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ABSTRACT

In this work, a scenario of subcritical transition in Hagen-Poiseuille flow or pipe flow is presented. The
analysis is focused on the streak breakdown process by which two-dimensional streamwise-independent
finite amplitude perturbations transiently modulate the basic flow leading to a profile that contains sad-
dle points and is linearly unstable with respect to very small streamwise-dependent perturbations. This
mechanism is one possible route of transition to turbulence in subcritical shear flows. The exploration
is carried out for initial disturbances of different finite amplitudes and axial and azimuthal periodic-
ity. This study covers a wide range of Reynolds numbers and the double threshold curve obtained for
transition is consistent with experimental observations.

1 Introduction

Hydrodynamic instability of pipe flow remains one of the oldest and yet unsolved problems of fun-
damental fluid dynamics. Pipe or plane Couette problems belong to a particular family of shear flows
which are usually termed subcritical [2]. From a mathematical point of view, these flows are linearly
stable, i.e., the spectrum of the linearized Navier-Stokes operator around the basic flow always lies on
the stable half of the complex plane. Therefore, any infinitesimal perturbation added to the basic flow
must eventually decay. Nevertheless, these flows become turbulent in the laboratory. For instance, be-
low a critical Reynolds number,

�����
, in the range ����	�
�� ���� ������
�
 , pipe Poiseuille flow does not

exhibit a sustained transition to turbulence [1]. For Reynolds numbers higher than
�����

, a finite ampli-
tude disturbance is required to destabilize the flow. Experimental and numerical evidence suggest that
transition in pipe flow is extremely sensitive to the size and structure of the perturbations.

In a recent work [3], Zikanov analyzed the stability of the Hagen-Poiseuille flow by means of adding
streamwise-independent finite amplitude perturbations to the basic flow and exploring the linear stabil-
ity of the resulting time-dependent streaks with respect to infinitesimal streamwise-dependent distur-
bances. Zikanov concluded that this time-dependent flow was linearly unstable with respect to certain
streamwise-dependent perturbations with a preferred axial periodicity, depending on the Reynolds num-
ber and the initial amplitude of the two-dimensional perturbation. This suggests that the streaks would
eventually be distabilized leading to the usually termed streak breakdown scenario. Therefore, the main
goal of this work will be to study the nonlinear time evolution of a particular type of perturbations
in pipe flow and to identify the streak breakdown mechanism as a possible route to turbulence in this
particular problem. We will focus our attention on the early stages of transition to turbulence; the study
of fully developed turbulent flow is beyond our scope.

2 Mathematical formulation and numerical methods

We consider the motion of an incompressible viscous fluid of kinematic viscosity � and density � . The
fluid is driven through a circular pipe of radius � and infinite length by a uniform pressure gradient, ��� ,



parallel to the axis of the pipe. The motion of the fluid is governed by the incompressible Navier-Stokes
equations ���������	��
����� � � � �

�
�� ������� ��� � (1)��
�� � 
�� (2)

where
�

is the velocity vector field, satisfying the no-slip boundary condition at the wall.� �"!#�%$�&('*)#)+�-, � (3)

A basic steady solution of (1), (2) and (3) is the so-called Hagen-Poiseuille flow�/.0�1�	23. �54 . �56 ./�5�87 
�� 
��:9<;�=?> � ��@BA
�DC EGF�H � 9I;�= ��� � � � EJ ��� � (4)

where 9<;�= is speed of the flow at the center axis. Henceforth, all variables will be rendered dimension-
less using � and 95;�= as space and velocity units, respectively. The axial coordinate K is unbounded since
the length of the pipe is infinite. In what follows, we assume that the flow is axially periodic with periodL
. In the dimensionless system, the flow is confined in the domain

� A �NM(�NK �PORQ 
�� � �PS?Q 
�� �UT �PSRQ 
��GV �L�W � � , the basic flow takes the form
�D.X�Y�	23. �Z4 . �Z6 . ���Y� 
0� 
0� � � A E � , and the parameter which

governs the dynamics of the problem is the Reynolds number
��� � �+9I;�=

� . For the stability analysis,

we suppose that the basic flow is perturbed by a solenoidal velocity field vanishing at the pipe wall�[� A �NM(�NK(�Z\ �[���/.I� A � �^]_� A �NM(�NK(�Z\ � � ��
`]�� 
�� ][� A � � �a�-, � (5)

and a perturbation pressure field �I� A �NM(�NK��Z\ �5�b�3.<� K �/�dc(� A �NM(�NK(�Z\ �Ge (6)

On introducing the perturbed fields in the Navier-Stokes equations, we obtain a nonlinear initial-
boundary problem for the perturbations

]
and

c
:���f] � �g��cP� ��� � ]h�i�	�/.�
j���*]k�l��]k
�����/.m�l��]h
j���*] � (7)�n
j] � 
 e (8)

Equations (7) and (8) are discretized via a spectral solenoidal Petrov-Galerkin scheme. For the time
integration we have used a fourth-order implicit Backwards Differentiation method for the linear terms
in combination with a fourth order explicit Adams-Bashforth method for the nonlinear ones. The time
marching process was started with a fully explicit fourth order Runge-Kutta algorithm.

