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Competitive evaporation in arrays of droplets
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We consider the evaporation of periodic arrays of initially equal droplets in two-dimensional systems with
open(absorbing boundaries. Our study is based on the numerical solution of the Cahn-Hilliard equation. We
show that due to cooperative effects the droplets which are further from the boundary may evaporate earlier
than those in the boundary’s vicinity. The time evolution of the overall amount of matter in the system is also
studied.[S1063-651X98)03705-2

PACS numbdrs): 83.70.Hq, 64.70.Fx, 05.70.Ln

The kinetics of first-order phase transitions has drawrthe droplets which are nearer to the open boundary evaporate
much attention during the whole last century, giving a vivid later than the more distant onésee Fig. 1 This qualitative
example of pattern formation in systems attempting to sponeffect is probably amenable to experimental observation.
taneously reach their equilibrium staf&—8]. The typical We turn now to the theoretical discussion of the situation.
physical situations here are the liquid-gas systems, the binaryhe phenomenological description of systems showing do-
fluid mixtures, or binary alloys. The systems quenched fronihain growth and phase separation often starts from time-
the disorderedhomogeneoysstate into a domain of param- dependent Ginzburg-Landau models with conserved order
eters where this homogeneous state is unstable and then re-
laxing to equilibrium (corresponding to full phase separa-
tion) show strongly nonlinear, cooperative behavior. In its
late stages this process can be described by Lifshitz-Slyosov
theory[3], describing the formation of clustefdroplets and
the redistribution of matter between them so that the larger
droplets grow at the cost of smaller ones, which are thermo-
dynamically less stable due to their higher surface energy.

The description of phase separation processes normally
supposes the system to be closed, so that the overall amount
of matter(the integral of the order parameter over the sys-
tem’s volume is conserved. In the present article we con-
sider a different situation, when open boundaries of the sys- !
tem lead to a decrease in the overall amount of matter. The |
simplest experimental geometry of the system corresponds to |
a flat cuvette containing droplets and open from one sideto a |
large vessel with saturated vapor. In this geometry the dif- | . ®

I
I
[

ferent droplets evaporate not independently from each other
(as it could be if the upper cover plate was absént as a
cooperative process due to their strong interaction via ex-
changing matter through the gas phase. We confine ourselves
to initially periodic arrangements of droplets and consider
the change of their structure in time and the overall kinetics FIG. 1. Patterns of evaporation of a two-dimensional periodic
of evaporation. The most strikingand rather unexpected array of droplets of initial radiuR=5 (see text for details The
qualitative effect found here is the possible reversion of theyray scale indicates the local concentratit(m,t). The values of
order of evaporation of subsequent droplets, so that some difne are(a) t=250, (b) t=1000, (c) t=2000, and(d) t=3000.
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parameter. The simplest model of this type, neglecting all the 1 2 "3 a4 Vs T 6 T 7 T 8

macroscopic motions and taking into account only the diffu- |/ \ [\ [\ [\ [\ [\ [\ [}
sive redistribution of matter, is model B of critical dynamics — N NN N N NN
and is described by the Cahn-Hilliard equat{@dn6]. Its di-
mensionless form reads ———— NI\
d D
ﬁc(r,t)z§V2[2c(1—20)(1—c)—V20] ) N\ TN NN\
for the order parametec, and diffusion parameter set to N NN\

unity in all that follows. The two thermodynamically stable w
homogeneous states correspond+ol (hereafter referred to S NN\
as a liquid phaseandc=0 (corresponding to the vappithe w
third homogeneous solution=1/2, is unstable. The surface NN\
tension associated to the interface between the liquid and gas %
phases is given by ) / \ .
0 32 64 96 128
(dc(x)) 2 2 X
o= f dx x| =6 2

FIG. 2. Time evolution of the concentration profile in an ini-

. . . . tially periodic, quasi-one-dimensional array of eight dropleise
where c(x) is a one-dimensionallD) solution of Eq.(1) text for detailg. The first curve corresponds te=0 (initial condi-

satisfying the boundary conditions(—=)=0, c(«)=1, tion) and the time increment between two subsequent snapshots is
i.e., c(x)=3[1—tanh@2)]. In all that follows, EQ.(1) iS et tost=500.

solved numerically using an Euler algorithm. Keeping in

mind the arrangement of Fig. 1, we perform our calculations
for the two-dimensional case, although a three-dimension

2(rjrrar123e(r)rr1%r;tt|os ;E&;gii'\%%e-r;esiszléuzg;g f‘;gzvendgitz'g' hows, the evaporation of @ubcritica) droplet is a rather
P | _fast process, producing a considerable amount of matter dif-

With. pe_riodic boundary c.onditions along the _h.orizontal edge%using in a bulk gas phase. The matter set free during such an
(solid lineg and absorbing boundary conditions along theelementary process diffuses not only in the direction of the

vertical onesdashed lines In another(simpled calculation, absorbing boundary, but also in the opposite direction. This

:dIsgrsefgn%!g'Omfelnzfoii;ssl'{[sz(i[)ggvfhw C;‘.’:ét.i’ tl)e()a?:geglrto matter can be absorbed by the neighboring droplet whose
coﬂg't'olns a Il'ed o:q the Iolr? or s'(;es prellleclt'n tLrj1e boyndr_adius then starts to grow. The radius of this droplet can thus
= ppll ger sides, Ing UN9%5et larger than the radius of its next neighbor to the right, so

