. The second turning point is located very close to the first at
Ra = 3.8468 x 10*. Then the branch turns down again at Ra = 4.3006 x 10*, and
up at 4.1067 x 10*. The period of the initial PO of the third branch is 0.16919, which
is of the same order as that of the first at this Ra. After the second saddle-node of
the branch of SSs, there are two more Hopf bifurcations in the range of Fig. 14c, but
the chance that the emerging POs become stable is very low, therefore they were not
calculated.

The dynamics of the orbits along the stable branch of POs of Pr = 0.1 is illustrated
in Fig. 15. It displays as Fig. 13 the temperature in the first row, and the concentration
in the second. The solutions does not break the symmetry of the SSs of Fig. 4e, f, so
each snapshot fulfills the center-symmetries (40) and (41). The multi-vortex structure
of the SSs of Fig. 4e, f is never broken in a period of the PO. At the beginning of the
sequence, the three vortices are almost connected maintaining a temperature profile
very similar to that of the SS branch. Then, they start to contract allowing that tongues
of cold (hot) fluid penetrate to the interior of the slot in the upper (lower) part of
the vortices, increasing the heat flux. At this point the vortices are very well defined,
and allow that weak secondary vortices appear near the lids and, soon after, between
them. Then all of them quickly elongate and almost reconnect closing the cycle. The
time evolution of the temperature resembles that described in Ref. [94] for pure fluids
of 0.3 < Pr < 0.2, but for the binary mixture of Pr = 0.1 studied the vortices do not
fully reconnect, giving rise to a global centered circulation. This fact is probably due
to the lower Pr.

At first sight the vortices of the velocity field keep the concentration separated into
three levels of almost constant density, with the highest concentration at the bottom.
However, when the vortices elongate, small tongues of higher (lower) concentration
go up (down) along the boundary of the contiguous vortices, dragged by the velocity
field, and mushrooms-shaped bubbles of concentration form, moving to the lids.
When the vortices shrink there is some mixing and diffusion between the vortices,
and the mushrooms diffuse into the surrounding fluid of different concentration. Then
the vortices stretch again ending the cycle.

For lower values of Pr the heat flux and the kinetic energy decrease. Figure 16
shows the bifurcation diagram of the first four branches of POs computed for the
binary mixture of Pr = 0.046,Le = 0.01 and Se = —0.01. It shows the averaged heat
flux and K versus Ra. As for Pr = 0.1 the beginning of the oscillations increases
the mean heat flux, but the mean kinetic energy of the second and third branches
is lower. The first branch bifurcates at Ra, = 1.97517 x 103. It is supercritical,
and consequently stable at onset. It undergoes two fold bifurcations in the interval
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Fig. 16 a and b Averaged heat flux and kinetic energy versus the Rayleigh number of branches of
periodic solutions and their stability for Pr = 0.046, Le = 0.01, Se = —0.01, and ¢ and d details
of b

2.64666 x 10° < Ra < 2.65172 x 10° (see Fig. 16d). The branch becomes unsta-
ble in the short gap between the two turnings points. The two saddle-nodes bound
the only zone of coexistence of two stable solutions found at low Pr. Finally, this
branch loses stability in a Neimark—Sacker bifurcation at Ra = 6.60457 x 10°. The
period of the PO at the bifurcation point is T = 1.4390, and it decreases with Ra.
However the period on the first branch doubles that of the others. For instance, at
Ra = 2.83350 x 10° is 1.2560, while that of the second at the bifurcation point,
at Ra = 2.83340 x 10°, is 0.6121. The second branch of POs is supercritical and
always unstable, like the third and fourth (see Fig. 16c). The former is subcriti-
cal. It starts at Ra = 3.05029 x 10° with period 0.5758, and it has a turning point
at Ra = 3.04277 x 10°. The later bifurcates at Ra = 3.49132 x 10° with period
0.5864, and it has a turning point at Ra = 3.4170 x 10°.

