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Abstract

An inchworm processive mechanism is proposed to explain the motion of dimeric molecular motors such as kinesin.We

present here preliminary results for this mechanism focusing on observables like mean velocity, coupling ratio and

efficiency versus ATP concentration and the external load F.

r 2006 Elsevier B.V. All rights reserved.
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Molecular motor proteins transform the energy of ATP hydrolysis into mechanical work performing
discrete steps along a periodic track. The experimental work on protein motors [1–3] has stimulated a wide
variety of modelizations, most of them based in ratchet-like potentials. The two main candidates for the
walking mechanisms of dimeric motors were inchworm or hand-over-hand. In the first case it is assumed that
the first leading head advances one step which is followed instantaneously by the trailing head. In the hand-
over-hand mechanism the second head advances two steps overpassing the first head. In Ref. [2] some
experimental evidence was presented which seem to support the inchworm mechanism. Nevertheless, more
precise experiments show that myosin-V walk in a hand-over-hand way [3]. These two different mechanisms
imply different conformational changes in the protein structure during ATP hydrolysis. Moreover they imply
a different response with respect to the experimental control parameters [ATP] and F.

Although it is commonly accepted now that some processive members of kinesin, myosin and dynein
families seem to walk in a hand-over-hand fashion, it is still worth analyzing the inchworm mechanism, which
could hold for other type of motors. For these reasons, we will present here a very simple model walking in a
inchworm fashion with parameter values in the biological scale. We will also focus on some implications with
experimental relevance.

It was shown in Ref. [1] that kinesin uses a single ATP molecule to perform each step. Such relation is called
the coupling ratio, which for low external loads is about 1. The temporal distribution of these steps is random
due to the ATP diffusion until it reaches the motor. After binding the nucleotide, hydrolysis and the
consequent conformational change take place displacing the whole motor a certain distance which is usually
e front matter r 2006 Elsevier B.V. All rights reserved.
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equal to the periodicity of the track. All this process can occur even in the presence of an opposing external
force F and at low ATP concentration, although both regimes decrease the mean velocity.

The inchworm walking mechanism can be modeled as two linearly-coupled particles interacting with a
ratchet potential. The conformational cycle is introduced as a stretching and posterior relaxing of the coupling
spring. This way of modeling was introduced in Ref. [4] showing that thermal fluctuations are not strictly
necessary in order to achieve the motion. Other works [5–8] are also based on this approach. The main
difference between them is the way they model the mechanical changes under the input of chemical energy.
While Ref. [4] considers the conformational change as an increase of the equilibrium length of the spring,
other literature introduce asymmetric frictions or switches on the ratchet potential. Here we will explore a
different and simple way which allows to control with precision the amount of the input energy. Furthermore,
we apply a kinetic methodology [9] based on enzymatic inhibition to get an analytical expression for the
velocity as a function of the ATP concentration and the external force F. Finally we analyze the coupling ratio
and the efficiency at different values of F.

We will consider the motor as two particles coupled by a spring. The set of equations in the overdamped
limit are

l _x1 ¼ �V 0ðx1Þ � kðx1 � x2 � LÞ � f sðtÞ �
F

2
þ x1ðtÞ,

l _x2 ¼ �V 0ðx2Þ þ kðx1 � x2 � LÞ þ f sðtÞ �
F

2
þ x2ðtÞ, (1)

where x1;x2 are the position of the trailing and the leading head, respectively, k is the stiffness of the harmonic
spring with equilibrium length L, which is also the periodicity of the ratchet potential V ðxÞ. Such potential has
an asymmetric factor a and a barrier height V0 (see Fig. 1). f sðtÞ is the random chemical force and F is the
external load. The thermal force is emulated through a zero mean Gaussian-white noise with a correlation,
hxiðtÞxiðt

0Þi ¼ 2lkBTdðt� t0Þ. l is the friction and kBT is the thermal energy. Then, at thermal equilibrium the
two particles will lay, most of the time, on two consecutive potential minima. We assume that at random
intervals of time, an energetic nucleotide like ATP will bind the motor and a stretching force f s will act on the
system until the total length of the motor will be doubled, i.e. x2 � x1 ¼ 2L. If E is the hydrolysis energy of the
molecule and L is the displacement that it is performed, then we take the chemical force f s ¼ E=L.

The values of the parameters have been chosen in a nano scale to mimic some molecular motors such the
kinesin. The periodicity of the potential L is taken to be the periodicity of microtubules, 8 nm. The asymmetric
factor a ¼ 0:8 and V0 ¼ 50 pNnm optimizes the efficiency of our model. E ¼ 100 pNnm corresponds to an
accepted value for the energy of hydrolysis of an ATP and thermal energy is kBT ¼ 4:1 pNnm. The stiffness of
the motor is chosen k ¼ 1 pN=nm and the drag force l ¼ 2� 10�4 pNs=nm. When the motor is free from
Fig. 1. (a) Scheme of the ratchet potential the positions of the leading head (black particle) and the trailing head (gray particle) at the three

stages of the motor. (i) Rest configuration. (ii) The motor at the end of the stretching. (iii) Final stage. (b) Simulated mean velocities hvi of

the center of mass versus p for F ¼ 0; 1; 3pN drawn with circles, squares and triangles, respectively. Dashed lines are Michaelis–Menten

