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Competitive evaporation in arrays of droplets

A. M. Lacasta
Departament de Fı´sica Aplicada, Universitat Polite`cnica de Catalunya, Avinguda Dr. Gregorio Maran˜ón 50, E-08028 Barcelona, Spain

I. M. Sokolov
Theoretishe Polymerphysik, Universita¨t Freiburg, Rheinstraße 12, D-79104 Freiburg i. Br., Germany

J. M. Sancho
Institute for Nonlinear Science, Department 0407, University of California, San Diego, 9500 Gilman Drive,

La Jolla, California 92093-0407
and Departament d’Estructura i Constituents de la Mate`ria, Universitat de Barcelona, Avinguda Diagonal 647,

E-08028 Barcelona, Spain

F. Sague´s
Departament de Quı´mica Fı́sica, Universitat Barcelona, Avenida Diagonal 647, E-08028 Barcelona, Spain

~Received 30 September 1997!

We consider the evaporation of periodic arrays of initially equal droplets in two-dimensional systems with
open~absorbing! boundaries. Our study is based on the numerical solution of the Cahn-Hilliard equation. We
show that due to cooperative effects the droplets which are further from the boundary may evaporate earlier
than those in the boundary’s vicinity. The time evolution of the overall amount of matter in the system is also
studied.@S1063-651X~98!03705-2#

PACS number~s!: 83.70.Hq, 64.70.Fx, 05.70.Ln
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The kinetics of first-order phase transitions has dra
much attention during the whole last century, giving a viv
example of pattern formation in systems attempting to sp
taneously reach their equilibrium state@1–8#. The typical
physical situations here are the liquid-gas systems, the bi
fluid mixtures, or binary alloys. The systems quenched fr
the disordered~homogeneous! state into a domain of param
eters where this homogeneous state is unstable and the
laxing to equilibrium ~corresponding to full phase separ
tion! show strongly nonlinear, cooperative behavior. In
late stages this process can be described by Lifshitz-Slyo
theory@3#, describing the formation of clusters~droplets! and
the redistribution of matter between them so that the lar
droplets grow at the cost of smaller ones, which are therm
dynamically less stable due to their higher surface energ

The description of phase separation processes norm
supposes the system to be closed, so that the overall am
of matter ~the integral of the order parameter over the s
tem’s volume! is conserved. In the present article we co
sider a different situation, when open boundaries of the s
tem lead to a decrease in the overall amount of matter.
simplest experimental geometry of the system correspond
a flat cuvette containing droplets and open from one side
large vessel with saturated vapor. In this geometry the
ferent droplets evaporate not independently from each o
~as it could be if the upper cover plate was absent! but as a
cooperative process due to their strong interaction via
changing matter through the gas phase. We confine ourse
to initially periodic arrangements of droplets and consid
the change of their structure in time and the overall kine
of evaporation. The most striking~and rather unexpected!
qualitative effect found here is the possible reversion of
order of evaporation of subsequent droplets, so that som
571063-651X/98/57~5!/6198~4!/$15.00
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the droplets which are nearer to the open boundary evapo
later than the more distant ones~see Fig. 1!. This qualitative
effect is probably amenable to experimental observation.

We turn now to the theoretical discussion of the situatio
The phenomenological description of systems showing
main growth and phase separation often starts from tim
dependent Ginzburg-Landau models with conserved o

FIG. 1. Patterns of evaporation of a two-dimensional perio
array of droplets of initial radiusR55 ~see text for details!. The
gray scale indicates the local concentrationc(r ,t). The values of
time are~a! t5250, ~b! t51000,~c! t52000, and~d! t53000.
6198 © 1998 The American Physical Society
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parameter. The simplest model of this type, neglecting all
macroscopic motions and taking into account only the dif
sive redistribution of matter, is model B of critical dynami
and is described by the Cahn-Hilliard equation@4,6#. Its di-
mensionless form reads

]

]t
c~r ,t !5

D

2
¹2@2c~122c!~12c!2¹2c# ~1!

for the order parameterc, and diffusion parameter set t
unity in all that follows. The two thermodynamically stab
homogeneous states correspond toc51 ~hereafter referred to
as a liquid phase! andc50 ~corresponding to the vapor!; the
third homogeneous solution,c51/2, is unstable. The surfac
tension associated to the interface between the liquid and
phases is given by

s5E dxS dc~x!

dx D 2

5
A2

6
, ~2!

where c(x) is a one-dimensional~1D! solution of Eq.~1!
satisfying the boundary conditionsc(2`)50, c(`)51,
i.e., c(x)5 1

2 @12tanh(x/A2)#. In all that follows, Eq.~1! is
solved numerically using an Euler algorithm. Keeping
mind the arrangement of Fig. 1, we perform our calculatio
for the two-dimensional case, although a three-dimensio
arrangement is also possible. The situation shown in Fig
corresponds to a broad cuvette of size 1283128 lattice units,
with periodic boundary conditions along the horizontal edg
~solid lines! and absorbing boundary conditions along t
vertical ones~dashed lines!. In another~simpler! calculation,
a discrete grid of 128332 is used~narrow cuvette, leading to
a quasi-one-dimensional situation!, with periodic boundary
conditions applied on the longer sides, reflecting the bou
ary condition on the right-hand-side shorter edge and w
the absorbing boundary condition on the opposite one.