The dynamics of a stable PO at this low Pr is shown in Fig. 17. As before, the first
row of snapshots corresponds to the temperature and the second to the concentration.
Although in this case the first bifurcation breaks the center-symmetry of the SSs and
the solution is an S-cycle, (compare for instance the first and sixth snapshots of the
last field), the temperature behaves, along a period, like that described before for
the POs of Pr = 0.1. The main difference is that the vortices keep a rounded shape
because the secondary vortices that appear either near the top and between the central
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and lower vortices or near the bottom and the central and upper vortices are always
present and confine the main ones. Then, when the tongues of cold fluid penetrate to
the interior of the slot they push slightly the hottest fluid up. In this way the center
of the vortex oscillates slowly up and down.

The time evolution of the concentration allows to distinguish very well the tran-
sient vortices of the velocity field because the levels of different concentration are
confined by this field. For instance, at t = O they are placed at the top and between
the two lower vortices, and at t = T/2 at the bottom and between the two upper.
The mixing by transport of fluid at different vertical levels and inside the vortices
is more efficient that for fluids of Pr = 0.1. Some spots of high concentration are
transported upwards, following trajectories external to the main vortices, to the next
vortex, before diffusing. After half a period, spots of low concentration do the same in
a symmetric way. When the secondary vortices develop, they open a paths that allow
the fluid captured by the central vortex to travel up and down, to penetrate inside the
other two main vortices forming sharp layers, or continuing by the external part up to
the limits of the slot where they diffuse. Moreover, spots of high (low) concentration
can also be transported to the lateral walls before diffusing.

6 Conclusions

A good performance of the Newton—Krylov techniques used here usually requires that
the multipliers be tightly clustered around the origin of the complex plane. Despite
the spectra of the convective solutions of the binary mixtures analyzed have several
multipliers close to the unit circle (mainly when Pr is order one) the convergence
of Newton’s method remains quadratic, although the number of iterations needed to
solve the linear systems increases. This fact has allowed to use continuation meth-
ods and stability analysis of the solutions to understand the behavior and dynamics
of the stable and unstable steady and periodic flows much better than just by using
direct numerical simulations. It is clear, however, that to study other invariant objects
beyond quasiperiodic solutions, like strange attractors, bursts or intermittent solu-
tions, or to compute Lyapunov exponents, the time integration cannot be substituted.
However, in the case of homoclinic chains, having the possibility of computing the
unstable objects allows to know which of them are visited, and drive the dynamics
(see examples in Refs. [33, 100]).

From the preceding results, and their comparison with the velocity and tempera-
ture fields of pure fluids in long slots already published, some general remarks can
be extracted.

e The basic steady flows always destabilize via Hopf bifurcations. The shear is the
main responsible of the instability, and the work done by the two buoyancies even
can help to stabilize the fluid. The main dissipation of energy takes place in the
boundary layers near the maxima of the shear.
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e A decrease of the generation of kinetic energy by the shear of the SSs leads to
more unstable POs of higher period in gaseous mixtures.

e With Pr ~ 0.7 the binary mixtures have multiple stable solutions, as for the pure
fluids. For Pr < 0.1 the POs are more unstable. Only one branch of stable POs
bifurcating from the main branch of SSs has been found. Some branches of steady
and periodic solutions are subcritical, or are folded near the bifurcation points, but
never regain stability. This means that some of the multipliers that get out of the
unit circle detach quickly from it when the parameter of the continuation increases.

e The velocity and temperature fields of the binary fluids studied depend mainly
on the Prandtl number. The stratification of the concentration follows closely the
streamlines. Moreover, the location of the shear of the steady flows depends also
on Pr. If Pr & (0.7 the source of instability of the SSs is located near the corners
of the slot. If Pr < 0.3 (or even higher) the instability is due to the generation
of kinetic energy in its center or along the body of the slot around the vortices.
Depending on the location, the time periodic orbits behave as a pump of heat and
concentration near the lateral sides, or as periodic oscillations of the vortices of
the velocity field in the bulk of the fluid.

e For gaseous binary mixtures of Pr ~ 0.7, and negative separation ratio, the fluid
remains almost homogeneous but in the lateral boundary layers. The mean heat
transported by the steady flow is almost the same as for the pure fluid, and the
mean kinetic energy of the mixture increases around 10%. The result of the double
diffusion and the Soret effect is to advance the onset of the oscillations, and to
increase their period in comparison with that of a pure fluid of the same Prandtl
number. The first branch of POs becomes stable for a larger interval of Rayleigh
numbers.

