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A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modu-
lation consists of a spatial variation of the local front velocity in the transverse direction to that of the front
propagation. We study analytically and numerically the final steady-state velocity and shape of the front,
resulting from a nontrivial interplay between the local curvature effects and the global competition process
between different maxima of the control parameter. The transient dynamics of the process is also studied
numerically and analytically by means of singular perturbation techniques.@S1063-651X~97!06610-5#

PACS number~s!: 47.54.1r, 03.40.Kf, 47.20.Ky
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I. INTRODUCTION

The study of propagating fronts has been a problem
great interest in a rich variety of very different situatio
@1–3#. The steady-state velocity and shape of the front
problems not yet satisfactorily solved in many situations.
though different kinds of fronts can be defined in many co
texts, it is commonly accepted that they can be classified
then studied in a general framework. In this paper we w
consider stable fronts which propagate with a fixed veloc
and flat shape if the medium is isotropic and homogeneo
This type of situation can be modeled by a reaction-diffus
equation for the order parameter. The phenomenology of
situation is well known@4–10#. Here we will consider the
case of a front moving in a nonhomogeneous mediu
Within this general framework we will assume that som
parameter controlling the local front velocity presents
transversal spatial modulation. This has been the case
several experiments of chemical waves propagating
modulated excitable media@11–13#, in which stationary pat-
terns with a fixed velocity were obtained by maintaining sp
tial modulations of the chemical excitability of the medium

Our present study shows that the selected stationary
tern and the corresponding propagation velocity result fro
nontrivial global competition process between differe
maxima of the local velocity, which are coupled throu
local curvature effects. An example of such competition
shown in Fig. 1~top!, where there exists a modulation@Fig.
1 ~bottom!# in thex direction of the local front velocityu(x).
Starting from a planar front, the system initially mimics th
modulating function by developing as many front maxim
which hereinafter we will callfingers, as local maxima pre-
sented by that function. The evolution of each one of th
fingers, moving with different velocities, turns out to depe
on the local details ofu(x) around the maxima. That give
rise to a slow competition process where some of the c
peting fingers are eliminated and some others survive.
nally, the resulting stationary pattern may be quite differ
from the initial one. The main objective of this paper is
561063-651X/97/56~5!/5405~8!/$10.00
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characterize and explain these facts within an analyt
framework based on singular perturbation techniques,
provide simple analytical criteria to predict the velocity a
the qualitative shape of the stationary front shape for diff
ent kinds of spatial modulations. An experimental text of th
selection problem was presented, for a photosensitive
sion of the Belousov-Zhabotinsky reaction, in Ref.@13#.

The paper is organized as follows. In Sec. II, the interfa
dynamics in generic reaction-diffusion systems is briefly
viewed, and the extension of the theory to smooth modula
media is performed. Section III is devoted to the main pro
lem, namely the description of the competition process. T
final stationary state is characterized in Sec. IV, where
number of surviving fingers and the stationary velocity of t

FIG. 1. Temporal evolution of an initially planar front. Fron
are shown in the frame comoving with the fastest finger~4!. At
early times, the fronty(x,t) mimics the modulated local velocity
u(x) with eight maxima~bottom!. Three slow fingers are eliminate
before the front reaches the stationary shape with only five fing
See more details in the text. The front is plotted at times 0,10,
200, 2500, 15 000, and 30 000~solid line!. Also see the discussion
at the end of Sec. IV.
5405 © 1997 The American Physical Society
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5406 56J. ARMEROet al.
whole front are determined for the case of smooth modu
tions. A particular case in which the spatial variation is n
smooth, and consists of a homogeneous stripe of a la
velocity surrounded by a homogeneous area with a sma
one, is analyzed in detail in Sec. V. In Sec. VI, we summ
rize our main results and make some final remarks. Num
cal results are presented along the paper showing an e
lent agreement with the analytical predictions.

