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1. Introduction 
 One of the representative models with non-uniqueness in the nonlinear dynamical system is evidently the Taylor vortex flow 

between concentric cylinders with a rotating inner cylinder and a stationary outer cylinder. The flow field of the mode having the 

non-uniqueness is not necessarily confirmed as a unique mode but has multiple solutions against a condition. The Taylor vortex flow 

with a small aspect ratio which has multiple modes depending on the dynamical parameter expressed as a Reynolds Number and on 

the geometric parameter as an aspect ratio is reported (1), (2). Furthermore the experimental study that the ratio of the increment of the 

Reynolds Number and the final value of it resulting in for determining a final stable mode is reported (3). However no numerical 

analysis of the influence for determination of the final mode is assumed to be reported in our knowledge. 

The numerical analyses for the stability of the Taylor flow are reported as follows. The numerical studies for the Taylor vortex 

flow with the infinite annulus are reported by Cliffe (4), (5). They found the normal two-cell mode and the anomalous modes, and they 

compared the numerical results from the experimental results. And they also clarified the ten-cell mode. Watanabe, Furukawa and 

Nakamura (6) reported the development of the cell mode in 2-dimensional numerical analysis for the nonlinear development of flow 

pattern. And the 3-dimensional numerical analysis is reported by Liao and Young (7). However there are not enough studies to 

indicate the bifurcation problems between the modes.  

This 3-dimensional numerical study clarifies a type of the dynamical condition, the ratio of the Reynolds number increment and 

the final value of the Reynolds Number, for the mode formation. The numerical conditions provided were the same with our previous 

experiment (3). The numerical analysis adopted six kinds of acceleration ratio and the six kinds of final value of the increasing 

Reynolds number. And we found a few final modes, normal 4-cell mode, normal 2-cell mode and anomalous 4-cell mode. The 

numerical results can be compared with the experimental results. Furthermore developments of two kinds of spatially averaged 

energy and enstrophy of each mode are presented. This numerical study would indicate the dynamical condition for the bifurcation of 

the modes. 

 

2. Basic equations 
 The dynamical and the geometric parameters in this numerical analysis are basically the same with them in the experiments in ref 

(3). Aspect ratio Γ between the height of the working fluid L and the clearance of the annulus D = ro - ri, where ro is the radius of 

the outer cylinder and ri is the radius of the inner cylinder. In this study Γ was constant and 4.0. Reynolds number, Re is defined by 

ωｒiD / ν, where ω is the angular velocity of the inner cylinder, D is the clearance of the annulus and ν is the kinematic 

viscosity of the fluid. Radius ratio between cylinders is 0.667. The upper and bottom ends of the annulus are solid. 

Governing equations in the cylindrical coordinate system (r, θ, z) show Navier-Stokes equation and continuity equation. 
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where u = (u, v, w). And the convective term in the equation of motion is denoted as a conservative form by adopting the calculation 



method mentioned after. The equation of motion in the 3-dimensional cylindrical coordinate system is shown as follows. 

A kind of stream functions Ψ１ and Ψ２ which are similar to the Stokes’ stream function Ψ is adopted for flow visualization. 

Radius component u and axial component w are expressed as a function Ψ１  and another function Ψ２ respectively as follows. 
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In order to visualize the flow field, the stream function Ψ which was averaged by Ψ１ and Ψ２  with some kinds of weights was 

used. 

Boundary conditions of the velocity components on the cylinder walls and both end walls were non-slip conditions. Initial velocity 

was zero over the whole flow field.  

In order to investigate the temporal development of the Taylor vortex flow, a spatially averaged energy ( E ) and a spatially 

averaged enstrophy ( Ω ) are defined as follows.  
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where a vorticity ω＝（ωｒ，ωθ，ωｚ）. 

 

３．Numerical methods 
The MAC method was used as a basic solution procedure. The time integration was the explicit method and the spatial 

differentiation was the QUICK method for the convection terms and the second-order central difference method for other terms. A 

hybrid method of SOR and ILUCGS was used to solve the Poisson equation. 

The staggered grid was adopted. The numbers of the grid in a respective direction should be an important factor in forming a flow 

field. In our preliminary analysis, the optimum grid numbers was investigated. The number of grid points in the radial direction was 

21, the number of azimuthal direction grid points was 20 and the number of axial direction grid points was 84.  

The acceleration of the increment of Reynolds number is shown in Table 1. The Reynolds number was increased lineally up to the          

final value of the Reynolds number.  