e At Pr < 0.1 the double diffusion stratifies the mixture forming stacked levels of
decreasing concentration caught into the vortices. The oscillations increase the
transport of fluid, mixing the concentration between either the main neighbor
vortices or between the vortices and the top and bottom sides when the secondary
vortices form. When they are destroyed, the diffusion of concentration tends to
restore the levels of the steady states. The period of the POs increases by lowering
Pr and decreases by increasing Ra. Moreover, with the same parameters, the period
of the orbits on some branches of POs can double that of others.

Acknowledgements This work has been supported by Spanish MCYT/FEDER and Catalan GEN-
CAT grants FIS2016-76525-P and 2017-SGR-1374, respectively.

References

1. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Computational
Mathematics, vol. 13. Springer, Berlin (1990)

2. Antonijoan, J., Marqués, F., Sdnchez, J.: Nonlinear spirals in the Taylor—Couette problem.
Phys. Fluids 10, 829-838 (1998)

gelfgat@tau.ac.il



Stationary Flows and Periodic Dynamics of Binary Mixtures in Tall ... 211

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

. Aruliah, D.A., Veen, L. V., Dubitski, A.: Algorithm 956: PAMPAC, a parallel adaptive method

for pseudo-arclength continuation. ACM Trans. Math. Softw. 42(1), 8:1-8:18 (2016)

. Barkley, D., Henderson, R.D.: Floquet stability analysis of the periodic wake of a circular

cylinder. J. Fluid Mech. 322, 215-241 (1996)

. Beaume, C., Bergeon, A., Knobloch, E.: Convectons and secondary snaking in three-

dimensional natural doubly diffusive convection. Phys. Fluids 25, 024105-1-024105-15
(2013)

. Bergeon, A., Knobloch, E.: Periodic and localized states in natural doubly diffusive convec-

tion. Phys. D 237, 1139-1150 (2008)

. Bergeon, A., Knobloch, E.: Spatially localized states in natural doubly diffusive convection.

Phys. Fluids 20, 034102-1-034102-8 (2008)

. Blackburn, H.M., Barkley, D., Sherwin, S.J.: Convective instability and transient growth in

flow over a backward-facing step. J. Fluid Mech. 603, 271-304 (2008)

. Bohmer, K., Mei, Z., Schwarzer, A., Sebastian, R.: Path-following of large bifurcation prob-

lems with iterative methods. In: Doedel, E., Tuckerman, L.S. (eds.) Numerical Methods for
Bifurcation Problems and Large-Scale Dynamical Systems. The IMA Volumes in Mathemat-
ics and its Applications, vol. 119, pp. 35-65. Springer, Berlin (2000)

Boronska, K., Tuckerman, L.S.: Extreme multiplicity in cylindrical Rayleigh-Benard convec-
tion. II. Bifurcation diagram and symmetry classification. Phys. Rev. E 81, 036321 (2010)
Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J.
Sci. Stat. Comput. 11(3), 450-481 (1990)

Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Com-
plex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

Christon, M., Gresho, P., Sutton, S.: Computational predictibility of natural convection flows
in enclosures. Int. J. Numer. Methods Fluids 40, 953-980 (2002)

Cliffe, K.A.: Numerical calculations of two-cell and single-cell Taylor flows. J. Fluid Mech.
135, 219-233 (1983)

Cliffe, K.A.: Numerical calculations of the primary-flow exchange process in the Taylor
problem. J. Fluid Mech. 197, 57-79 (1988)

Cliffe, K.A., Spence, A., Taverner, S.: The numerical analysis of bifurcation problems with
applications to fluid mechanics. Acta Numer. 39-131 (2000)

COMSOL Inc., Sweden: COMSOL Multiphysics Reference Manual, version 5.3 (2008)
Dankowicz, H., Schilder, F.: Recipes for Continuation: Computational Science and Engineer-
ing. SIAM, Philadelphia (2013)

Davidenko, D.F.: On a new method of numerical solution of systems of nonlinear equations.
Dokl. Akad. Kauk SSSR. 88, 601-602 (1953)

Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal.
19(2), 400408 (1982)

Dijkstra, H.A., Wubs, EW., Cliffe, A.K., Doedel, E., Dragomirescu, I.F., Eckhardt, B., Gelfgat,
A., Hazel, A., Lucarini, V., Salinger, A., Sanchez, J., Schuttelaars, H., Tuckerman, L., Thiele,
U.: Numerical bifurcation methods and their application to fluid dynamics: analysis beyond
simulation. Commun. Comput. Phys. 15(1), 1-45 (2014)

Dinar, N., Keller, H.B.: Computation of Taylor vortex flows using multigrid continuation
methods. In: Chao, C.C., Orszag, S.A., Shyy, W. (eds.) Recent Advances in Computational
Fluid Dynamics. Lecture Notes in Engineering, vol. 43, pp. 191-262. Springer, Berlin (1989)
Doedel, E.: AUTO: software for continuation and bifurcation problems in ordinary differ-
ential equations. Technical report, Applied Mathematics, California Institute of Technology,
Pasadena, CA (1986)

Doedel, E.: Lecture notes on numerical analysis of nonlinear equations. Technical report,
Concordia University, Canada (2007)

Doedel, E., Tuckerman, L.S. (eds.): Numerical Methods for Bifurcation Problems and Large-
Scale Dynamical Systems. IMA Volumes in Mathematics and its Applications, vol. 119.
Springer, Berlin (2000)

gelfgat@tau.ac.il



212

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

J. Sanchez Umbria and M. Net

Doedel, E., Govaerts, W., Kuznetsov, Y.A.: Computation of periodic solution bifurcations in
ODEs using bordered systems. SIAM J. Numer. Anal. 41(2), 401-435 (2003)

Dorr, EW.: The direct solution of the discrete poisson equation on a rectangle. SIAM Rev.
12(2), 248-263 (1970)

Duguet, Y., Pringle, C.C.T., Kerswell, R.R.: Relative periodic orbits in transitional pipe flow.
Phys. Fluids 20(11), 114102 (2008)

Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov methods for the
incompressible Navier-Stokes equations. J. Comput. Phys. 110, 82-102 (1994)

Feigelson, R. (ed.): 50 years Progress in Crystal Growth. A Reprint Collection. Elsevier,
Amsterdam (2004)

Feudel, F., Tuckerman, L.S., Gellert, M., Seehafer, N.: Bifurcations of rotating waves in
rotating spherical shell convection. Phys. Rev. E 92, 053015 (2015)

Formica, G., Arena, A., Lacarbonara, W., Dankowicz, H.: Coupling FEM with parameter
continuation for analysis of bifurcations of periodic responses in nonlinear structures. J.
Comput. Nonlinear Dyn. 8(2), 021013-8 (2012)

Gao, Z., Podvin, B., Sergent, A., Xin, S.: Chaotic dynamics of a convection roll in a highly
confined, vertical, differentially heated fluid layer. Phys. Rev. E 91, 013006 (2015)

Gao, Z., Sergent, A., Podvin, B., Xin, S., Le Quéré, P., Tuckerman, L.S.: Transition to chaos
of natural convection between two infinite differentially heated vertical plates. Phys. Rev. E
88, 023010 (2013)

Garcia, F., Net, M., Garcia-Archilla, B., Sanchez, J.: A comparison of high-order time inte-
grators for the Boussinesq Navier—Stokes equations in rotating spherical shells. J. Comput.
Phys. 229, 7997-8010 (2010)

Garcia, F., Net, M., Sanchez, J.: Continuation and stability of convective modulated rotating
waves in spherical shells. Phys. Rev. E 93, 013119 (2016)

Garcia-Archilla, B., Sanchez, J., Simd, C.: Krylov methods and test functions for detecting
bifurcations in one parameter-dependent partial differential equations. BIT 46(4), 731-757
(2006)

Gelfgat, A.Y.: Stability of convective flows in cavities: solution of benchmark problems by a
low-order finite volume method. Int. J. Numer. Methods Fluids 53(3), 485-506 (2007)
Gelfgat, A.Y., Bar-Yoseph, P.Z., Yarin, A.L.: Stability of multiple steady states of convection
in laterally heated cavities. J. Fluid Mech. 388, 315-334 (1999)

