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ABSTRACT

Convective flows of a small Prandtl number fluid contained in a two-dimensional vertical cavity subject
to a lateral thermal gradient perpendicular to a constant gravity, are studied numerically. The chosen
geometry and the values of the material parameters are relevant to semiconductor crystal growth exper-
iments in the horizontal configuration of the Bridgman method. For increasing Rayleigh numbers we
find a transition from a steady flow to periodic solutions through a supercritical Hopf bifurcation that
maintains the centro-symmetry of the basic circulation. For a Rayleigh number of about ten times that
of the Hopf Bifurcation, the periodic solution loses stability in a subcritical Neimark-Sacker bifurca-
tion, which gives rise to a branch of quasiperiodic states. In this branch, several intervals of frequency
locking have been identified. Inside the resonance horns the stable limit cycles lose and gain stability via
some typical scenarios in the bifurcation of periodic solutions. From a complicated bifurcation diagram
of the stable limit cycle of the 1:10 resonance horn, a branch of chaotic solutions is obtained.

Introduction

This work deals with the numerical study of the fluid flows that arise in a two-dimensional cavity, under
geometrical conditions and material parameters which are relevant to semiconductor growth according
to Bridgman-like techniques. In particular, we consider a laterally heated rectangular cavity under the
influence of a vertical gravity field, and we focus on the transitions to time-dependent responses, from
periodic oscillations to aperiodic or chaotic motions. In the case of a laterally heated cavity, the con-
vective response does not have to overcome a finite threshold, since it occurs for an arbitrarily small
Rayleigh number. The successive transitions from the primary convective steady state to the oscillating
and chaotic motions studied recently [1,2,3,4, among others], show a strong dependence on geometrical
conditions, such as the aspect ratio, on boundary conditions and on material parameters.

One of the dimensionless parameters which affects rather drastically the dynamical behavior of the
system concerning transition mechanisms to chaos is the Prandtl number. Our study will focus on small
Prandtl numbers, a parameter region which has not been explored as systematically as others, and which
is directly relevant to semiconductor materials. In our simulations we have used the value of germanium,�������	�
������ . Other works [5, 6] have been devoted to study this problem in three dimensional geometry
but they are restricted to low values of the Rayleigh number. We have considered horizontal rectangular
cavities with aspect ratio 2, with a basic stationary state formed by a single roll. More elongated cells
will typically introduce new instabilities which would break the basic roll into more than one. On the
other hand, smaller aspect ratios require higher levels of buoyancy so that the basic flow becomes
unstable. We thus find that aspect ratios of around 2 are in a sense optimal to study transitions to
chaos in low Prandtl number liquids [7]. Finally we complete the definition of our physical setup by
specifying the boundary conditions. Two fixed temperatures are imposed on the vertical walls, while
perfect conductive conditions are assumed in the horizontal walls. In practice this means that a linear
temperature profile is imposed on them. The boundary conditions for the velocity field are no-slip.



1 Mathematical model

We have considered an incompressible fluid in a two-dimensional rectangular cavity of aspect ratio� ��� , being
�

the ratio of the length � and the height � of the cavity. In the presence of a vertical
constant gravity, a temperature difference ��� is maintained horizontally over the length of the cell,
being the temperature at the right wall higher than at the left one. If we nondimensionalize the equations
using the height � of the cavity as unit of length, the imposed lateral temperature difference ��� as unit
of temperature and the vertical thermal diffusion time ��� � � ��� � (

�
is the thermal diffusivity) as unit

of time, the dimensionless equations in Boussinesq approximation read as follows:
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where
$5P�+ LQ%FR /

is the dimensionless velocity field in
+S? %�T / coordinates,

3
is the pressure over the

density and
B

denotes the departure of the temperature from a linear horizontal profile in units of the
imposed temperature difference ��� . The dimensionless parameters are the Prandtl number, � , and the
Rayleigh number, 698 :
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where V denotes the kinematic viscosity, [ the gravity acceleration, and Y the thermal expansion coef-
ficient.