Since the physical mechanisms of the evaporation pro
are the same in both cases, we concentrate on what fol
in the quasi-1D case. In Fig. 2 we show the time evolution
the concentrationc measured along the longer symmet
axis of a system initially prepared as a periodic array ofN
58 equal droplets of radius 5. Just like in Fig. 1, the calc
lation shows that the droplets do not disappear consecuti
according to their further distance from the absorbing bou
ary but that, for this particular configuration, the actual
quence of the numbers of droplets to evaporate is 1, 2, 4
3, . . . .This behavior can be attributed to a sort of compe
tive evaporation between droplets. The time evolution of
radii of the corresponding droplets, measured as the dista
from the center of the droplet to the points at whichc(r ,t)
50.5, is shown in Fig. 3. In order to check that the comp
tition between droplets, mediated by matter redistribut
among them, is really caused by the effect of the absorb
boundary, we have made a parallel calculation of the evo
tion of the same initial distribution of droplets but this tim
with all boundary conditions being periodic. In this case,
droplets evolve towards their equilibrium shape without a
considerable redistribution.

We turn now to a qualitative discussion of the effe
found. The evolution of the droplet’s radius strongly depen
on the concentration of the surrounding gas phase. For e
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such concentration a critical radius exists, so that the lar
droplets grow while the smaller ones dissolve@5#. As Fig. 3
shows, the evaporation of a~subcritical! droplet is a rather
fast process, producing a considerable amount of matter
fusing in a bulk gas phase. The matter set free during suc
elementary process diffuses not only in the direction of
absorbing boundary, but also in the opposite direction. T
matter can be absorbed by the neighboring droplet wh
radius then starts to grow. The radius of this droplet can t
get larger than the radius of its next neighbor to the right,
that the droplet of the larger radius gets transiently stabiliz
and proceeds to grow further now at the cost of its n
neighbor to the right, which will in turn be the next droplet
disappear. The overall sequence of the droplets to evapo
depends thus on the geometry of array~radii of droplets and
the distances between them! so that the sequence of evap

FIG. 2. Time evolution of the concentration profile in an in
tially periodic, quasi-one-dimensional array of eight droplets~see
text for details!. The first curve corresponds tot50 ~initial condi-
tion! and the time increment between two subsequent snapsho
set todt5500.

FIG. 3. Time evolution of radii of different droplets, numbere
in accordance with Fig. 2.
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ration can be found only by explicitly solving Eq.~1! under
prescribed geometrical conditions. It is also worth discuss
the time dependence of the overall amount of matterr in the
system. Ther(t) dependence obtained numerically by int
gratingc(x,t) over the system’s volume is shown in Fig.
The dependence there depicted can qualitatively be desc
by a sequence of smooth, practically linear segments c
nected by more or less pronounced crossover regions, re
to the times of evaporation of the leftmost droplet presen
the system. The dissolution of internal droplets has no
nificant effect on ther(t) dependence.

We proceed now to show that indeed the overall rate
mass decay in the system is mostly controlled by the leftm
droplet, because its evaporation determines the concentr
profile ~and therefore the mass flux! at the absorbing bound
ary. This profile admits a simple analytical treatment. N
that the concentrationc in the bulk regions outside of th
droplets is small, so that Eq.~1! can be linearized in this
region leading in the lowest-order approximation to a sim
diffusion equation forc, (]/]t)c5¹2c. In a quasistatic ap-
proximation, the concentration profile established betw
the boundary and the leftmost droplet is thus given by

c~x!5cR

x

l
, ~3!

wherecR is the concentration in the gas phase in the vicin
of the droplet’s boundary andl is the distance from the drop
let’s boundary to the absorbing edge. We recall here
cR}1/R ~with R being the droplet’s radius! due to the effects
of the surface tension~Laplacian pressure!. The diffusive
flux to the boundary is then given by

FIG. 4. Time dependence of the mean density of matter in
system. The subsequent linear parts of the curve are controlle
droplets no. 1, 2, 3, and 5. The arrows indicate the time of diss
tion of droplets no. 1, 2, and 3 in Fig. 3.
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Jx~x50!52D
dc~x!

dx U
x50

~4!

so that the slope of ther(t) dependence is

dr

dt
}2

D

Rl
. ~5!

The results of Fig. 3 suggest that the controlling dropl
keep both their radius and their position almost constant d
ing considerable time, so that a piecewise-linear time dep
dence appears. The results of our calculations confirm
dependence~5!. The same behavior and interpretation app
to the two-dimensional arrays of droplets of Fig. 1.

Moreover we have also found that the overall structu
features of the process are stable against small fluctuation
both droplet positions and sizes, while in the case of stron
disordered arrays these effects may show up in the form
complex time evolution of the averaged concentration p
file. This question is presently under study.

We conclude by summarizing our findings. We consid
the patterns and kinetics emerging during the evaporatio
periodic arrays of initially equal droplets in two-dimension
systems with open~absorbing! boundaries. Based on the nu
merical solution of the Cahn-Hilliard equation we show th
in this case a reversion of the sequence of the droplet
evaporate next is observed: the droplets which are fur
from the boundaries may evaporate earlier than those in e
boundary’s vicinity. This effect is explained by taking int
account the complex existing interplay between the ma
disappearance through the boundaries and its redistribu
between the droplets. Thus the matter set free during
evaporation of the droplets closest to the boundaries is pa
absorbed by their neighbors in the interior of the system
stabilizes them. We also show that the overall time dep
dence of the amount of matter in the system sho
piecewise-linear behavior due to the fact that the matter
is mostly governed by the evaporation of the outermost dr
lets, nearest to the boundaries. Such an effect of matte
distribution could also be of major importance when cons
ering chemical processes in systems showing ph
separation.
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