Gelfgat, A.Y., Molokov, S.: Quasi-two-dimensional convection in a three-dimensional lat-
erally heated box in a strong magnetic field normal to main circulation. Phys. Fluids 23,
034101-1-034101-13 (2011)

Ghorayeb, K., Mojtabi, A.: Double diffusive convection in a vertical rectangular cavity. Phys.
Fluids 9(8), 2339-2348 (1997)

Gibson, J.F., Halcrow, J., Cvitanovic, P.: Visualizing the geometry of state space in plane
Couette flow. J. Fluid Mech. 611, 107-130 (2008)

Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix multiplication. ACM
Trans. Math. Softw. 34(3), 1-25 (2008)

Govaerts, W.J.F.: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM,
Philadelphia (2000)

Green, K.R., Van Veen, L.: Open-source tools for dynamical analysis of Liley’s mean-field
cortex model. J. Comput. Sci. 5(3), 507-516 (2014)

Griewank, A., Reddien, G.: The calculation of Hopf points by a direct method. IMA J. Numer.
Anal. 3, 295-303 (1983)

de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover Publications, Amster-
dam (1962)

Heil, M., Hazel, A.L.: oomph-lib — an object-oriented multi-physics finite-element library.
In: Schafer, M., Bungartz, H.J. (eds.) Fluid-Structure Interaction, pp. 19-49. Springer, Berlin
(2006)

Henry, D., Ben Hadid, H.: Multiple flow transitions in a box heated from the side in low-
Prandtl-number fluids. Phys. Rev. E 76, 016314 (2007)

gelfgat@tau.ac.il



Stationary Flows and Periodic Dynamics of Binary Mixtures in Tall ... 213

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.
61.
62.
63.
64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

Henry, D., Bergeon, A. (eds.): Continuation Methods in Fluid Mechanics, Contributions to
the ERCOFTAC/EUROMECH Colloquium. Notes on Numerical Fluid Mechanics, vol. 383.
Vieweg (2000)

Kawahara, G., Uhlmann, M., van Veen, L.: The significance of simple invariant solutions in
turbulent flows. Ann. Rev. Fluid Mech. 44(1), 203-225 (2012)

Ke, H., He, Y., Liu, Y., Cui, F.: Mixture working gases in thermoacoustic engines for different
applications. Int. J. Thermophys. 33, 1143-1163 (2012)

Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabi-
nowitz, P.H. (ed.) Applications of Bifurcation Theory, pp. 359-384. Academic Press, New
York (1977)

Keller, H.B.: Lectures on Numerical Methods in Bifurcation Theory. Lectures on Mathematics
and Physics. Tata Institute of Fundamental Research, Springer, New York (1987)

Kim, K.M., Witt, A.F., Gatos, H.C.: Crystal growth from the melt under destabilizing thermal
gradients. J. Electrochem. Soc. 119(9), 1218-1226 (1972)

Kranenborg, J.: Double-diffusive convection due to lateral thermal forcing. Ph.D. thesis,
Utrecht University (1996)

Krauskopf, B., Osinga, H.: Computing invariant manifolds via the continuation of orbit seg-
ments. In: Krauskopf, B., Osinga, H., Galdn-Vioque, J. (eds.) Numerical Continuation Meth-
ods for Dynamical Systems: Path following and Boundary Value Problems, Understanding
Complex Systems, pp. 117-154. Springer, New York (2007)

Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Dellnitz, M.,
Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Int. J.
Bifurc. Chaos Appl. Sci. Eng. 15, 763-791 (2005)

Kubicek, M., Marek, M.: Computational Methods in Bifurcation Theory and Dissipative
Structures. Springer, Berlin (1983)

Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Berlin (1998)

Lappa, M.: Thermal Convection: Patterns Evolution and Stability. Wiley, Singapore (2009)
Le Quéré, P.: Transition to unsteady natural convection in a tall water-filled cavity. Phys.
Fluids A 2(4), 503-515 (1990)

Le Quéré, P., Behnia, M.: From onset of unsteadiness to chaos in a differentially heated square
cavity. J. Fluid Mech. 359, 81-107 (1998)