fits. The resulting kinetic parameters are shown in the table.
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ATP, p 2 ð0; 1Þ is the uniform probability per time step Dt of binding one molecule. When it occurs, more ATP
binding is forbidden and stretching takes place until the elongation is 2L. Then, the stretching force disappears
and the spring relaxes. When x2 � x1 is again L, one cycle is completed and ATP binding is allowed. In the
absence of external load, this mechano-chemical cycle induces a L displacement of the motor towards one end
of the potential. Fig. 1a shows the scheme of the process. On the other hand, our approach controls how much
energy ET is applied to the system by simply multiplying E by the number n of ATP consumed: ET ¼ nE. The
mean velocity of the motor, when the ATP concentration is saturant and F ¼ 0, is maximum and dependent
only on the intrinsic properties of the motor and by E. Let ton be the time spent to perform a single step, i.e.,
the stretching plus the relaxing time. Thus, Vmax ¼ L=ton. Using the given values of the parameters,
simulations show that ton�0:012 s, which gives V max�667 nm=s. However, the global speed hvi will be slowed
down when the ATP concentration decreases. Typically, the ½ATP�-dependence on hvi is given by the
Michaelis–Menten relation [9].In our model, we have previously defined p as the uniform probability to get an
ATP per time step Dt and with p ¼ 0 while the motor stretches and relaxes. It can be accepted that, as the
reaction frequency is proportional to ½ATP�, and then ½ATP� is proportional to p. Then, we have

hvi ¼ V max

p

KM þ p
, (2)

where KM is the Michaelis constant for the probability. From now on, we will deal with p and not with ½ATP�.
Fig.1b shows how the Michaelian behavior fits well the simulated values of the mean velocity. However, for
finite values of F, both kinetic parameters Vmax and KM change. In Ref. [9] it is shown that the effect of the
external load in kinesin can be interpreted as an inhibition process. This introduces a F-dependence on the two
kinetic parameters

VmaxðF Þ ¼
VmaxðF ¼ 0Þ

1þ 1=KiuðFS=F � 1Þ
; KM ðF Þ ¼ KMðF ¼ 0Þ

1þ 1=KicðFS=F � 1Þ

1þ 1=KiuðFS=F � 1Þ
(3)

and allows to express the velocity of the motor as a function of the two control variables p and F.
FS is the stall force, i.e., the maximum load that the motor is able to carry. In our simulations, F S�5:25 pN.

Kiu and Kic are the uncompetitive and competitive inhibition constants, respectively, and are a quantitative
measure of how F affects the motor when it is free from nucleotide (Kic) or when it has an ATP (Kiu). From
table values of Fig. 1b we fit the values of the inhibition constants obtaining Kiu�0:338� 10�6 and
Kic�2:131� 10�6. As they are dissociation constants, the effect of the load on the ATP-bound state is greater
than in the ATP-free configuration. This means that the force acts as an uncompetitive mixed inhibitor, while
in Ref. [9] it is shown that kinesin is also mixed but competitive. This difference is responsible of the curvature
on hvi–F curves at high ATP concentration. Fig. 2a shows these curves with the simulation data and the
predictions of the analytical expression with an excellent agreement.

Finally, it is interesting to define the coupling ratio and the efficiency and to see how are they modified by F.
The coupling ratio r can be expressed as the quotient between the total number of performed steps and the
total number of consumed ATPs. On the other hand, the efficiency Z can be defined as the ratio between the
work performed against F, W , and the total input of energy, nE. Thus,

r �
xCM

nL
; Z �

W

nE
, (4)

where xCM ¼
1
2
ðx1 þ x2Þ and supposing that xCM ðt ¼ 0Þ ¼ 0. W ¼ FxCM , so we can write Z ¼ rFL=E: This

means that the global efficiency is simply the efficiency in a single step multiplied by the coupling ratio. We can
go further if we consider (3) and the fact that V max is proportional to r, and then

r ¼
1

1þ 1=KiuðFS=F � 1Þ
; Z ¼

L

E

F

ð1þ F=KiuðF s � F ÞÞ
. (5)

Fig. 2b shows the simulated data for rðF Þ and ZðF Þ as well as the theoretical predictions. It is interesting to
remark that the maximum efficiency is slightly below 0:15.

We have presented an inchworm mechanism which is able to perform directed transport and analyzed how
it behaves under two variables, the ATP concentration through the probability p and the external load F. The
motor can be described as a uncompetitive mixed inhibitor obtaining analytical expressions for the mean



ARTICLE IN PRESS

Fig. 2. (a) Simulated mean velocities versus F for p ¼ 1 (circles) and p ¼ 10�5 (triangles). The insets show VmaxðF Þ and KM ðF Þ versus F.

Triangles are the values from the table in Fig. 1b. Solid lines are the fits of (3) in order to get Kiu and Kic. With the two inhibition

constants, (2) can be plotted obtaining the solid lines of the main figure. (b) Coupling ratio r and efficiency Z. Circles are simulated data

and solid lines are predictions of (5).
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velocity as a function of the two control variables that fits accurately the simulated data. Finally, we have
discussed the coupling ratio, showing that the motor loses the tight coupling as F increases. The efficiency is
related with the coupling ratio and an analytical expression is given with a good agreement with the
simulations.
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