II. LOCAL EQUATION OF MOTION

Our starting point is a field model of a two-dimension
system with scalar order parameterf(rW,t) governed by the
generic reaction-diffusion equation@2–9#

]f

]t
5¹2f1F~f!. ~1!

The reaction kinetic termF(f) is assumed to be a nonlinea
continuous function that allows the existence of two hom
geneous stationary states or phases,f1 and f2, i.e.,
F(f1)5F(f2)50. The interface between these two phas
is supposed to be thin as compared to its typical scale
curvature, and it is identified with our local front. We a
interested here in those situations where the propaga
front describes the invasion of thef2 state, either metastabl
or unstable, by the globally stablef1 state.

As it is well known, Eq.~1! has a planar front solution
propagating at a well-defined velocityu0 @8#. When thef2
state is metastable, the velocityu0 is uniquely determined
@14#. If f2 is unstable, the steady-state version of Eq.~1!
does not uniquely determine the propagation velocity. In t
case, the asymptotic front speed is selected dynamically
for sufficiently localized initial conditions, it corresponds
the velocity of the front propagating with the steepest de
to f2. When the linear-marginal-stability criterion holds~lin-
ear regime!, the front velocity approaches asymptotically t
valueu052AF8(0) @4,5#. However, for some parameter re
gime near the metastable region~nonlinear regime!, the
linear-marginal-stability criterion fails@8#.

When the front is not planar, curvature effects correct
actual front velocity, tending to restore the planar shap
the medium is homogeneous, and for a modulated med
providing the spatial coupling that determines the trans
dynamics and the final steady state. By projecting Eq.~1! on
the interface and using a quasistatic approximation@15,16#,
the front dynamics can be well approximated by the lo
equation

vn5u01k, ~2!

wherevn is the local normal front velocity andk denotes the
local curvature of the front. The normal velocity is taken
positive if the globally stablef1 state is invading thef2
state, and the curvature is taken negative at the tip of a fin
of phasef1.

Others types of models could have been considered
stead of the simple model represented by Eq.~1!, with two
coupled equations, such as in excitable media@17# or in so-
lidification systems@18#, presenting a richer phenomenolog
-
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In order to study the influence of a spatial modulation
the medium on the front dynamics we consider an expl
spatial dependence in the reaction term of Eq.~1!. This de-
pendence is introduced through a modulation of an exte
control parametera. By considering an orthogonal fixe
frame (x,y) with the y axis along the direction of propaga
tion of the front, we define our model equation as

]f

]t
5¹2f1a~x!F~f!. ~3!

This particular way to introduce the modulation has two
stricting features. First, the modulation appears as a mult
cative factor in the reaction term. This simplifies the mod
by preserving the homogeneous stationary states, and m
lates only the strength of the driving force acting on t
front. Second, and most importantly, the modulation has o
a spatial dependence in the transverse direction to the f
propagation. This situation is interesting by itself, as sho
by existing experiments designed under these conditi
@11–13#.

When such a modulation of the reaction term is prese
the planar front is no longer a solution, and Eq.~2! should be
modified. If the spatial modulation is sufficiently smoot
within the quasistatic approximation, and following the usu
projection methods@15#, Eq. ~2! can be generalized to

vn5u~x!1k. ~4!

The explicit relation ofu(x) with the external modulation
a(x) given byu(x)5u0Aa(x) can be derived in the follow-
ing way. In the reference frame of the moving on
dimensional stationary front,z5y2ut, Eq. ~3!, reads

f91uf81aF~f!50, ~5!

where a prime denotes differentiation with respect toz. By
rescalingz in Eq. ~5! by z5j/Aa, we obtain

d2f

dj2
1

u

Aa

df

dj
1F~f!50. ~6!

This is the equation of a planar front arranged to the spati
homogeneous reaction termF(f) propagating at a velocity
given byu/Aa. This velocity is nothing butu0, sou5u0Aa.
Since this relation is verified at each point of the front, w
have

u~x!5u0Aa~x!. ~7!

