Anomalous dispersion of Couette-Taylor spirals
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ABSTRACT

Competition d spirals in Couette — Taylor system between courter rotating cylinders
leads, for small supercriticdity to the formation  locdized source Measuring the group
velocity as function o the anplitude, we have determined that waves forming such source
have anomalous dispersion, in the sense that phase and linea group velocity of eat have
oppaite signs.

Our Couette - Taylor system has following charaderistics: the inner cylinder with
the radius a=4.459 cm was made of bladk Delrin, the outer cylinder was made of
transparent Plexiglas and its internal radius was b =5.050 so the gap between cylinders is
d =b-a=0.591 cm and the working length of the system is L =275 cm. So, the
experiment was performed in a spatiall y extended system with an aspect ratio 7 = L/d = 46.5,
andradiusratio n = a/b =0.883. Cylinders were rotated independently by two DC motors.
Thus in this Couette - Taylor system the flow control parameters are Reynolds numbers
defined for the inner and outer cylinder respedively : R=Qobd/v and R=Qiad/v where

Q0,Qi are the anguar frequencies of outer and inner cylinders respedively, Vv is for

kinematic viscosity of fluid. We have used distilled water (v=102cm?/s a T =21°C)
with 2% volume of flakes of Kalli roscope AQ1000for the visudizaion o flow structures.

To oltain information onspace— time behavior of flow, we have used alinea 1024—
pixel charge cmuded device (CCD) array oriented aong the o/linders axis to record
instantaneous intensity distribution | (X) of light refleced by Kalli roscope.

The recrded length was from 20 to 25 cm in the ceitra part of the system,
correspondng to the aspatia resolution from 50 to 40 pixel/cm. The intensity is sampled in
256 \dlues, displayed in gray level time interval along time ais to produce space— time
diagrams | (X,T) of the pattern. To extrad the spatial and tempora properties we have
performed the mmplex demoduation technique of the signal [1] which alows in particulary,
to separate the right traveling and left traveling waves and to represent them as

|AXT)|expli(kax-wx)] and|BOXT)exli (kex-cst)]

The phase and goup velocity of waves are cdculated from the relation vy, = w/k and vy =
dw/dk. We may chocse the length scde @& d, the time scde & t = dv, lealing to
dimensionlesswavenumber and frequency q = kd and Q = d?/v. The velocities are scaed
by the dharaderistic diffusion velocity v/d.

We investigated regimes of spirals which we have observed as a first supercriticd
instability mode from the base flow in a cae of couner-rotating cylinders [2] for
180<R<500 and -1155<R,<-155. A typicd spacetime diagram shown in the Figure 1
exhihits very clealy the position d phase fronts of wave disturbances correspondng to right
and |eft traveling spirals.
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Figure 1 : @) Space— time diagram and b spatial profile of the averaged amplitude for
courter-propagating spirals propagating for R=622 R=-341(¢ =0.015).

The arves of axial variation d time averaged amplitude of left and right traveling
waves (Fig.1-b) exhibit threedistinct zones : two zones where there is only one wave (I L,R)
and a one of interadion (Il L, R). The 2ones (I L,R) are tharaderized by small amplitudes (0
< A < 0.1 Apa, and the nes (Il L,R) are daraderized by large amplitudes (0.1A <A
<Anma)- INnthe strongy interading region of left and right wave (ll1) , the amplitude deaeases
rapidly. Thelocdized dstribution of amplitudes of courter propagating waves was foundfor
small supercriticdities (¢ < 0.03). The locd depressons in the averaged amplitude profiles
correspondto the presence of defedsin the pattern.

The ounerpropagating waves have the same wavenumber but dightly different
frequencies which are dependent on spatia coordinate. Nea the source the wavenumber and
frequency pertain a strong change due to phase jump. The right traveling wave (for x > 0) has
an average frequency Qr=62.31 (equivalentw==1.64Hz) different from that of left
traveling wave (for x < 0: Q1L=59.21 equivalent w.=1.56Hz). The wanumber is amost

constant in the zone of interadion (lll), it deaeases linealy in the nes (Il L,R) where
there is only one wave, and in the ones (I L, R) it is constant within spatial experimental
resolution. The locd depressons in the wavenumber profil es correspondto the presence of
defedsin the pattern.



Using the spatial variation of wave parameters (amplitude, wave frequencies, wave
numbers), it is possible to plot the curve of dispersion in different region for different
amplitude interval separately for left and right wave (Fig.2).The dispersion curve Q=1 (q) in

different zones for amplitude allows for computation of the group velocity Vo=dQ/dqas a
function of the amplitude for left and right wave separately. We have found that the group
velocity of the right traveling spiral is positive for large amplitude while it is negative for
small amplitude 0<A<0.05Ama; the group velocity of left travelling spiral is negative for
large amplitude and positive for small amplitude 0<B<0.35Bma. We therefore have
anomalous dispersion for small amplitudes and normal dispersion for large amplitudes.
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Figure 2 : Group velocity dependence on amplitude : @) for left and b) right spiral
Thefield of spiral pattern can be described by [3-6]
U = AT, X)elP M 9D 4 BT X)@m* 2D + c.c. 1)
where Q is the bifurcation Hopf frequency, m is the azimuthal integer wavenumber, c.c.

stands for complex conjugate. The amplitudes of right and left traveling spirals A(T,X) and
B(T,X) satisfy the coupled Ginzburg-Landau equations [7-9]:
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Here T, isthe characteristic time, &, isthe characteristic length, V| represent linear group

velocity of right and left spirals, C, arelinear dispersion coefficients c, , are coefficients of

nonlinear dispersion coefficients which leads to a shift of frequency, d expresses the mutual
suppression of the modes.

Different theoretical analysis of equations (2) have shown that sources and sinks occur when
the coupling ceofficient d >g, in this case, each mode suppresses the other [7-9]. The flow
pattern tends to form domains of either left or right traveling waves separated by domains
walls. If one assumes that the linear group velocity entering the system of equations (2) Vg is
negative, then one finds that the front between counterpropagating spirals observed in our
experiment is a source. Moreover, some of the constants of the pattern (linear group velocity,
characteristic time 1o, the ratio d/g) can be determined from comparison of approximate



theoreticd solutions and experimental profiles. In particular, it is found that in the linea
growth regime, the group \elocity has a sign goposite to that of the phase velocity for eah
left and right wave respedively.

We have shown that the supercriticd spiral pattern in counter-rotating Couette-Taylor
system exhibits a spatial variation with anomalous dispersion for small amplitude regions and
normal dispersion for large amplitude and that left and right traveling spirals are separated by
a stable source The anomalous dispersion can be explained within the framework of the
couped Ginzburg-Landau equations for counterpropagating waves.
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