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ABSTRACT

In the preceding contribution in this volume (Hollerbach [1]), we introduced the general Stewartson
layer problem, and considered the linear onset of non-axisymmetric instabilities, which we found to
be very different for positive versus negative differential rotation of the inner sphere. In this work we
focus primarily on the positive differential rotation case, but now consider the nonlinear, fully three-
dimensional equilibration of these instabilities, and find that in the increasingly supercritical regime a
series of mode transitions occurs in which the azimuthal wavenumber is successively reduced by one
each time. We also present experimental results in good agreement with the numerical results.

The experimental setup is that of Egbers & Rath [2]. It consists of concentric spheres of radii r; = 26.70
mm and r, = 40.00 mm, which can be independently rotated about a common axis at speeds up to 850
rev/imin. The fluid filling the gap is M3 silicone oil, having a viscosity of ~ 3 cSt. In terms of the
Ekman number E = v/Q,(r, — r;)? introduced in [1], we can therefore reach values as small as
1031, Although this is not nearly as small as the 10> considered in [1], it turned out to be small
enough, as this progression to higher and higher wavenumbers noted in [1] very conveniently seems to
occur much quicker in the thinner gap considered here (with r;/r, = 2/3 rather than 1/3 as in [1]).

We begin by presenting the numerical results. Then, once we have a clearer idea of what we are looking
for, we will return to the experimental results, where our visualization technique (aluminium flakes
mixed in with the fluid) allowed us to detect the azimuthal mode number of the instability, and which
we find to be in good agreement with the numerical results.

As in Fig. 1 of [1], Fig. 1 here also shows contours of the angular velocity, for Ekman numbers from
1072 to 10~3'1. We again see the emergence of the Stewartson layer on the tangent cylinder. Because
the inner sphere is now much bigger than before, the layer is correspondingly crowded into the equa-
torial region. Nevertheless, we see that this range of Ekman numbers is already small enough for a
well-defined shear layer to exist. Figure 2 then shows the linear onset of instability, although this time
only for Ro > 0. We see the same progression to higher and higher m as in [1], only much quicker,
with a factor of 4 in E being sufficient to progress from 3 to 6.

Everything thus far is much as in [1], just at a different gap width. We now proceed beyond [1] though,
and consider the nonlinear equilibration in the supercritical regime. Suppose we fix E at 1031, for
example, and gradually increase Ro. According to Fig. 2, the most unstable mode is then m = 6,
with Ro. = 0.237. In the slightly supercritical regime, we would therefore expect the instability to
equilibrate at some finite amplitude, and to contain only multiples of this basic wavenumber mq = 6.
This is exactly what was observed up to Ro = 0.306. Beyond that value, however, this m = 6 solution
is unstable, and the system instead switches to an my = 5 solution. Increasing Ro further, at 0.432 this
in turn yields to mo = 4, and so on down to my = 3. And if one then decreases Ro again, one obtains
the whole sequence in reverse, although with a considerable degree of hysteresis. Figure 2 also shows
the critical Rossby numbers for these supercritical mode transitions.
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Figure 1: Contours of the angular velocity, for Ro = 0 and, from left to right, E = 10=2, 10727,
1029 and 10~3-1. The contour interval is 1/7.
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Figure 2: The solid lines labelled ‘m = ...” are the linear onset curves of the indicated modes. The

dashed lines labelled *m —> m — 1’ are the transitions obtained when increasing Ro, and finally the
dotted lines labelled *‘m —> m + 1’ are the reverse transitions obtained when decreasing Ro again.
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Figure 5: As in Fig. 2, but now also showing the experimental results. Upward/downward pointing
triangles denote transitions obtaining by increasing/decreasing Ro. (The experimental results beyond
E = 10727 have not been measured yet, but this is still planned, and these additional results will
hopefully agree equally well.)



Finally, Fig. 3 shows what the solutions actually look like. What is shown is the streamfunction of the
vertically integrated horizontal flow. That is, if U = (U, Uy, Uy), consider

Vg = (O,/Usdz,/U¢dz).

By construction this flow is independent of z, so it has a streamfunction representation. Also, since the
original U is almost independent of z (the pattern seen in Fig. 1 persists into the nonlinear, fully 3D
regime), Vi will indeed be the dominant part of the flow. Showing its streamfunction is therefore the
most compact way of representing the essential features of the solution. So, we see then in Fig. 3 how
the originally circular Stewartson layer is distorted first into a hexagon, then a pentagon, a square, and
finally a triangle, corresponding to this progression from my = 6 to 3. Further details of the numerical
solutions will also be presented in the poster.

Returning finally to the experiment, these results largely describe themselves. Figure 4 shows photo-
graphs looking straight down onto the apparatus. We note first of all that while the visualization is
incapable of revealing fine details of the Stewartson layer, it is more than adequate for determining
the azimuthal wavenumber m. And better still, comparing Figs. 3 and 4, we see that the agreement
is quite good. Next, Fig. 5 shows how the experimentally determined mode transitions agree with the
numerically computed ones, with the agreement again rather good. And again, further details of the
experimental results will be presented in the poster.
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