Lee, J., Hyun, M., Kang, Y.: Confined natural convection due to lateral heating in a stably
stratified solution. Int. J. Heat Mass Transf. 33(5), 869-875 (1990)

Lehoucq, R.B., Sorensen, D.C.: Deflation techniques for an implicitly restarted Arnoldi iter-
ation. SIAM J. Matrix Anal. Appl. 17, 789-821 (1996)

Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK User’s Guide: Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Software, Environments
Tools. SIAM, Philadelphia (1998)

Liu, J., Ahlers, G.: Rayleigh—bénard convection in binary-gas mixtures: thermophysical prop-
erties and the onset of convection. Phys. Rev. E 55, 6950-6968 (1997)

Lo Jacono, D., Bergeon, A., Knobloch, E.: Localized traveling pulses in natural doubly dif-
fusive convection. Phys. Rev. Fluids 2, 093501-1-093501-19 (2017)

Lopez, .M., Marqués, F., Sanchez, J.: Oscillatory modes in an enclosed swirling flow. J. Fluid
Mech. 439, 109-129 (2001)

Lust, K., Roose, D., Spence, A., Champneys, A.: An adaptive Newton—Picard algorithm with
subspace iteration for computing periodic solutions. SIAM J. Sci. Comput. 19(4), 1188-1209
(1998)

Mamun, C.K., Tuckerman, L.S.: Asymmetry and Hopf bifurcation in spherical Couette flow.
Phys. Fluids 7, 80-91 (1995)

Meerbergen, K., Roose, D.: Matrix transformations for computing rightmost eigenvalues of
large sparse non-symmetric eigenvalue problems. IMA J. Numer. Anal. 16(3), 297-346 (1996)
Meyer-Spasche, R., Keller, H.B.: Computation of the axisymmetric flow between rotating
cylinders. J. Comput. Phys. 35, 100-109 (1980)

gelfgat@tau.ac.il



214

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.
84.

85.

86.

87.
88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

J. Sanchez Umbria and M. Net

Molemaker, M.J., Dijkstra, H.A.: Multiple equilibria and stability of the North-Atlantic wind-
driven ocean circulation. In: Doedel, E., Tuckerman, L.S. (eds.) Numerical Methods for Bifur-
cation Problems and Large-Scale Dynamical Systems. The IMA Volumes in Mathematics and
its Applications, vol. 119, pp. 35-65. Springer, Berlin (2000)

Moore, G., Spence, A.: The calculation of turning points of nonlinear equations. SIAM 1J.
Numer. Anal. 17(4), 567-576 (1980)

Net, M., Sanchez, J.: Continuation of bifurcations of periodic orbits for large-scale systems.
SIAM J. Appl. Dyn. Syst. 14(2), 674-698 (2015)

Net, M., Sanchez Umbria, J.: Periodic orbits in tall laterally heated rectangular cavities. Phys.
Rev. E 95, 023102 (2017)

Pawlowski, R.P., Shadid, J.N., Simonis, J.P., Walker, H.F.: Globalization techniques for
Newton—Krylov methods and applications to the fully coupled solution of the Navier—Stokes
equations. SIAM Rev. 48, 700-721 (2006)

Pozzo, M., Davies, C., Gubbins, D., Alfe, D.: Transport properties for liquid silicon-oxygen-
iron mixtures at earth’s core conditions. Phys. Rev. B 87, 014110-1-014110-10 (2013)
Puigjaner, D., Herrero, J., Simé, C., Giralt, F.: From steady solutions to chaotic flows in a
Rayleigh—Bénard problem at moderate Rayleigh numbers. Phys. D 240, 920-934 (2011)
Rheinboldt, W.C.: Numerical Analysis of Parametrized Nonlinear Equations. Wiley, New
York (1986)

Riks, E.: The application of Newton’s method to the problem of elastic stability. ASME J.
Appl. Mech. 39(4), 1060-1065 (1971)

Roache, P.J.: Computational Fluid Dynamics. Hermosa Publishers, Albuquerque (1972)
Roose, D., Hlavacek, V.: A direct method for the computation of Hopf bifurcation points.
SIAM J. Appl. Math. 45(6), 879-894 (1985)

Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester University Press,
Manchester (1992)

Saad, Y.: Preconditioned Krylov subspace methods for CFD applications. Technical report,
UMSI-94-171, Minnesota Supercomputer Institute, Minneapolis, MN 55415 (1994)

Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Pub. Co., New York (1996)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856-869 (1986)

Salinger, A.G., Bou-Rabee, N.M., Pawlowsky, R.P., Wilkes, E.D., Burroughs, E.A., Lehoucq,
R.B.,Romero, L.A.: LOCA 1.1. Library of Continuation Algorithms: Theory and Implemen-
tation Manual. Sandia National Laboratories, Albuquerque, NM (2002)

Salinger, A.G., Lehoucq, R.B., Pawlowski, R.P., Shadid, J.N.: Computational bifurcation and
stability studies of the 8:1 thermal cavity problem. Int. J. Numer. Methods Fluids 40(8),
1059-1073 (2002)

Sanchez, J., Net, M.: On the multiple shooting continuation of periodic orbits by Newton—
Krylov methods. Int. J. Bifurc. Chaos Appl. Sci. Eng. 20(1), 1-19 (2010)

Sanchez, J., Net, M.: A parallel algorithm for the computation of invariant tori in large-scale
dissipative systems. Phys. D 252(1), 22-33 (2013)

Sanchez, J., Net, M.: Numerical continuation methods for large-scale dissipative dynamical
systems. Eur. Phys. J. Spec. Top. 225(13), 2465-2486 (2016)

Sanchez, J., Net, M.: Prandtl number dependence of convective fluids in tall laterally heated
slots. Eur. J. Phys. Special Top. (under review) (2018)

Sanchez, J., Marqués, F., Lépez, J.M.: A continuation and bifurcation technique for Navier—
Stokes flows. J. Comput. Phys. 180, 78-98 (2002)

Sanchez, J., Net, M., Garcia-Archilla, B., Simé, C.: Newton—Krylov continuation of periodic
orbits for Navier-Stokes flows. J. Comput. Phys. 201(1), 13-33 (2004)

Sanchez, J., Net, M., Garcia-Archilla, B., Simé, C.: Continuation of periodic orbits in large-
scale dissipative systems. In: Dumortier, E., Broer, H., Mawhin, J., Vanderbauwhede, A.,
Lunel, S.V. (eds.) Proceedings of the Equadiff-2003 Conference, pp. 625-630. World Scien-
tific, Singapore (2005)

gelfgat@tau.ac.il



Stationary Flows and Periodic Dynamics of Binary Mixtures in Tall ... 215

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

Sanchez, J., Net, M., Vega, J.: Amplitude equations close to a triple-(41) bifurcation point
of D4-symmetric periodic orbits in O (2)-equivariant systems. Discret. Contin. Dyn. Syst. B
6(6), 1357-1380 (2006)

Sanchez, J., Net, M., Simd, C.: Computation of invariant tori by Newton—Krylov methods in
large-scale dissipative systems. Phys. D 239, 123-133 (2010)

Sanchez, J., Garcia, F., Net, M.: Computation of azimuthal waves and their stability in ther-
mal convection in rotating spherical shells with application to the study of a double-Hopf
bifurcation. Phys. Rev. E 87, 033014 (2013)

Seydel, R.: Numerical computation of branch points in nonlinear equations. Numer. Math.
33(3), 339-352 (1979)

Seydel, R.: Practical Bifurcation and Stability Analysis. From Equilibrium to Chaos. Springer,
New York (1994)

Shroff, G.M., Keller, H.B.: Stabilization of unstable procedures: the recursive projection
method. SIAM J. Numer. Anal. 30(4), 1099-1120 (1993)

Sleijpen, G.L.G., Fokkema, D.R.: BICGSTAB(L) for linear equations involving unsymmetric
matrices with complex spectrum. ETNA 1, 11-32 (1993)

Thurlow, M.S., Brooks, B.J., Lucas, P.G.J., Ardron, M.R., Bhattacharjee, J.K., Woodcraft,
A.L.: Convective instability in rotating liquid 3He-4He mixtures. J. Fluid Mech. 313, 381-
407 (1996)

