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ABSTRACT

Gluing bifurcation is a global bifurcation where two symmetrically related time periodic states simulta-
neously become homoclinic to an (unstable) saddle state and result in a single symmetric time-periodic
state, as a parameter is varied. In a previous paper, [1], the systematic study of gluing bifurcations that
had been receiving much attention by this time, [2][3][4], was extended to the unfolding, due to im-
perfect symmetry, of this kind of bifurcation in a system with

���
symmetry generated by a space-time

gliding symmetry, i.e. a half period time translation plus a space reflection.

A gluing bifurcation had been found, [2][3], in computed solutions of a temporally forced Taylor-
Couette system with aspect ratio 10. The temporal forcing aids in the analysis of the problem in that the� �

spatial reflection symmetry of the unforced system is replaced by a spatio-temporal glide reflection
symmetry which can be broken in a very controlled and simple manner, i.e. by adding a small multiple
of the first temporal harmonic of the forcing, this multiple being the small imperfection parameter.

The gluing bifurcation can be trivially isolated from any �����
	�� symmetry breaking related dynamics
by computing in the axisymmetric subspace. This restriction agrees with recent experimental results,
[4][5], which indicate that that the dynamics associated with the gluing bifurcation takes place in an
����
	�� invariant subspace, even though the observations of this dynamics come from full 3D solutions.
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Figure 1: Schematic of the flow
configuration

The model problem we consider is the flow between two coax-
ial finite cylinders with stationary top and bottom end-walls
(see Fig 1). The outer cylinder is stationary too while the inner
cylinder rotates at constant angular velocity ��� and oscillates
in the axial direction with velocity ���������
������� . Its radius is � � ,
the radius of the outer cylinder is ��� , their length is  and the
annular gap between the cylinders is �!�#"$� � . The nondimen-
sional governing parameters are: the radius ratio %'&(� �
) �*� , the
length to gap ratio +,&- )�. , the Couette flow Reynolds num-
ber /10�& . � � � �2)!3 , the axial Reynolds number /145&6� .7)!3
, and the nondimensional forcing frequency 89�:& .

�
�;� )!3 .

The basic flow is time-periodic with period <=�>&:	!? ) 8=� , syn-
chronous with the forcing and independent of the azimuthal co-
ordinate.The incompressible Navier-Stokes equations governing
this problem are invariant two rotations about the common axis,@BA �
	�� , and a temporal glide-reflection

�C�
. This

�D�
group is gen-

erated by the discrete symmetry
@

that is a reflection orthogonal
to the axis with a simultaneous time translation of a half forcing
period and satisfies

@ � &FE . The groups
@BA �
	�� and

� �
commute

for this problem. The equations are solved in an axisymmetric
subspace invariant to

@9A �
	�� , for this reason the only relevant group of symmetry is
�G�

.

Because it is very difficult to obtain a pure harmonic oscillation in an experiment, and in presence of
any deviation of harmonicity,

@
ceases to be a symmetry group of the system, an imperfection of the
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Figure 2: Variation of ������� with /10 and � .

harmonic character is considered here. The nonharmonic axial oscillations, here introduced, are given
by the expression �-� ��� � �
���!���	�
��������
	 �;�!��� , where � is a measure of the imperfection.

The temporal glide-reflection produces a convoluted scenario in this flow, comprising a gluing of three-
tori ( �� ) and homoclinic and heteroclinic dynamics, [2][3]. This gluing bifurcation is the organizing
center of the dynamics and the cause of spontaneous symmetry breaking in this problem.

The explorations of the parameter space was carried out solving the Navier-Stokes for different values
of � and /10 and keeping all other parameters fixed ��� &������9%#&������������ /14 &������G89� &���� � . For the
case � &�� exists a range of /10 , /10 �"! 	#�������#����	#��$�� 	#%'& where stable � � solutions exist [2][3]. These � �
solutions have three incommensurate frequencies: the forcing frequency, 8 �#&(��� , a second frequency
at 8)+*,��� 	 , and a very low frequency 8.-	/�0 which is three orders of magnitude smaller than 8 � .
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Figure 3: Bifurcation diagram
for the unfolding of the gluing
bifurcation

For �21&3� , the �4�����6587 gluing bifurcation splits into three
distinct homoclinic bifurcations, as shown in Fig. 2. A classifi-
cation of the possible gluing bifurcation scenarios and its appli-
cation to systems with imperfections was obtained and analyzed
in Refs. [6],[7] and [8]. The unfolding of the bifurcation is de-
scribed by two parameters, 9 (related to the Reynolds number
in this paper) and � , the imperfection parameter. The horizontal
axis ( �;&�� )corresponds to the perfect