3 Main results

In this section we study the nonlinear evolution of very small 3D-perturbations superimposed to the 2D

initial disturbances. In what follows, we define the energy of an arbitrary vector field
]

as the inner
product o ��]D�5� �

�qp^r�ts K p E*u� s M piv� A s A ] � 
]ae (9)
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Figure 1: Formation of streaks (left) and streak breakdown mechanism (right).

We split the initial perturbation in two parts] � � �-] �E � � ] �� � � (10)

where
] �E � is the streamwise-independent component and

] �� � is the streamwise-dependent contribu-
tion, so that the energy of the 2D and 3D modes is distributed as follows:

� ��] �E � �5� � E �� � � ��] �� � �5� � � �� � � � � ������ � E �� �Ge
(11)

In figure 1, we have carried out a computation for Reynolds number,
��� � J 
�
�
 , and amplitude of

the initial perturbation � E �� � � 
 � 
�� � (thick line). In the first case (figure 1-left), we see that three
independent 3D-perturbations of energies �

� �� � � 
 � 
 � v �
	 � � 	 � � (thin lines), are not strong enough
to destabilize the streak. We observe remarkable similarities of the evolution of the 3D-perturbations
until they reach their maximum amplification, where the linear mechanisms are much stronger than the
nonlinear ones. In this case, the threshold three-dimensional energy for this instability mechanism is of
order � 
��  , see figure 1, right.

In order to make a consistent comparison with the experimental time especifications, we considered
time integrations in the interval 
�� \���� � ����
 , i.e., the time required by a fluid particle located
at the pipe axis to be advected downstream by the basic Hagen-Poiseuille flow a distance of � ��� pipe
diameters. According to the experiments of Darbyshire and Mullin, henceforth referred as D&M, the
perturbation was injected � 
 pipe diameters downstream of the pipe inlet and � ��
 upstream from the
outlet. Even the mechanisms of transition presented here may slightly differ from the ones triggered
in the experiments, each one of our numerical runs should cover the transition dynamics observed
in the laboratory. We considered the same perturbations as the ones used in the previous sections,
always starting with �

� �� � � 
 � 
��  and � E �� ranging from � 
 � 
���� to � 
 � 
�� E . We included only
one streamwise-dependent mode in the integration of axial wavenumber � � �UT W V � � e � which
is a good candidate to trigger transition according to Zikanov’s linear computations. Our criteria of
identification of sustained chaotic evolution was based on the energy of the 3D-perturbation at the end
of each run. In particular, we classified the run as successful if �

� � � \ � � ��� � 
 � 
 ��� , i.e., at the end
of the run, the energy associated with the 3D-perturbation was still three orders of magnitude bigger
than its initial value. No qualitative differences were found when increasing the number of spectral
modes or reducing the time step. We carried out 740 runs whose final results have been outlined an
compared with the experimental results in figure 2. To make a consistent comparison it is necessary
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LEFigure 2: Experimental (left) and numerical (right) results.

to divide the D&M results by one power of
���

, giving ��� � � W � , and this has been done in figure
2(left). Thus figure 2(left) represents not the original plot from D&M [1] but a reprocessing of that
data to make a comparison (the numbers on the vertical scale of figure 2(left) are subject to an arbitrary
constant; thus the discrepancy of the vertical axes labels on the figure is not significant). In figure 2(left),
black dots represent experimental transition to turbulence and white dots represent relaminarization of
the flow within the pipe domain. In figure 2(right), we have represented the numerical results of our

integrations. The amplitude � ��� � � �� � � E �� on the ordinate axis represents the square root of the total
initial energy of the perturbation. White dots represent those situations where the flow relaminarized
by the time the run was ended. Black dots represent successful transition. Despite the coarse numerical
approximation of the problem, we observe a significant agreement with the experimental observations.
First, according to our computations (figure 2-right), there is no transition for

��� � ��
�
�
 . Second, the
threshold amplitude decreases in both cases quite similarly. We have included a straight line in both
plots representing the asymptotic curve

��� �
��� E in order to compare the experimental and numerical

behaviour. As we see, the agreement is very good. Nevertheless, it is probably too early to associate
this apparent agreement with a common mechanism of transition. In both explorations, the Reynolds
number is far from being within an asymptotic range. In fact, the analyses have been done still very
close to the vertical threshold (

��� � ��
�
�
 ), thus strongly affecting the slope of the threshold boundary.
To put it mildly, experiments and numerics are both providing the same local slope, none of them being
asymptotic. In any case, the author does not claim that the streak breakdown is the only responsible
for that transition by itself. Certainly, the mechanism explored here provides a consistent explanation if
we compare with the experiments, but the real dynamics occurring in the laboratory are far from being
understood.
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