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Abstract. – We study the problem of pattern and velocity selection of morphologically stable
two-dimensional fronts propagating in a spatially modulated medium. The generic system is
governed by a local equation and evolves towards a non-trivial steady state with a spatial
structure which arises from non-local competition effects and does not necessarily mimic the
local structure externally fixed by the modulation. The dynamical process leading to this steady
state is studied both analytically and numerically.

Velocity and shape selection in pattern-forming interfaces has been an issue of broad interest
in recent years, in a variety of contexts including viscous fingering, dendritic growth, directional
solidification, flame propagation, etc. [1]. In many of these systems the selection of a steady-
state velocity is closely related to the selection of a specific spatial pattern. The degeneracy
of the steady-state velocity and shape, however, may only be apparent, due to the neglect of
surface tension, which acts as a singular perturbation. It has been shown that when surface
tension effects are properly taken into account, the spatial scale and velocity become uniquely
fixed. A more genuine problem of velocity selection arises when the front of a stable state
invades an unstable state. In this case a continuous degeneracy of solutions may exist and the
selection of the steady-state solution becomes a dynamical problem [2]-[6]. This situation has
received a great deal of attention in recent years and has been explained satisfactorily [4]-[6].
In the context of these references, however, a planar front in a two-dimensional configuration
is morphologically stable and the velocity selection is thus not related to the emergence of any
spatial structure.

In this letter we address an intermediate situation in which an otherwise stable front
develops a spatial structure as a consequence of the spatial modulation of an external control
parameter. Our study has been motivated by some experimental studies of chemical waves
propagating into modulated excitable media [7], [8]. In these references stationary patterns
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Fig. 1. – Temporal evolution of an initially flat interface. At the bottom it is shown the modulating
function u(x).

were generated by spatial modulations of the chemical excitability, either from variations in
the illumination conditions of a photosensitive reaction [7], or from a smooth concentration
profile radially maintained in an annular reactor [8]. Here we will focus on two aspects of
the generic case. First, we address the determination of the stationary shape and velocity
of the two-dimensional front for a given generic spatial modulation of an external control
parameter. Second, we study the dynamic process of competition of local structures leading
to the final configuration. The problem exhibits some interesting similarities but also some
qualitative differences from the case of pattern selection of morphologically unstable interfaces.
For instance, curvature effects in the present case act also as a singular perturbation and are
crucial in determining the steady-state shape, but are rather unimportant to set the actual
steady-state velocity. An important difference of the present case of front propagation with
respect to the above examples of unstable interface dynamics is the fact that the front dynamics
is basically local. Surface tension effects, however, are also crucial in the slow process of
competition dynamics leading to the non-trivial steady-state solution.

In order to set the problem, let us consider the evolution of a linear interface y(x, t) that is
moving in the y-direction. In a broad class of systems the normal velocity of the interface is
given locally by the planar interface velocity plus a correction coming from the curvature [9],
[10]. This result can be extended to the case in which a sufficiently smooth modulation of an
external parameter is considered. Then, in terms of the local velocity u(x) corresponding to
the planar front solution, we have

vn(x, t) = u(x) + κ(x, t) , (1)

where vn(x, t) is the local normal velocity and κ(x, t) is the curvature.
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Fig. 2. – Competition process between two fingers. a) Different stages in time of the front shape.
The fronts are plotted in a frame moving at the steady velocity v. b) Vertical component of the local
velocity of the front shown for the same evolution. The effective transversal velocity c (see eq. (7) in
the text) is also indicated.

The generic situation can be summarized as follows. If the modulating function u(x) has n
local maxima, the front will adapt, after a short transient, to a shape with the same amount of
local maxima (which we will call fingers by analogy with similar pattern-forming interfaces).
In fig. 1 the temporal evolution of the interface for a u(x) with n = 8 local maxima is shown.
Starting with a planar front, a configuration with n = 8 fingers is formed. At early times, the
shape and velocity of each of these fingers are strongly dominated by the neighbourhood of
the corresponding local maxima of u(x). However, since the fingers advance, in general, with
different velocities, a slow process of competition among them sets in. As a result, some slow
fingers (three) will be eliminated and some of them (five) will survive. One of the questions we
address in this paper is the determination of the actual number m ≤ n of surviving fingers in
the steady state. The nature of this competition process is more clearly shown in fig. 2, where
the local velocity in the y-direction (∂y∂t ) is plotted for a particular case of n = 2 and m = 1.

Our analysis starts from eq. (1). Without loss of generality, we assume that the modulation
of the system is periodic with period L, which we will take as the system size. We assume
that this modulation is sufficiently smooth, so we can take 1

L as a small parameter. In order
to construct a perturbative scheme, it is useful to write eq. (1) in terms of the angle of the
front (tan θ = ∂y

∂x , see fig. 2 a)), and to rescale variables according to z = x/L and τ = t/L,
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which gives

∂ tan θ
∂τ

=
∂

∂z

(
u(z)
cos θ

+
1
L

∂θ

∂z

)
. (2)

For the fingers emerging from a planar interface, the value of the expression in parenthesis
in the right-hand side of eq. (2) adopts a different constant value, which from eq. (1) is equal
to the velocity of the finger. In this way the time derivative in eq. (2) is very small in each
finger and its shape is practically unchanged. From this situation all the interesting dynamics
occurs in the contact points between fingers, where the value of the spatial derivative in eq. (2)
is non-zero (see fig. 2).