?hry and'tt')(.)n c;)n thz rlght-h%ntq-sme ?Eorter ed_g[]e and wit hat the droplet of the larger radius gets transiently stabilized,
€ absoruing boundary condition on the opposite one. and proceeds to grow further now at the cost of its next

Since the physical mechanisms of the evaporation procesr?eighbor to the right, which will in turn be the next droplet to

ﬁ]r?htgej:srﬁisncggéh lcna'i:as, 2%352&@%?52 é’:’/g?ljtifg:ogv sappear. The overall sequence of the droplets to evaporate
q ' 9- depends thus on the geometry of arfeadii of droplets and

th‘? concentranon_: _measured along the 'OF‘ge.r symmetry the distances between thgso that the sequence of evapo-
axis of a system initially prepared as a periodic arrayNof

=8 equal droplets of radius 5. Just like in Fig. 1, the calcu-

lation shows that the droplets do not disappear consecutivel

according to their further distance from the absorbing bound-

ary but that, for this particular configuration, the actual se-

quence of the numbers of droplets to evaporate is 1, 2, 4, 7 g

3, ... .This behavior can be attributed to a sort of competi-

tive evaporation between droplets. The time evolution of the

radii of the corresponding droplets, measured as the distanc__

from the center of the droplet to the points at whixfr,t) T 40

=0.5, is shown in Fig. 3. In order to check that the compe-

tition between droplets, mediated by matter redistribution

among them, is really caused by the effect of the absorbinc

boundary, we have made a parallel calculation of the evolu-

tion of the same initial distribution of droplets but this time

with all boundary conditions being periodic. In this case, the

droplets evolve towards their equilibrium shape without any .0 ' ' ' '

considerable redistribution. 0.0 2000.0  4000.0  6000.0  8000.0  10000.0
We turn now to a qualitative discussion of the effect !

found. The evolution of the droplet’s radius strongly depends FIG. 3. Time evolution of radii of different droplets, numbered
on the concentration of the surrounding gas phase. For eadi accordance with Fig. 2.

uch concentration a critical radius exists, so that the larger
roplets grow while the smaller ones dissol&g. As Fig. 3
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0.20 T T T T dC(X)
J(x=0)=-D— @
x=0

0.18
so that the slope of the(t) dependence is

0.16 g 5
p
FTR-TE 6)

p(t)

0.14

The results of Fig. 3 suggest that the controlling droplets
0.12 keep both their radius and their position almost constant dur-
' ing considerable time, so that a piecewise-linear time depen-
l 1 l dence appears. The results of our calculations confirm the
0.10 . . . . dependencés). The same behavior and interpretation apply
0.0 20000 40000  6000.0  8000.0  10000.0 to the two-dimensional arrays of droplets of Fig. 1.
t Moreover we have also found that the overall structural
FIG. 4. Time dependence of the mean density of matter in thd€atures of the process are stable against small fluctuations in

system. The subsequent linear parts of the curve are controlled H?Pth droplet positions and sizes, while in the case of strongly
droplets no. 1, 2, 3, and 5. The arrows indicate the time of dissoludisordered arrays these effects may show up in the form of a

tion of droplets no. 1, 2, and 3 in Fig. 3. complex time evolution of the averaged concentration pro-
file. This question is presently under study.
ration can be found only by explicitly solving E¢L) under We conclude by summarizing our findings. We consider

prescribed geometrical conditions. It is also worth discussinghe patterns and kinetics emerging during the evaporation of
the time dependence of the overall amount of maiterthe  periodic arrays of initially equal droplets in two-dimensional
system. Thep(t) dependence obtained numerically by inte- Systems with opefabsorbing boundaries. Based on the nu-
gratingc(x,t) over the system’s volume is shown in Fig. 4. merical solution of the Cahn-Hilliard equation we show that
The dependence there depicted can qualitatively be describdd this case a reversion of the sequence of the droplets to
by a sequence of smooth, practically linear segments corfvaporate next is observed: the droplets which are further
nected by more or less pronounced crossover regions, relaté@m the boundaries may evaporate earlier than those in each
to the times of evaporation of the leftmost droplet present irPoundary’s vicinity. This effect is explained by taking into
the system. The dissolution of internal droplets has no sigaccount the complex existing interplay between the matter
nificant effect on the(t) dependence. disappearance through the boundaries and its redistribution

We proceed now to show that indeed the overall rate oPetween the droplets. Thus the matter set free during the
mass decay in the system is mostly controlled by the leftmosgvaporation of the droplets closest to the boundaries is partly
droplet, because its evaporation determines the concentratigipsorbed by their neighbors in the interior of the system and
profile (and therefore the mass fluat the absorbing bound- stabilizes them. We also show that the overall time depen-
ary. This profile admits a simple analytical treatment. Notedence of the amount of matter in the system shows
that the concentratios in the bulk regions outside of the Piecewise-linear behavior due to the fact that the matter loss
droplets is small, so that Eq1l) can be linearized in this is mostly governed by the evaporation of the outermost drop-
region leading in the lowest-order approximation to a Simp|elets, nearest to the boundaries. Such an effect of matter re-
diffusion equation forc, (d9/dt)c=VZc. In a quasistatic ap- di;tribution cpuld also be of mgjor importance whgn consid-
proximation, the concentration profile established betwee§ng ghemlcal processes in systems showing phase
the boundary and the leftmost droplet is thus given by separation.
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