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Abstract. Surface transport and diffusion at low damping reveals a number of unexplained or at
least not systematically explained behaviors. Here we present two problems that require further
study for a full understanding. One involves motion on a random surface, the unresolved issue being
the parameter regimes leading to subdiffusive, diffusive, and superdiffusive motions at intermediate
times. The other involves the temperature dependence of maximal diffusion on a periodic surface in
the presence of a constant external force.
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INTRODUCTION

Transport and diffusion of atoms, molecules, molecular clusters, and colloidal particles
on periodic or random surfaces continues to be a problem of ubiquitous interest because
there are constantly new and technologically important experiments that involve such
motions, and because there are still many unanswered theoretical issues associated with
these problems in spite of their long history ( [1, 2, 3, 4, 5, 6] and extensive references
therein). This being a volume associated with a conference on unsolved problems in-
volving noise, we focus on some transport and diffusion problems on surfaces that lead
to as yet unresolved issues.

Theoretical analyses of the motion of particles on surfaces would ideally rely on ab
initio or molecular dynamics models in which the particles and the surfaces are repre-
sented in their full microscopic detail. This is as yet impossible over experimentally rel-
evant time scales. A compromise is to rely on mesoscopic phenomenological paradigms
in which one focuses on a few dynamical variables that describe the particle of interest.
Its interaction with the surface is represented by a surface potential, a frictional force,
and a stochastic component to represent thermal effects and other degrees of freedom
not microscopically considered. External forces for the study of transport processes can
also be included.

Among the mesoscopic models of choice in the longevous history of the subject are
overdamped Langevin equations. The generic form for such models to describe the
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evolution of a dynamical variable x(t) (e.g. the displacement of a particle in a one-
dimensional system) would be γ ẋ = −V ′(x) + ξ (t) + F(x, t), where a dot denotes a
derivative with respect to time t, a prime is a derivative with respect to the argument,
ξ (t) is δ -correlated Gaussian noise, 〈ξi(t)ξ j(t ′)〉 = 2γkBT δi jδ (t − t ′) where T is the
temperature, and F(x, t) is an external force. The damping coefficient γ is usually not
written explicitly as we have done because one can of course simply divide through by
it. The equation represents an overdamped system because it is missing the inertial con-
tribution proportional to ẍ that would appear in Newton’s Law. The associated model of
choice on a discrete lattice is a nearest neighbor random walk, and the probabilistic de-
scription based on the density P(x, t) that the particle is at x at time t is the Fokker-Planck
equation. The equation with full inertial contributions from which the overdamped equa-
tion emerges in the large γ limit is mẍ = −γ ẋ−V ′(x)+ ξ (t)+ F(x, t), where m is the
particle mass (set to unity henceforth). This equation is not analyzed nearly as often as
is the overdamped case because the second time derivative seriously complicates the
mathematics.

The overdamped model and its discrete counterpart (and its higher dimensional ver-
sions) are of course not able to reproduce all observations, especially those that can
not be described as one would a nearest neighbor random walk or simple diffusion in
a potential. This has long been recognized, and extensions of the models have been
the subject of an extensive literature. A few examples involve the extension of random
walk models to include jumps to neighbors beyond the nearest (and even to very distant
ones), persistent behavior that causes a particle to preferentially continue jumping along
a previously chosen direction, and the generalization of ξ (t) to non-white and/or non-
Gaussian noise. In recent years there have been a number of experimental observations
of particles on surfaces that seem to move over long distances in one direction before
moving in another (see references in [3]), and a number of these generalizations have
been invoked in an attempt to explain the observations. It is our thesis that many of these
observations do not require special modeling of the noise or other memory effects, but
can be explained by including the inertial contribution and exploring the small-γ regime.

In the course of these investigations, we have encountered some results that lead to
open questions to be explored, and here we exhibit two of them. One is related to the
nature of the diffusive process on random surfaces in the absence of external forces, and
will be presented in the next Section. The other concerns a temperature dependence in
the diffusion on periodic surfaces in the presence of a constant external force. This will
be presented in the subsequent Section. We close with a brief summary.

SUPERDIFFUSION?

We consider a two-dimensional surface in the absence of external forces. In conveniently
scaled variables the equations are (with independent noises in different directions)

ẍ = −γ ẋ−
∂
∂x

V (x,y)+ξx(t),

ÿ = −γ ẏ−
∂
∂y

V (x,y)+ξy(t), (1)
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FIGURE 1. Typical random potential.

FIGURE 2. Left two panels: typical trajectories for high damping (far left) and low damping (second
from left) on a periodic lattice. Right two panels: typical trajectories for high damping (second from right)
and low damping (far right) on a random lattice. The average potential heights is the same for both lattices.
For detailed parameter values see [3].

where the potential V (x,y) is either periodic or random [2, 3]. If random, it is charac-
terized by a distribution, which we choose to be a Gaussian, with a correlation function
that we choose to be exponential, 〈V (x)V (x′)〉 = g(x−x′) with

g(x−x′) =
ε

2πλ 2 e−|x−x′|2/2λ 2
, (2)

and x = (x,y), x′ = (x′,y′). The correlation function is parameterized by the intensity ε
(specified in terms of the temperature) and the characteristic length λ (we set λ = 4 in
our simulations). In Fig. 1 we show a small portion of such a random potential. In Fig. 2
we show typical trajectories for high and low damping, both for a periodic potential
(for comparison) and for a random potential. The situation of interest here is that of the
rightmost panel in the figure.