For numerical integration, it is convenient to write Eq.~4!
as an equation for the front positiony5y(x,t),

]y

]t
5

yxx

11~yx!
2
1u~x!A11~yx!

2. ~8!

In Fig. 2, we compare numerical integrations of the start
field model Eq.~3! and of the effective equation of motio
Eq. ~8! for the same temporal evolution of an initially plan
front. In our simulations we have used a standard fin
difference Euler algorithm withDx50.5 andDt50.1. The
reaction kinetic term considered isF(f)5f22f3, and the
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56 5407FRONT PROPAGATION IN SPATIALLY MODULATED MEDIA
external modulationa(x) is given by the two-maxima func
tion shown in the inset of Fig. 2. Different choices of th
function F(f) may slightly affect the accuracy of the pro
jected equation~4!. We will comment on this in Sec. VI. In
Fig. 2, fronts are shown at different times in a frame mov
at the propagation speed of the fastest finger. We see th
both models the slow finger on the left is eliminated, and
front reaches a stationary shape with just one finger~local
maximum!, that is, a qualitatively different pattern from th
of the external modulationa(x). This simple case illustrate
how the effective local equation for the front Eq.~8! captures
the competition mechanisms present in the original fi
model, with the advantage of a much simpler analytic a
numeric treatment~see Sec. III!. Figure 1 presents also th
same phenomena but with a more complicated modulati

III. ANALYTICAL DESCRIPTION
OF THE COMPETITION PROCESS

The main question we address in this section is the a
lytical description, in the context of a singular perturbati
scheme, of the competition process@19#. To this aim, we
write Eq.~4! in terms of the angle variableu(x,t), defined by
tanu5]y/]x ~see Fig. 2!. The following geometrical rela-
tions hold:

vn5vcosu, k5
]u

]x
cosu.

This can be substituted into Eq.~4! to obtain

v5
u

cosu
1

]u

]x
. ~9!

Given thaty(x,t)5*xdx8tanu, we differentiate Eq.~9! with
respect tox to obtain

]tanu

]t
5

]

]xS u~x!

cosu
1

]u

]xD . ~10!

FIG. 2. Same temporal sequence of the propagation of an
tially planar front under the two-maxima modulatio
a(x)5120.125 sin@(2p/L)x#20.375 cos@(4p/L)x# ~see the inset!.
Solid lines correspond to numerical integration of the field mo
Eq. ~3! with F(f)5f22f3 and dashed lines to numerical integr
tion of the effective equation of motion Eq.~8!. Fronts are plotted
everyDt5100 in the frame moving at the propagation velocity
the fastest finger.
in
e

d
d
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In view of Eq. ~10! a simple picture of the competition pro
cess between fingers arises. The value of the expressio
parentheses in that equation is the local velocity in they
direction. After a short transient, this quantity reaches
roughly constant value for each finger, but different fro
that of other fingers, in such a way that the spatial derivat
in Eq. ~10! is very small, and the shape of each finger do
not change significantly. Only the contact points betwe
fingers, which move with different velocities, will prese
values for the spatial derivative very different from zero, a
hence will do so for the time derivative. Therefore, the co
petition dynamics is basically governed by these contact
gions.

Our approach here will be to build a perturbative sche
valid for sufficiently smooth modulations. That will b
equivalent to perturbing on the curvature term in Eq.~10!,
which, being the highest order derivative, defines a singu
perturbation. It is expected that the curvature in most of
front will scale with the typical length scale of the modul
tion, while the contact regions between fingers referred
above will behave as boundary layers in the perturba
scheme. The matching order by order of the correspond
inner and outer expansions will define the actual solution
the problem.

