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ABSTRACT

The onset of instability induced by impulsively started rotating cylinder was first investigated experi-
mentally by Chen and Christensen [1]. The initial laminar flow evolves into a secondary flow pattern
which consists of a series of Taylor-like vortices. In this transient boundary-layer system the critical
time tc to mark the onset of secondary motion becomes an important question. This problem may be
called an extension of Taylor instability. The related instability analysis has been conducted by using
amplification theory [2], the frozen-time model [2], and the maximum-Taylor-number criterion [3]. The
first model requires the initial conditions and the criterion to define manifest convection. The second
model is based on linear theory and yields the critical time as the parameter. These models take advan-
tages of the similarity between Taylor instability and Rayleigh-Bénard instability.

Here we will extend propagation theory [4], which has been employed to analyze time-dependent
Rayleigh-B́enard problem, into the instability of flow induced by an impulsively started rotating cylin-
der. The system considered here is a Newtonian fluid confined between the two concentric cylinders of
radii Ri andRo(> Ri). Let the axis of inner cylinder be along thez′ axis of a cylindrical coordinate
system(r′, θ, z′). At the timet = 0, the inner cylinder is impulsively started and maintained at a con-
stant surface speedV ′

0(= RiΩi) and outer cylinder is kept stationaryΩo = 0. HereΩi andΩo are the
angular velocities of inner and outer cylinder, respectively. The schematic diagram of the basic system
is shown in Figure 1.

For a highV ′
0 , secondary motion will set at a certain time before the flow becomes fully developed. The

governing equations of the present flow field is expressed by

∇ ·U = 0, (1)
{

∂

∂t
+ U · ∇

}
U = −1
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Figure 1: Schematic diagram of system considered here



whereU, P , ν andρ represent the velocity vector, the dynamic pressure, the kinematic viscosity and
the density respectively.

For smallt, the basic velocity field is represented by

V0 = erfc
{

y√
4νt

}
(3)

By neglecting the effect of curvature,i.e., narrow-gap approximation, the above equations (1) and (2)
can be linearized and the resulting dimensionless disturbance equations of tow-dimensional flow using
equation (3) are represented by

(
∂2

∂y2
− a2 − ∂

∂τ

) (
∂2

∂y2
− a2

)
u = 2V0a

2v (4)

(
∂2

∂y2
− a2 − ∂

∂τ

)
v = Tau

∂V0

∂y
(5)

with proper boundary conditions,

u = ∂u/∂y = v = 0 aty = 0 and1 (6)

whereτ = νt/d2, u = d2u′/(νRi), v = v′/V ′
0 , V0 = V/V ′

0 , y = (r − Ri)/d andd = Ro − Ri. The
subscript ‘0’ denotes the basic state anda represents the dimensionless vertical wavenumber. It should
be noted that the radial velocity componentu′ is nondimensionalized byνRi/d2 rather thanV ′

0 . In the
present system the most important parameter is the Taylor number Ta defined as

Ta =
V ′2

0 d3

ν2R1
(7)

Based on the balance between viscous and Coriolis terms, we setu = τu∗(ζ) andv = v∗(ζ). For a
boundary-layer flow system ofδ ∝ √

τ , the dimensionless timeτ plays dual roles of time and length.
Hereδ denotes the boundary-layer thickness. Now, the self-similar stability equations are obtained from
equations (4) and (5) as

{(
D2 − a∗2

)2 +
1
2

(
ζD3 − a∗2ζD + 2a∗2

)}
= 2V0a

∗2v∗ (8)

(
D2 +

1
2
ζD − a∗2

)
= Ta∗u∗V0 (9)

whereζ = y/
√

τ , D = d/dζ, Ta∗ = τ3/2Ta anda∗ = a
√

τ . The proper boundary conditions of
no-slip are

u∗ = Du∗ = v∗ = 0 at ζ = 0 and∞ (10)

For a givenτ , Ta∗ anda∗ are treated as eigenvalues and the minimum value ofTa∗ should be found in
the plot ofTa∗ vs.a∗ under the principle of exchange of stabilities.

By using outward shooting method with Newton-Raphson iteration, we solve the above stability equa-
tions and obtain the marginal stability curve. Based on the result of Figure 2(a), the critical conditions
to mark the onset of secondary motion is given by

τc = 18.84Ta−2/3 and ac = 0.19Ta1/3 for τ → 0. (11)
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Figure 2: Instability conditions for small time ofτc → 0 from propagation theory; (a) marginal stability
curve and (b) amplitude profiles atτ = τc

The resulting normalized amplitude functions ofu∗ andv∗ are shown in Figure 2(b). For a given Ta, a
fastest growing mode of infinitesimal disturbances would be set in atτ = τc with a = ac. The above
equations show thatτc decreases with an increase in Ta. Figure 3 illustrates that the present predictions
of 4τc (η → 1) compares well with Liu’s [5] experimental data(η = 0.2) marking the detection of
manifest motion. Hereη represents the ratio(Ri/Ro). The agreement of experimental data with the
amplification theory and Tan and Thorpe’s model [3] is also good but the latter model requires further
justification.

Shen [6] suggested the momentary instability condition: the temporal growth rate of the perturbation
quantity(r1) should exceed that of the base flow(r0). In the present system the dimensionless growth
rates are defined as the root-mean-squared quantities of angular velocity components:

r0 =
1

< V0 >

d < V0 >

dτ
and r1 =

1
< v′ >

d < v′ >
dτ

(12)

where< quantity >=
√(∫

A(quantity)2dA
)
/A andA = Sdr′ with S = πd/ac. From the dis-

tributions of the base flow (equation (3)) and the perturbation quantities, we can obtaine the folowing
relation:

r0 = r1 =
1

4τc
for τ → 0 (13)

The above equation indicates that propagation theory bounds the momentary stability conception.

Foster [7] commented thatτo
∼= 4τc for the time-dependent Rayleigh-Bénard problem. This means

that a fastest growing mode of instabilities, which set in atτ = τc, will grow with time until manifest
convection is detected atτ = τo. Chen and Kirchner [2] reported similar trend for the present time-
dependent flow system. According to their results, the time of intrinsic instability(τ = τi), i.e., the
time at which the disturbances first tend to grow, is about one-fourth of the time at which the instability
motion is clearly observable experimentally. A growth period will be required, as illustrated in Figure
3. This scenario is supported by the results from the amplification theory(τi andτ3(= τo)). A more
refined study includingη-effect is now in progress.

It seems evident that duringtc ≤ t ≤ to(∼= 4tc) the cell size is almost constant but its vertical growth



Figure 3: Comparison of predictions with experimental data ofη = 0.2; For η = 0.1 τi andτ3 from
Chen and Kirchner [2].

will be continued. It is concluded that propagation theory yields the instability criteria compatible with
experimental results in diffusive systems, hydrodynamical or thermal.
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