� �
symmetry. For 9;:<�

a symmetric limit cycle labeled $=� collides with the saddle at
9 &>� , forming a homoclinic curve with two closed loops, and
for 9@?A� splits into two asymmetric limit cycles, labeled � and
$ . For �(1&B� splits into two separate single loop homoclinic
bifurcations, corresponding to the solid straight lines in Fig. 3.
these lines delimit four regions. Two of them are are extensions
of the symmetric case, and contain the single limit cycle $=� or
the two limit limit cycles $ and � which are no longer symmet-
rically related.In the two additional regions only one cycle limit

exists, $ and � respectively. There exist two additional cusp-shaped, where two two limit cycles coexist,
$ and $=� , and � and $=� , respectively. The three limit cycles �����C$��C$=� � involved in the gluing bifurcation
in the symmetric case give rise to three branches of limit cycles that disappear in homoclinic bifurca-
tions (collision of the limit cycle with a saddle) when �D1&�� , corresponding to the solid lines in Fig. 3,
where the dotted line corresponds to a typical path in presence of a fixed imperfection ( �E1&(� ).
As it can be seen in Fig. 2, over the range of /10 and � where �+� exist �4�F��� & 	!? ) 8-G/�0 experiences



dramatic changes. For � & � there are two /10 values where � �F��� becomes unbounded. For � 1& � ,
the � �F��� 5 7 splits into three homoclinic bifurcations. The range in /10 where the $ and $=� � �
coexist, which corresponds to the width of the cusp region in Fig. 3, is very narrow for the considered
imperfections and so the the two distinct homoclinic bifurcations appear to coincide on the scale of the
graphics in Fig. 2. For � & $=� � � the width in /10 of the cusp coincidence region is ��� ����� $=� ��� and for
� &(� � $=� � � it becomes 	�� �	� $=� ��� .
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Figure 4: Schematic of the bifurcation se-
quence for the �.� . �� are represented as cy-
cles and �

�
as fixed points.

Figure 4 illustrates schematically the sequences
of bifurcations on the � � branches. The first col-
umn in the figure corresponds to the symmetric
case ( � & � ), reported in Refs. [2] and [3]. The
infinite-period at /10�
��� bifurcation corresponds to
a heteroclinic loop connecting two saddle �

�
re-

lated to each other via the temporal glide-reflection
symmetry. The � � emerging for higher /10 values
( $=� ) is invariant, and undergoes a gluing bifurca-
tion /10���� . For larger /10 values two asymmetric � �
exist, $ and � . These �.� solutions become unsta-
ble beyond /101& 	#��$�� 	#% , and the system evolves
towards a �

�
branch.The second column in Fig. 4

represents the imperfect ( �E1&�� ) case. Both the glu-
ing and the heteroclinic bifurcation become stan-
dard homoclinic bifurcations, and there are three
different branches � $=��� ���C$ � that overlap for differ-
ent values of /10 in agreement with the theoretical
description in Fig. 3.

For the particular case here considered, the branch
of symmetrical � � labeled $=� undergoes a closeby
(at lower /10 ) heteroclinic global bifurcation, and
when � increases, the two global bifurcations at ei-
ther end of this branch collide and the � � labeled
$=� disappears (at � &(� � $=� " % and /10 *$	#�������#� ).
This collision of global bifurcations (in this case of
two homoclinic bifurcations) alters the bifurcation

diagram, dramatically reducing the parameter range of validity of the standard unfolding of the gluing
bifurcation.

The conclusion was that in an experiment with even very small levels of imperfection, complex spatio-
temporal dynamics can be present that are not obviously associated with the underlying gluing bifurca-
tion. The attempt to establish this relation is presented here.

As the imperfection parameter � increases, some branches disappear and new bifurcations give rise
to new branches, whose aspect is less and less symmetric. For � of order $=� ��� there only remains a
robust branch of � � (labeled < ��� in figure 5), and it undergoes a homoclinic bifurcation only for
��� $�� 	 � $=� ��� to �

�
, with �4�F���65 7 . Homo and heteroclinical global bifurcations do not exist

anymore for ��� $���� � $=� ��� . These global bifurcations become local, usually Neimark-Sacker or
saddle-node bifurcations of �

�
and � � . This is the new feature we are exploring in detail in the present

work.

Figure five is a schematic of the existing solutions for two different values of � . For every value of � there
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Figure 5: The existing branches for � & $�� 	 � $=� ��� and � & $���� � $=� ��� respectively.

are common branches like <�	��.$ and
� <�	 , that come from the two symmetric �

�
branches for � &�� .

These branches are very robust, and increasing enough the Reynolds number, all the �4� disappear and
only these �

�
branches remain, as shown in figure 5.

< $ is the basic flow, a periodic limit cycle synchronous with the forcing. This limit cycle undergoes a
Neimark-Saker bifurcation to the <�	���� branch, that comes from the symmetric �

�
branch for � & � .

For � small, as in figure 5(a), this <�	���� branch undergoes a homoclinic bifurcation to the � � branch
< ��� . For larger values of � , as in figure 5(b), the bifurcation from < 	���� to < ��� becomes a Neimark-
Saker bifurcation of �

�
.

The other branches in figure 5 exhibit a complicated dynamics, including lokings of �
�

and � � , and the
interconnection between the different branches is the subject of our current research.
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