Without loss of generality we take the modulation of t
system as periodic with periodL, and consider 1/L as our
perturbative parameter. From now on the modulation will
described by the periodic fixed functionu(x/L), in such a
way thatL becomes a parameter that controls the smoothn
of the modulation. We start by obtaining the equation for t
outer solution by rescaling variables as

z5
x

L
, t5

t

L
, ~11!

which gives

]tanu

]t
5

]

]zS u~z!

cosu
1

1

L

]u

]zD . ~12!

As stated before, starting from a planar front, each lo
maximum of the functionu(z) forms a local maximum or
finger of the front. The stationary shape of each compet
finger i moving at a velocityv i is then given by

v i5
u~z!

cosu
1

1

L

]u

]z
. ~13!

Substituting the following expansions in the above Eq.~13!:

v i5v0
i 1

1

L
v1

i 1••• ~14!

u i~z!5u0
i ~z!1

1

L
u1

i ~z!1•••, ~15!

we obtain at the lowest order,

cosu0
i ~z!5

u~z!

v0
i

, ~16!

i-

l
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5408 56J. ARMEROet al.
u1
i ~z!5

1

v0
i tanu0

i S v1
i 1

u8~z!

v0
i sinu0

i D , ~17!

and, for the velocities,

v0
i 5um

i , ~18!

v1
i 52S uum

i 9u

um
i D 1/2

, ~19!

whereum
i andum

i 9 are the value and the second derivative
the modulating functionu(z) at its maximum in the fingeri .
In view of Eq. ~19! the velocity is corrected by the lengt
scale given by the spatial variations of the modulating fu
tion u near its local maximum. This result can be direc
translated to the original field model Eq.~3!. In particular,
given the relationu(x)5u0Aa(x), we obtain, up to the low-
est orders in the inverse system size,

vm
i 5u0Aam

i 2S uam
i 9u

2am
i D 1/2

, ~20!

wheream
i is the value of the spatial modulationa(x) at the

maximum of thei th finger, andam
i 9 its second derivative a

the same maximum.
The nature of the competition process among finger

clearly illustrated in Fig. 3, where the local velocity of th
front in the y direction, v5]y/]t, is plotted for the same
spatial modulation and the same planar initial condition a
Fig. 2. Figure 3 shows that the slower finger is actually
ing invaded by the faster one, as if a one-dimensional fr
were propagating laterally, in thex direction, with a certain
velocity c. This effective front is well defined within ou
perturbative scheme, and its dynamics can be obtained f
the inner solution of the equations in the boundary lay
placed at the contact regions between fingers. We write t
Eq. ~10! in the original variablesx, t and, up to the lowes
order in 1/L, consideru as a constant. We obtain

FIG. 3. Competition process between two fingers. The vert
component of the local velocity of the front is plotted everyDt550
for the same evolution shown in Fig. 2. The effective transve
velocity c @see Eq.~25! in the text# is also indicated.
f
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]u

]t
5cos2u

]2u

]x2
1usinu

]u

]x
. ~21!

Inner solutions coming from this equation, valid inside t
boundary layer, have to be matched with the outer soluti
found before, which are valid in the regions outside t
boundary layer. That gives, as boundary conditions fo
layer placed between two fingers moving at velocitiesv2

andv1 , the following

lim
x→6`

u0
in~x!5u6 , ~22!

cosu65
u

v6
. ~23!

We next look for a stationary solution of Eq.~21! of the form
u(x,t)5u(x2ct)5u(j), which satisfies

u91
1

cos2u
~u sinu1c!u850,

where a prime denotes differentiation with respect
j5x2ct. An integration of this equation gives

u81
u

cosu
1c tanu5K,

whereK is a constant. Its value is obtained by imposing t
boundary condition Eq.~22!, with the result

K5
u

cosu6
1c tanu6 .

So we obtain, for the velocity of the lateral invading front

c5
v12v2

tanu22tanu1
. ~24!

This invading front that describes the competition betwe
the two fingers does not propagate uniformly since, acco
ing to Eqs.~16! and~17!, u6 ride on the local details of the
modulated velocityu(x). This invasion process is clearl
seen in recent experiments@13#. Making use of Eq.~23!, the
spatial dependence of the invasion velocityc may be explic-
itly written as

c5
u~x!

v11v2
@Av1

2 2u2~x!2Av2
2 2u2~x!#. ~25!