In a periodic potential we have shown that, for a fixed set of potential parameters and
temperature, the motion ranges from diffusive to superdiffusive over many intermediate
decades of time as one lowers the damping [2, 3]. That is, the motion over many decades
of time at sufficiently low damping is characterized by a mean square displacement
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FIGURE 3. 〈r2〉/4τ for three sets of values of the random potential intensity parameter ε and the
damping coefficient γ as defined in [2, 3, 7].

proportional to tα with 1 < α ≤ 2 (at asymptotic times the motion becomes diffusive,
that is, α → 1). We analyzed this motion in further detail and showed that the probability
distribution function P(r,τ) of particle displacements r at time τ in the intermediate time
regime shows many characteristics typical of Lévy walks. We stress that this behavior
is caused entirely by inertial effects that become increasingly important as damping
decreases, since the fluctuations in the model are white and Gaussian.

In a random potential we conjecture that the possible range of behaviors extends all
the way from subdiffusive (α < 1) to diffusive and superdiffusive [2, 3, 7]. It is fairly
easy and not surprising to find parameter values that lead to subdiffusive behavior, since
particles may get trapped for very long time intervals in extremely deep potential wells
from which it is difficult to emerge [7, 8]. It is also fairly easy to find parameters that
lead to diffusive behavior. The uncertain issue (unsolved problem) is the question of
occurrence, parameter range, and time range of superdiffusion, which is associated with
long open pathways that can occur with some probability in a random system. While we
have not found a systematic set of parameter values such that the variation of a single
parameter (e.g. damping) takes one through the subdiffusive-diffusive-superdiffusive
behaviors, we have observed all three behaviors [7], as shown in Fig. 3.

TEMPERATURE DEPENDENCE

Our second unsolved problem deals with a particular temperature dependence in the case
of transport over a periodic surface subject to a constant external force. The potential in
suitably scaled units now is (again, in our simulations we set λ = 4)

V (x,y) =
1
2

[

cos
(

2πx
λ

)

+ cos
(

2πy
λ

)]

. (3)

A constant force F0 is applied along the x direction. We have explored the depen-
dence of the mean velocity v ≡ limt→∞(〈x(t)〉/t) and the diffusion coefficient D ≡
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FIGURE 4. Mean velocity (left panel) and diffusion coefficient (right panel) vs F0 for three values of
the temperature: ε = 0.15 (solid curve), ε = 0.20 (dashed curve), and ε = 0.25 (dotted curve). The friction
coefficient is fixed at γ = 0.05.

limt→∞(〈[x(t)−〈x(t)〉]2 /2t) on damping, force, and temperature [4]. The unexplained
behavior concerns the behavior observed in Fig. 4.

In the left panel we present the velocity vs F0 curves for three values of the tem-
perature for a system with friction coefficient γ = 0.05. The panel on the right shows
the associated diffusion coefficient for each of the three temperatures. The transition
behavior observed in the velocity has been discussed in [4], and the principal effect of
lowering the temperature is to sharpen the transition region, essentially without moving
its location Fc (Fc ∼ 0.1 for γ = 0.05). However, the effect on the diffusion coefficient
is far more pronounced. While the location Fc of the peak is essentially temperature in-
dependent, the peak grows with decreasing temperature, that is, diffusion is stronger as
temperature decreases. This behavior is consistent with a transition between locked and
running states, as described in [4].

A plot of the maximum diffusion as a function of the temperature reveals the strongly
nonlinear dependence

Dmax ∼ T−3.5, (4)

that is, the diffusion coefficient seems to grow without bound as temperature is lowered
(in the overdamped system one finds that Dmax ∼ T 1/3 [4]). An interesting scaling
behavior is observed if we plot the product ε3.5D as a function of (F0 −Fc)/ε1.5, as
done in Fig. 5. With this scaling, all the curves in the right panel of Fig. 4 collapse onto
the same curve. We stress that the exponents 3.5 and 1.5 of ε are simply numerical fits
(and not necessarily the very best ones at that), although the divergent increase of D with
decreasing temperature is supported by the simulations for the temperatures studied. In
any case, the result (4) as well as the scaling behavior in Fig. 5 (or ones with even more
accurate exponents) are the theoretically unsolved problems of this section.

SUMMARY

We have presented two unsolved problems involving noise. Both have to do with dif-
fusion on surfaces when damping is low. One concerns motion over a random surface:
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FIGURE 5. Scaled diffusion for γ = 0.05 for various temperatures. Dots: ε = 0.15; squares: ε = 0.21;
diamonds: ε = 0.25.

while it is apparent that the motion may be subdiffusive, diffusive, or superdiffusive at
intermediate times for appropriate parameter values, there is as yet no systematic un-
derstanding of the conditions that lead to each of these behaviors. The other concerns
the temperature dependence of the maximum of the diffusion coefficient on a periodic
lattice when there is an external force along a crystallographic axis. This temperature de-
pendence, as well as an apparent scaling law associated with it, remain to be explained.
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