The spirit of the scaling of variables in eq. (2) is to extract explicitly the part of the
solution that scales with the system size L. This scaling information is basically contained in
the lowest-order solution of eq. (2). In this equation the small parameter appears multiplying
the highest-order derivative, which makes the perturbative scheme singular. That means that
the solution obtained from this equation as an expansion in 1/L (the so-called outer solution)
will necessarily break down in regions where the highest-order derivative takes large values.
In these regions, called boundary layers, a different expansion has to be done (defining the
so-called inner solution). In our problem, the derivatives of θ are related with the curvature of
the interface, so boundary layers correspond to regions where the shape of the interface does
not scale with the system size. Inner and outer solutions have to be asymptotically matched
order by order to get explicit approximations. However, here we will not be concerned with the
actual construction of explicit perturbative solutions, but rather we will extract some simple
rules for the competition dynamics and for the selection of fingers from the lowest orders of
this scheme.

After the initial transient, for each local maximum i of u(x) there is a roughly stationary
finger propagating with a velocity vi given by the value of the parenthesis in eq. (2). Substi-
tuting the expansions vi = vi0 +L−1vi1 + ... and θi = θi0 +L−1θi1 + ... in eq. (2), we get at lowest
order

cos θi0 =
u

vi0
(3)

and for the velocities

vi0 = uim , vi1 = −

√
|u′′im |
uim

, (4)

where uim is the maximum of u(z) in the finger i, and u′′im its second derivative at the same
maximum. We see that the curvature correction for the velocity of the finger is given by a
length, which is nothing but the length scale of the spatial variation of the modulating function
u at its local maximum.

The dynamics of finger competition can be found at the lowest order from the solution inside
the boundary layers between them. The corresponding equation is obtained from eq. (1) by
making u constant. In terms of the original variables x, t, it reads

∂θ

∂t
= cos2 θ

∂2θ

∂x2
+ u sin θ

∂θ

∂x
, (5)

which has to be solved with the appropriate boundary conditions to match the outer solution.
For a boundary layer placed between two fingers moving at velocities v− and v+, the boundary
conditions at the lowest order will be

lim
x→±∞

θin0 (x) = θ± , cos θ± =
u

v±
. (6)
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Fig. 3. – Scaled stationary front shapes reached by systems of different sizes L (cf. figure legend). The
inset shows the two-maxima modulating function u(x/L) common to all systems.

Equation (5) has a stationary solution that can be seen as a one-dimensional front moving
laterally at velocity c, which represents the invasion of the slower finger by the faster one.
By taking θ(x, t) = θ(x − ct) into eq. (5) and imposing the boundary conditions eq. (6), the
velocity of the lateral front turns out to be

c =
v+ − v−

tan θ− − tan θ+
. (7)

In view of the solutions found for the shape and velocity of each finger, it becomes clear
that up to the lowest orders in the inverse system size, the behaviour of each finger during the
competition process is dominated by the local properties of the medium in which it moves,
and different fingers are roughly independent from each other. The invasion of a slow finger
by a faster one is basically a kinematic process, in which the boundary moves as dictated by
the velocities of each finger. A similar competition process appears in the deterministic KPZ
equation but evolving to a different steady state [11].

The next point to address is the final stationary state. From the lowest-order approximation,
it can be shown that for large enough L, only the fastest finger given by the absolute maximun
uM of the modulating function will survive. In that case the velocity of the whole front is
given by

v = uM −

√
|u′′M|
uM

+ · · · , (8)

where the derivative refers to the original x variable. The shape of the whole front is now given
by the same solution as eq. (3) but applied to the values uM and u′′M of the absolute maximum
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of u(x). A rather counterintuitive feature of the solution is that only one tip (maximum of
the front) remains, even if there exist several local maxima of the modulating function. This
statement, true for large L, is valid as longer as the velocity selected by the front and given by
eq. (8) remains greater than the value of the other local maxima of the u function. If this is
not the case, eq. (1) would give negative curvatures for the secondary maxima and then they
will be also local maxima for the shape of the front.

In that way, the solution of the front shape for a not very large L may differ qualitatively
from the scaling solution, with the existence of additional fingers, and the perturbative scheme
as described above may fail. However, the number of surviving fingers (i.e. number of maxima
of the stationary front shape) are given by a simple comparison between the actual selected
velocity v and the local maxima of u(x). The front shape will develop fingers at those maxima
of u(x) larger than v. A good estimate of the selected velocity v can be obtained in turn
from the perturbative analysis and corresponds to the largest of the different values taken by
vi when evaluated at the different local maxima of u(z). In any case, for a given modulating
function u(z), there always exists a system size L above which the scaling solution, always with
a single finger, gives the correct shape, and the whole perturbative analysis works. Figure 3
shows the steady state reached by systems with different values of L but the same two-maxima
modulating function. It can be seen that for small L two distinct fingers survive, but for larger
values of L the solution approaches the scaling solution with a single finger.

In summary, we have seen that the steady-state front velocity and the number of surviving
fingers follow very simple rules found from a local analysis at the different maxima of the
modulation u(x).
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