The propagation velocities of the two fingers,v6 , are given
by Eqs. ~18! and ~19! when evaluated at the two loca
maxima ofu(x).

The analytical prediction for the invasion velocityc, Eq.
~25!, is not valid in the initial short transient when fingers a
still not formed. Once the front forms its initial fingers, a
dictated by the form ofu(x), the competition process tha
arises is well described by Eq.~25! as long asv6

2 2u2(x) is
non-negative.

In Fig. 4 we compare the analytical predictions of E
~25! for the caseF(f)5f22f3, to numerical integrations

l

l
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56 5409FRONT PROPAGATION IN SPATIALLY MODULATED MEDIA
of the effective front motion Eq.~8! for systems of two dif-
ferent sizesL but the same two-maxima spatial modulati
a(z) and the same planar initial front.

IV. STATIONARY STATE

A result from the perturbative analysis above is that,
large enoughL, only one finger survives, even if there exi
some other local maxima of the modulating function. Fro
the lowest-order approximation, Eq.~4! gives negative cur-
vature only for the absolute maximumuM of the modulating
function. In that case, only the fastest finger survives, and
velocity is adopted by the whole front. This velocity is in th
original, fully dimensional, variables

v5uM2S uuM9 u
uM

D 1/2

1•••. ~26!

The shape of the front is again given by Eqs.~16! and ~17!,
but applied to the valuesuM and uM9 of the absolute maxi-
mum of u(x).

In terms of the external modulationa(x), this velocity
reads

v5u0AaM2S uaM9 u
2aM

D 1/2

1•••. ~27!

This perturbative result gives the more accurate values
the whole front velocity the larger isL or, equivalently, for a
fixed L, the smoother is the external modulation. In Fig. 5
show the stationary front velocity forF(f)5f22f3 and
for a(x) given by a Gaussian centered in aL5500 system.
The Gaussian modulation has a fixed maximumaM51.5, so
the curvature at the tip,ukMu5uaM9 u provides a measure o
the length scale of the spatial variation of the modulati
(uaM9 u/aM)21/2. The broken line in Fig. 5 corresponds to th
analytical result Eq.~27! and, for sufficiently smooth modu
lation, agrees accurately with results from numerical integ
tion of both the local~effective! and the two field models.

In general, the single-finger stationary state will only o
cur if the velocityv selected by the system and given, up
the first order, by Eq.~26!, is greater than the value of th
other local maxima of theu function. This condition is al-

FIG. 4. Scaled velocityc of the transversal invading front fo
two systems of different sizesL ~cf. figure legend! under the same
external modulation shown in Fig. 2. Thick solid lines correspo
to the analytical prediction, Eqs.~25!, for each sizeL.
r

ts

or

,
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ways satisfied for sufficiently largeL. Conversely, any sec
ondary local maximum withu greater thanv will present a
negative curvature@see Eq.~4!#, and thus will form a sec-
ondary finger. In this way, the comparison between the va
of v and that of the different local maxima ofu(x) does
provide a criterion to identify the surviving fingers in th
final stationary state, such as those for whichum

i .v. On the
other hand, to obtain from the perturbative analysis a go
prediction for the selected velocityv one has to take the
largest value taken by Eq.~14! at the different local maxima
um

i of u(x). Notice that the selected velocity calculated th
way and, therefore, the final stationary front shape, dep
not only on the values ofu(x) at their different local maxima
but also depend on the second derivative of the modula
at those maxima.