Tiesinga, G., Wubs, F., Veldman, A.: Bifurcation analysis of incompressible flow in a driven
cavity by the Newton—Picard method. J. Comput. Appl. Math. 140(1-2), 751-772 (2002)
Tsitverblit, N.: Bifurcation phenomena in confined thermosolutal convection with lateral
heating: commencement of the double-diffusive region. Phys. Fluids 7(4), 718-736 (1995)
Tuckerman, L.S.: Steady-state solving via Stokes preconditioning; recursion relations for
elliptic operators. In: Dwoyer, D., Hussaini, M., Voigt, R. (eds.) 11th International Conference
on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, pp. 573-577. Springer,
Berlin (1989)

Tuckerman, L.S., Barkley, D.: Bifurcation analysis for timesteppers. In: Doedel, E., Tucker-
man, L.S. (eds.) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical
Systems. IMA Volumes in Mathematics and its Applications, vol. 119, pp. 453-466. Springer,
Berlin (2000)

Uecker, H., Wetzel, D., Rademacher, J.: pde2path - a matlab package for continuation and
bifurcation in 2D elliptic systems. Numer. Math. Theory, Methods Appl. 7, 58-106 (2014)
van Noorden, T.L., Verduyn Lunel, S.M., Bliek, A.: The efficient computation of periodic
states of cyclically operated chemical processes. IMA J. Appl. Math. 68, 149-166 (2003)
van Noorden, T.L., Verduyn Lunel, S.M., Bliek, A.: A Broyden rank p update continuation
method with subspace iteration. SIAM J. Sci. Comput. (2004)

van Veen, L., Kawahara, G., Atsushi, M.: On matrix-free computation of 2D unstable mani-
folds. SIAM J. Sci. Comput. 33(1), 25-44 (2011)

Viswanath, D.: Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339—
358 (2007)

Wakitani, S.: Flow patterns of natural convection in an air-filled vertical cavity. Phys. Fluids
10(8), 1924-1928 (1998)

Wales, C., Gaitonde, A.L., Jones, D.P., Avitabile, D., Champneys, A.R.: Numerical continu-
ation of high reynolds number external flows. Int. J. Numer. Methods Fluids 68(2), 135-159
(2012)

Waugh, I, lllingworth, S., Juniper, M.: Matrix-free continuation of limit cycles for bifurcation
analysis of large thermoacoustic systems. J. Comput. Phys. 240, 225-247 (2013)

Waugh, 1.C., Kashinath, K., Juniper, M.P.: Matrix-free continuation of limit cycles and their
bifurcations for a ducted premixed flame. J. Fluid Mech. 759, 1-27 (2014)

Werner, B., Spence, A.: The computation of symmetry-breaking bifurcation points. SIAM J.
Numer. Anal. 21, 388-399 (1984)

Winters, K.H.: Oscillatory convection in liquid metals in a horizontal temperature gradient.
Int. J. Numer. Methods Eng. 25, 401414 (1988)

gelfgat@tau.ac.il



216

121.

122.

123.

124.

125.

J. Sanchez Umbria and M. Net

Wriggers, P., Wagner, W., Miehe, C.: A quadratically convergent procedure for the calculation
of stability points in finite element analysis. Comput. Methods Appl. Mech. Eng. 70(3), 329—
347 (1988)

Xin, S., Le Quéré, P.: Natural-convection flows in air-filled differentially heated cavities with
adiabatic horizontal walls. Numer. Heat Transf. Part A 50, 437-466 (2006)

Xin, S., Le Quéré, P.: Stability of two-dimensional (2D) natural convection flows in air-filled
differentially heated cavities: 2D/3D disturbances. Fluid Dyn. Res. 44(3), 031419 (2012)
Xin, S., Le Quéré, P., Tuckerman, L.: Bifurcation analysis of doubly-diffusive convection
with opposing horizontal thermal and solutal gradients. Phys. Fluids 10(4), 850-858 (1998)
Yahata, H.: Stability analysis of natural convection in vertical cavities with lateral heating. J.
Phys. Soc. Jpn. 66(11), 3434-3443 (1998)

gelfgat@tau.ac.il