 

Table1 Acceleration of the Reynolds number  
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Acceleration Dimensionless Time
1 2 3 4 5 6

253 5.14 2.57 1.715 1.285 1.03 0.855
488 19.13 9.565 6.375 4.785 3.77 3.19

Re 740 43.955 21.98 14.725 10.99 8.79 7.255
993 79.335 39.61 26.395 19.79 15.835 13.21
1228 121.085 60.545 40.375 30.27 24.215 20.17
1487 176.83 88.415 58.96 44.21 35.375 29.455



The numerical condition provides the 6 kinds of final values of the Reynolds number and 6 kinds of acceleration ratio of the 

increment of the Reynolds number. These conditions adopted were the same as those in the experiment. The dimensionless time 

interval was taken at 0.005 and the dimensionless time step was up to 1000. 

 

4. Results 
4.1 Mode configuration 

The vector lines of the time development of a primary normal four-cell mode, N4 at Re=1228 and ac=2 is shown in Fig.1. In each 

diagram the left side of the flow field is the inner cylinder and the right side is the outer cylinder. Other modes we found were a 

secondary normal two-cell mode, N2 and a secondary anomalous four-cell mode, A4. For differences between N4 and A4 the bottom 

cell in N4 rotates clockwise and the bottom cell in A4 rotates counter clockwise. And this formation process in the numerical 

analysis was similar to the results in experiment. 

 

                  Fig.1 Development of the primary 4-cell mode Re=1228 Ac=2 

                      The left side is the inner cylinder and the right side is the outer cylinder 

 

4.2 Comparison for the final modes with experimental results 
Comparison of the final modes formed by increasing Re with the experimental results is shown in the numerical results in Table 2 

and the experimental one in Table 3. In each table, the column denotes Re and the row denotes the Ac. The experiment has been 

conducted a hundred times in each condition and the mode that most frequently emerged in each condition was decided as the final 

mode. The numerical results are in good agreement with the results in the experiment in many conditions.  

 

        Table 2 Final mode in Numerical result                    Table 3 Final mode in Experimental result 

 

4.3 Mean energy and mean enstrophy 
The development of the spatially averaged energy and the spatially averaged enstrophy of the N4 and the A4 are shown in Figs. 2 

and 3. Evidently both of the mean energy and the mean enstrophy of each mode are different.  

Acceleration
1 2 3 4 5 6

253 N4 N4 N4 N4 N4 N4
488 N2 N4 N4 N4 N4 N4

Re 740 N2 N4 N4 N4 N4 N4
993 N4 N4 N4 N4 N4 N4
1228 N2 N4 N4 N4 A4 A4
1487 N2 N4 N4 N4 N4 N4

Acceleration
1 2 3 4 5 6

253 N4 N4 N4 N4 N4 N4
488 N4 N4 N4 N4 N4 N4

Re 740 N4 N4 N4 N4 N4 N4
993 N4 N4 N4 N4 N4 A4
1228 N4 A4 A4 A4 A4 A4
1487 N4 N4 N4 N4 N4 N4



           Fig. 2 Mean Energy Re=1228 Ac=2                         Fig.3 Mean Enstrophy Re=1228 Ac=2 

 

5. Discussion 
The Taylor vortex flow is a paradigm in nonlinear dynamical system. Especially the Taylor vortex flow has multiple modes in the 

same condition due to the non-uniqueness. We consider that the factor which influenced to the decision of the final mode is how the 

Re increased up to the final value. That is why we found the modes including the primary mode and the secondary modes could be 

formed by the difference of the way of the increasing Re in our experiment. However we could not confirm the definite condition, 

because the condition was clarified only by probability in the experiment. The 3-dimensional numerical analysis has possibility to 

shed light on the factor of the decision of the final mode. The formation processes of the modes were in good agreement with the 

experimental results. And the final modes were compared with the experimental results and the comparison was in good agreement 

with the experiment. The mean energy and the mean enstorophy in time development were shown and the differences of process and 

the final value between the modes were clarified.  

 

6. Conclusion 
Development process of the Taylor vortex flow with a small aspect ratio was analyzed numerically and the condition of the 

decision of the final mode was investigated. The condition, the final value of the Reynolds number and the ratio of the increment of 

the Reynolds number, determines the final mode. And the numerical results were in agreement with the experimental results. The 

development of the spatially averaged energy and the enstrophy of each mode were analyzed and both characteristics indicate the 

process of the mode formation. 
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