With this picture in mind, a more detailed discussion
Fig. 1 is now in order. This figure shows the case of
eight-maxima modulating function. The steady state prese
only five maxima or fingers, instead. Finger numbers 2,
and 7 have been eliminated during the transient. In the up
part of the figure we see how the initial planar front develo
the eight maxima of the modulation~bottom of the same
figure!. The competition process then sets in on a mu
slower time scale. In the bottom of Fig. 1 we also see h
maximum 4 has the largest predicted velocity according
Eq. ~26! ~denoted by crosses!, which determines the fina
velocity ~dashed line!. Maxima numbers 1, 3, 6, and 8 als
have a larger value ofu(x) at their tip than the final selecte
velocity, and therefore they survive all the way to the stea
state. This example also shows how the final shape of
front can be very different from that of the modulation.

V. STRIPED CASE

In this section we consider the particular case in wh
u(x) takes a constant valueuM in a central stripe of widthW
along they direction, and a smaller constant valueum out-
side. This is clearly an exception to the perturbative tre
ment of Sec. IV because the modulating function is n
smooth. We address this case here because it has been
viously studied both theoretically and experimentally in R
@11#, which directly motivated the present study. In that re
erence the theoretical predictions were obtained numerica

d

FIG. 5. Stationary velocity for fronts propagating under Gau
ian modulations with different tip curvaturesukMu. Dashed line cor-
responds to the perturbative result Eq.~26! that gives accurate val
ues for sufficiently smooth modulations~small ukMu).
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5410 56J. ARMEROet al.
Here we will provide some analytical results with the ho
of gaining some insight into a situation where the pertur
tive approach is not appropriate, particularly from the dep
dence of the steady state on the parameters of the prob

According to Eq.~8!, the steady-state shape of the fro
must satisfy

y95~11y82!v2u~x!~11y82!3/2, ~28!

where we have used the fact thatv5]y/]t is the constant
velocity of the whole front in they direction. This equation
can be solved piecewise for constantu(x), so an explicit
solution for this case can be found by appropriate match
at the boundaries between regions.

The fact that the perturbative prediction fails here is o
vious from the fact that all orders except the lowest o
vanish, since all derivatives ofu(x) are zero. However, no
tice that the zeroth-order solution does describe the cor
large-L limit, which corresponds to three straight pieces, o
horizontal in the central stripe, and two inclined ones on
sides of the stripe, with angles given by Eq.~16!, and a
selected velocity equal touM .

In order to obtain explicit analytic expressions for t
selected velocity we will find a rigorous lower bound usi
the explicit solutions for constantu(x). This bound will in-
deed turn out to be a very good estimate of the actual
lected velocity.

To solve Eq.~28! by reduction of order, we seek a solu
tion of the form y85sinhj. Its substitution into Eq.~28!
gives a first-order equation forj,

dj

du
5~v2u coshj!coshj, ~29!

which is easy to solve by direct integration.
Without loss of generality let us assume that the cen

stripe is placed at the center of the system of sizeL with
periodic boundary conditions. Then the symmetry of t
problem enables us to solve Eq.~29! for the central and
lateral regions separately. The solutionyc for the central
band 0,x,W/2 with y8(0)50 is then

xv5arctanyc82
1

A12ac
2S arcsin

acA11yc8
221

ac2A11yc8
2

2
p

2 D ,

~30!

with ac5v/uM,1. The solutionyl for the lateral region
W/2,x,L/2 with y8(L/2)50 is given by

S x2
L

2D v5arctanyl8

1
1

Aac
221

ln
~ac21!~11A11yl8

2!1yl8Aac
221

~ac21!~11A11yl8
2!2yl8Aac

221
,

~31!

with ac5v/um.1. For the lateral region there exists also t
trivial family of planar solutions given by cosup5u/v.

