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ABSTRACT

We follow the time development of uid motion resulting from oscillatory instabilities of the
steady tertiary solution in the rotating plane Couette system. It is found that for a relatively
small Reynolds number, Re, the time-dependent motion is characterised by a periodic motion
with a single frequency. As the system rotation, 
, varies the periodic motion undergoes a
period doubling bifurcation.

Tracing the periodic solution in the Re � 
 space, we show that periodic motions exist even
when 
 vanishes at a higher Re. They correspond to the periodic solutions for the non-rotating
plane Couette system.

1 Background

Recently, Nagata(1998) investigated the stability of the tertiary solutions in rotating plane Cou-
ette ow with the result that the tertiary ows, which bifurcate from steady two-dimensional
streamwise vortex ows, are stable within a certain interval of the system rotation, 
, when
the Reynolds number is relatively small, say Re = 200. The boundaries of the stability interval
on the 
 axis are determined by perturbations which are subharmonic in the streamwise direc-
tion. As the Reynolds number is increased to Re ' 250, another type of instabilities begins to
emerge in the middle of the stability interval at 
 ' 20. These instabilities are characterised
by an oscillatory nature. As Re is further increased, the oscillatory instabilities spread in the
directions of both increasing and decreasing 
, gradually contaminating the stability interval.
It is expected that the tertiary ow is totally overtaken by time-dependent motions for large
Reynolds numbers.

In this short note we examine the development of time-dependent motions in rotating and
non-rotating plane Couette ow numerically.

2 Formulation

We consider a viscous incompressible uid motion between two parallel plates separated by the
distance L. The bottom plate moves along in its own plane with a constant speed 1

2
U0 whereas

the top plate moves in the opposite direction with the same speed. A constant spanwise rotation

0 is imposed on the system. By using L as the length scale, L2=� as the time scale where �
is the kinematic viscocity, and �=L as the velosity scale, we can express the nondimensional
basic laminar ow as UB(z) = �Re z where z is the coordinate in the direction normal to the
plates and Re is the Reynolds number de�ned by Re = U0L=�. For convenience we separate
the velocity deviation u from the laminar state into the average part �U(z) and the residual
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Figure 1: The momentum transport � against the system rotation 
 for various types of motions
at Re = 400.

�u. The nonlinear development of u is governed by two non-dimensional parameters: one is the
Reynolds number and the other is the system rotation 
 de�ned by 
 = 2
0L

2=� (see Nagata
(1998)).

3 Method

In the present analysis we use three di�erent numerical schemes as described below.

1. Newton-Raphson method for steady motions:

The disturbance of a steady motion is expressed by the Fourier expansions in the stream-
wise and spanwise directions and the Chebyshev-polynomial expansions in the direction
normal to the plates. The amplitudes of each disturbance component are computed by
a Newton-Raphson iterative scheme. (The stability of steady motions is evaluated by
applying Floquet theory.)

2. DNS:

The time development of the disturbance is followed by a direct numerical simulation
(DNS), where the time integration is performed on the full Navier-Stokes equation by
using a pseudo-spectral method. The numerical scheme for the simulation is essentially
the same as that used by Kim, Moin & Moser (1987).

3. Newton-Raphson method for periodic motions:

We have enhanced Kawahara & Kida's (2001) iterative method for time-periodic solu-
tions to implement Newton-Raphson computation of a �xed point in a Poincar�e map. The
Poincar�e map, i.e. the one-period time integration of the Navier-Stokes equation, is com-
puted by the DNS. The Jacobian matrix is evaluated by a �nite-di�erence approximation.
We �rst employ a stable periodic state, which is accesible to the DNS, as an initial guess
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Figure 2: The time development of the momentum transport � for three periodic motions at
Re = 400.

for the Newton{Raphson iteration to extend a periodic solution to an unstable region in
parameter space.

4 Results

The �gure 1 shows the variation of the momentum transport, � � [U0(�
1

2
)+ �U(�1

2
)]0=[U0(�

1

2
)]0,

against 
 for various types of motion when Re = 400. The solid curve indicates the steady three-
dimensional solution with the streamwise wavenumber � = 1:0 and the spanwise wavenumber
� = 3:117, whereas the dotted curve indicates the streamwise vortex ow with � = 0 and
� = 3:117. They are obtained by the Newton-Raphson method. The vertical lines indicate a
single periodic motion (the thin solid lines for the smaller 
 side and the thin dashed lines for
the larger 
 side) and a doubly periodic motion (the thick solid line) obtained by the DNS.
Also obtained by the DNS are steady ows indicated by open circles for the larger 
 and closed
circles for smaller 
.

We see that the streamwise vortex ow which bifurcates from the basic ow at 
C = 4:3,
becomes unstable to three-dimensional perturbations as 
 is increased and the stability is taken
over by the steady three-dimensional ow at 
1 = 6:5. The stable steady three-dimensional
ow lasts over a small range of 
 and a periodic motion due to a Hopf bifurcation sets in
at 
H1 = 8:4. The time development of the momentum transport for the periodic motion at

 = 10 is shown by the thin curve in Fugire 2, con�rming that the periodic motion has a single
period T = 0:227. As the system rotation is increased to 
 = 16 the period of the motion
becomes doubled as indicated by the thick curve in Figure 2. When the system rotation is
increased to and over 
 = 24 the motion becomes single periodic again as indicated by the
dashed curve in Figure 2, until the periodic motion shrinks to a steady three-dimensional ow
at 
H2 = 32. The three-dimensionality vanishes at 
2 = 47 and the streamwise vortex ow is
obtained for larger 
 values and �nally the basic state is recovered although it is not shown in
Figures 1 and 2.
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Figure 3: The trace of the periodic solution with the period T = 0:227 in the 
�Re space.

Starting from the periodic solution detected at (
; Re) = (10; 400)we trace the periodic motion
in the 
�Re space by keeping the period T constant (i.e. T = 0:227) as indicated by the curve
in Figure 3. The periodic motions on the curve are obtained by applying the Nweton-Raphson
iterative scheme to �nd a �xed point in the Poincar�e map. As we can see the curve extends
to a smaller 
, crossing the line of 
 = 0 at Re = 774. The solution at the intersection of the
trace and the line of 
 = 0 corresponds to the periodic motion for non-rotating plane Couette
system.

5 Summary

We have shown that the periodic motions, which bifurcate from the tertiary ow in the rotating
plane Couette system, undergo a period doubling bifurcation. We have traced the periodic
motions in the parameter space and found that they exist even when the system rotation is
absent.

Preliminary investigation has indicated that the periodic motions obtained in the present paper
for non-rotating plane Couette system do not have connection with those periodic motions
found by Clever & Busse (1997) or Kawahara & Kida (2001).
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