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ABSTRACT

In the classical Taylor-Couette problem of the flow between differentially rotating cylinders or spheres,
the differential rotation rate

���������
	��
is typically greater than the average rotation rate

��������
	������
,

with
�
	����

(and hence � �����������
) being the simplest, textbook example.

In this work we will consider instead the limit where the overall rotation is very large, and the differen-
tial rotation is relatively small. Aside from being an interesting variant on the classical Taylor-Couette
problem, this limit is also of considerable interest in geophysical fluid dynamics (e.g., oceanography or
meteorology), in which a very rapid overall rotation is typically a dominant feature.

So, suppose we have a spherical shell in rapid overall rotation
�

, with additionally a differential rotation
� �

imposed on the inner sphere. Scaling length by the gap width
� �!	��"�#�$�

, time by the inverse rotation
rate

�%'&
, and ( by � �)� �*	��+�#�$�

, the Navier-Stokes equation in the rotating frame becomes
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where the Ekman and Rossby numbers
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�
measure the overall and differential rotation rates, respectively.

In this work we will consider numerically computed solutions of (1), in the limit
ANM F

and
/21

up
to O �GFH�

. We begin by computing the axisymmetric basic states, which turn out to yield this so-called
Stewartson layer. We then compute the non-axisymmetric instabilities of this layer, and find them to be
very different for P�Q K

�R/21S�T�VUWF
, that is, for positive versus negative differential rotation. We compare

and contrast this difference with previous experimental and analytical results, and conduct a number of
numerical tests to elucidate its origin.

Figure 1 shows how the angular velocity X varies between 0 at the outer boundary and 1 at the inner./21>���
, corresponding to an infinitesimal differential rotation, and

AY�?FZ� %.[]\ ^
to

FZ� %.^
, corresponding

to an increasingly rapid overall rotation. As
A

decreases, we see very clearly the emergence of an
increasingly thin shear layer on the so-called tangent cylinder _ , with Xa` FH���

inside _ but X �b�
outside.

In order to understand why the solutions should arrange themselves in this peculiar fashion, we recall
the well-known Taylor-Proudman theorem, stating that the flow in a rapidly rotating system will tend
to align itself with the axis of rotation. More formally, take the curl of (1) and use ccZd ,

/21
,
AeMfF

(in
fact ccZd

��/212���
in Fig. 1) to obtain , (,.g ` �ih

With this result, the solutions in Fig. 1 follow quite naturally: For fluid columns outside _ , X �j�
is

the appropriate boundary condition at both the upper and lower boundaries, so X �k�
everywhere will



Figure 1: Contours of the angular velocity, for
/212���

and, from left to right,
A �?FZ� %.[]\ ^

,
FZ� % �

,
FZ� % � \ ^

and
FZ� %.^

. The contour interval is 1/7.
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Figure 2:
/21��

versus
A

, for the different azimuthal wavenumbers indicated. Modes not shown may still
be unstable, but are not the most unstable modes for any values of

A
.

satisfy both the Taylor-Proudman theorem as well as these boundary conditions. In contrast, for fluid
columns inside _ , X � �

is still the upper boundary condition, but the lower boundary condition is
now X �eF

. It is therefore not possible to satisfy the Taylor-Proudman theorem everywhere along the
column. Instead, it is satisfied in the interior by having X ` FH���

, with all the necessary
g
-dependence

then concentrated into the so-called Ekman layers at the top and bottom boundaries.

Finally, the details of this shear layer that resolves this jump in X across _ were derived by Stewartson
[1], who showed it to consist of a nested structure of innermost thickness

A &��G[
right on _ , and outer

layers
A C ��� just inside _ and

A &�� �
just outside. The results presented in Fig. 1 are broadly consistent

with these scalings, even if the range of Ekman numbers shown there is not sufficient to clearly distin-
guish between these different sublayers. See, however, Hollerbach [2] or Dormy et al. [3] for detailed
comparisons of numerical results with Stewartson’s asymptotics.

Stewartson [1], Hollerbach [2] and Dormy et al. [3] all only considered the limit of infinitesimal differ-
ential rotation

/21 � �
, in which case (1) is purely linear, and so the solution will necessarily remain

axisymmetric. What happens for nonzero
/21

though? These axisymmetric basic states in fact change re-
markably little (that is, the inertial term

/21 (j3H56( is largely balanced by the pressure gradient
� 5@ ).

Nevertheless, as
/21

is increased, the real, dimensional shear across the Stewartson layer increases
correspondingly, so there must presumably come a point when it becomes unstable, by a mechanism
similar to the classical Kelvin-Helmholtz instability. That is, we would expect it to roll up into a series
of non-axisymmetric vortices.

Figure 2 shows these instability results, for positive and negative
/21

. We note that the two cases are
very different, with positive Ro yielding a progression to higher and higher azimuthal wavenumbers �
as

A
is reduced, but negative

/21
remaining at �

�YF
over almost the entire range of Ekman numbers.



Figure 3: Sketches of the experimental setups of Hide & Titman on the left, and Früh & Read on the
right. The disks indicated in black are given a differential rotation � �

in addition to the overall rotation�
. The dotted lines denote the tangent cylinder on which the basic Stewartson layer forms.

This difference between P�Q K
�R/21S�9�?UWF

is particularly intriguing in light of the previous experimental
studies (in cylindrical geometry) of Hide & Titman [4], who found this same difference, and Früh
& Read [5], who did not, finding instead that positive and negative

/21
both yield much the same

results, namely this progression to higher and higher � . These latter results in turn are in agreement
with Busse’s [6] asymptotic analysis, which suggested there should be an exact symmetry between
P�Q K

�R/21S�T�VUWF
. We are therefore in the curious situation of having one experiment (Hide & Titman) and

a numerical study (this one) which find there is a significant difference between positive and negative/21
, and having another experiment (Früh & Read) and an asymptotic study (Busse) which find there is

not. The bulk of this presentation will therefore be devoted to elucidating the origin of this difference,
and why it only manifests itself in some situations but not in others.

We begin by considering the experimental setups of Hide & Titman and Früh & Read, to see what
differences there might be between the two. Figure 3 shows these setups, which we note are indeed
different, with Hide & Titman having a single disk in the middle of a cylindrical tank, and Früh & Read
having two disks embedded in the top and bottom boundaries of the tank. These geometrical differences
then induce (subtle) differences in the axisymmetric basic states as well. We therefore consider the
corresponding features in our spherical shell here (which we note is indeed more like 3a than 3b), and
conduct a series of numerical experiments to determine which of them is the cause of this difference
between P�Q K

�R/21S� �VUWF
in some situations but not in others.
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