No-slip boundary conditions have been used in all sides of the cavity, right and left hand sides are
maintained at constant temperatures and the horizontal lids are assumed to be perfectly conducting,
thus $ � B ����% at

&;^ � (4)

Equations together with boundary conditions, are invariant under rotations by _ about the point+`� � ��%� � � / . This rotation can be described by the action of the operator 6 defined by

6#a +S? %�T /cbd+`� 2 ? %�e2fT / % + LQ%FRg% Bh/ibd+ 2eLQ%�2Mjk%�2 Bh/ �

Since 6 � �Zl , the 6 transformation is a generalized reflection, and the resulting symmetry group ism � �on�lp%�6�q .
We solve equations and boundary conditions using the second order time-splitting algorithm, proposed
in reference [8], with a pseudo-spectral Chebyshev method for the spatial discretization. This algorithm
has been successfully used in previous studies of binary mixtures in large aspect ratio containers [9].
The method employs a pressure boundary condition which in conjunction with stiffly stable schemes,
prevents propagation and accumulation of time differencing errors. The Helmholtz and Poisson equa-
tions on Chebyshev collocation points resulting from the time splitting, are solved efficiently by using
a complete diagonalization of operators in both directions.

2 Results

For moderate Rayleigh numbers ( 698�rst� \ ) the only stable solution is steady and R-equivariant and
consists of a single roll. As the Rayleigh number increases this roll concentrates in the center, tilts
towards the diagonal direction, and develops two weakly co-rotating circulations in both sides of the



cavity. This steady solution loses stability at 698pu4�v �>w
w�yx5t� \ in a supercritical Hopf bifurcation
that maintains the R-symmetry of the basic solution. The Hopf frequency is z u �|{��	�(} . As a result of
this bifurcation a branch of stable periodic solutions appears. A time sequence of eight snapshots one
eighth of a period apart each, showing the evolution of the isotherms and streamlines for a solution
at 698��~��t�
�
� is depicted in figure 1. The periodic motion hardly affects the core of the roll, which
alternates a stretching in the diagonal direction and a circular shape. At the same time small vortices
appear and disappear at the corners of the cavity. When the roll stretches a bigger warm (cold) region
settles on the left (right) of the diagonal.
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Figure 1. Time sequence of the tempera-
ture field and streamlines of the periodic
solution at ���H���
������� . The period of this
solution is �����(����� in units of vertical
thermal diffusion time.

At Rayleigh number 698����sr ����
�x#t� � , peri-
odic solutions lose stability in a subcritical Neimark-
Sacker bifurcation ( z � r ���>} � , which gives rise
to a branch of quasiperiodic states. By decreas-
ing the Rayleigh number these states persist until698�r ��
} �
� , where a jump to the periodic ba-
sic solution above mentioned takes place. When the
Rayleigh number is increased, several intervals of
frequency locking have been identified. Inside some
of the resonance horns the stable limit cycles lose
and gain stability via some typical scenarios in the
bifurcation of periodic solutions. We have localized
pitchfork bifurcations breaking the R-symmetry, flip
bifurcations, Neimark-Sacker bifurcations introduc-
ing a very small new frequency, and even frequency
lockings involving this new frequency. Eventually, a
complicated bifurcation diagram of the stable limit
cycle of the 1:10 resonance horn gives rise to chaotic
states. However, there are small intervals of the
Rayleigh number for which the attractor appears to
manifest again a quasiperiodic behavior. As a repre-
sentative of all this behavior we have plotted in Fig-
ure 2 the Fourier spectra of the horizontal velocity
signal in a point of the cavity of four different solu-
tions corresponding to a periodic, quasiperiodic, pe-
riodic (resonance 1:10) and chaotic solutions for the
Rayleigh numbers indicated in the figure. An appro-
priate Poincaré section return map of the time series
of these solutions is also plotted.
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Figure 2.- Fourier spectra (left) and Poincaré section return map (right) for solutions at 698��
��t�
�
��%�698N�,�
� �
�
��%�698y�,�(�J�
�
� and 698��,�
w �
�
� .

REFERENCES

[1] J.P. Pulicani, E. Crespo del Arco, A. Randriamampianina, P.Bontoux and R. Peyret, Spectral
Simulations of Oscillatory Convection at low Prandtl number, Intl J. Num. Meth. Fluids 10,
481–517, 1990.

[2] P. Le Quéré and M. Behnia, From onset of unsteadiness to chaos in a differentially heated
square cavity, J. Fluid Mech. 359, 81–107, 1998.

[3] A.Y. Gelfgat, P.Z. Bar-Yoseph and A. L. Yarin, Stability of multiple steady states of convec-
tion in laterally heated cavities, J. Fluid Mech. 388, 315–334, 1999
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