The solution at the central band, Eq.~30!, is periodic. The
most relevant feature is that it intersects itself, giving rise
periodic loops, separated by mostly planar regions. Th
-
-
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-
e

ct
e
e

e-

l

e

o
se

loops are unphysical, so the matching points with the ex
nal solutions Eq.~31! must be such that there are no loo
between them. This physical requirement provides a low
bound to the selected velocity, by imposing that the dista
between the turning points with infinite slope be greater
equal than the size of the central bandW. The bound forac
is then given by the equation

p2arcsinA12ac
25 1

2 A12ac
2~p1umacW!. ~32!

The lower bound for the steady front velocity obtained fro
the previous equation turns out to be very close to the ac
velocity selected from the complete matching of the so
tions, since the solution near the turning point has a la
curvature, so the point with the right slope should be ve
close to it. Given that

12ac
25

~uM2v !~uM1v !

uM
2

'2
uM2v

uM
,

a further development of Eq.~32! yields

v'uM2
2p2uM

~3p1uMW!2
. ~33!

Notice that the dependence onW displayed by Eq.~33! is
quite different from that the system size dependence
tained for the smooth case in the framework of the singu
perturbative scheme. The excellent accuracy of these
proximated results can be seen in Fig. 6. An exhaustive
oretical study of a model system with two bands of differe
excitability ~local velocity! was presented very recently i
Ref. @20#. Their results are in agreement with the ones o
tained in this section.

VI. CONCLUDING REMARKS

The results presented in this paper refer basically to
local model derived from standard projection techniqu
from a reaction-diffusion field model, where the nonline
function defining the reaction term has not been specified
the simulations reported here we usedF(f)5f22f3, for
which we have quantitatively checked the validity of th
local approximation. The question of the degree of indep

FIG. 6. Stationary velocity for fronts propagating in striped m
dia with uM50.866 andum50.707 as a function of the centra
stripe sizeW. Dashed line is the analytical prediction Eq.~33!.
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dence of the result on the nonlinear functionF(f) naturally
arises. It is well known that the presence of a linear te
such as inF(f)5f2f3 changes the nature of the veloci
selection problem@8#. For F(f)5f2f3, linear marginal
stability theory applies, and the transient decay to the ste
state is of power-law nature. For the caseF(f)5f22f3,
instead, nonlinear theory applies, and the transient reg
decays exponentially. This difference is important since
quasistatic approximation involved in the projection of t
problem into a local equation is not as well justified in t
linear case due to its long transients. Although simulation
the linear model may give apparently stationary sha
which are qualitatively similar to the ones obtained with t
nonlinear model, in the former case it is always much m
difficult to conclude about stationary states because of c
tributions to the velocity vanishing ast21 may produce ar-

FIG. 7. Transient effects of the nonlinearities in the numeri
evolution of the front velocity. Full symbols correspond to t
F(f)5f2f3 model, and hollow symbols to theF(f)5f22f3

model. Triangles correspond toDx51, and circles toDx50.5. The
cross is the analytical value of the velocity.
s

at

,

ge
dy

e
e

f
s

e
n-

bitrary large deviations in the front position. In Fig. 7 w
show the convergence to the steady value in the two case
F(f). It is also shown the effect of the spatial discretizatio
which may produce errors comparable to the transient
fects.

If a more complicated model than Eq.~3! is chosen, but
presenting a front structure obeying Eq.~2!, then our conclu-
sions apply in the same way. Our theoretical results are
agreement with recent experiments in front propagation
excitable media@11,13#.

In conclusion, we have studied fronts propagating throu
two-dimensional media modulated in the transverse dir
tion. An effective local equation for the motion of the fron
has been derived and it has been used to explain, in
context of a singular perturbation scheme, the dynamics
the competition process leading to the nontrivial station
solution. Explicit criteria to determine the qualitative sha
of the stationary front and quantitative estimations of t
steady front velocity have been found for the generic cas
smooth modulations and for a particular case of nonsmo
modulation with relevance to experiments. A generic pictu
of competition between fingers has naturally arisen in ter
of lateral fronts propagating in the transverse direction
scribing the invasion of slower fingers by their neighbori
faster ones. Finally, the reliability of the effective local equ
tion for different reaction terms of the original reactio
diffusion model has been discussed.
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