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ABSTRACT

Competition of spirals in Couette – Taylor system between counter rotating cylinders
leads, for small supercriticality to the formation of localized source. Measuring the group
velocity as function of the amplitude, we have determined that waves forming such source
have anomalous dispersion, in the sense that phase and linear  group velocity of each have
opposite signs.

Our Couette - Taylor system has  following   characteristics: the inner cylinder with
the radius 459.4=a  cm was made of black Delrin, the outer cylinder was made of
transparent Plexiglas and its internal radius was 050.5=b  so the gap between cylinders is

591.0=−= abd  cm and the working length of the system is 5.27=L  cm.  So, the
experiment was performed in a spatially extended system with an aspect ratio Γ = L/d = 46.5,
and radius ratio 883.0/ == baη . Cylinders were rotated independently by two DC motors.
Thus in this Couette - Taylor system the flow control  parameters are Reynolds numbers
defined for the inner and outer cylinder respectively : ν/bdR oo Ω=  and  ν/adR ii Ω=  where

io ΩΩ ,   are the angular frequencies of outer and inner cylinders respectively, v  is for

kinematic viscosity of f luid. We have used distill ed water ( scmv /10 22−=  at CT 021= )
with 2% volume of f lakes of Kalli roscope AQ1000 for the visualization of f low structures.

To obtain information on space – time behavior of f low, we have used a linear 1024–
pixel charge coupled device (CCD) array oriented along the cylinders axis to record
instantaneous intensity  distribution )(XI  of light reflected by Kalli roscope.

The recorded length was from 20 to 25 cm in the central part of the system,
corresponding to the a spatial resolution from 50 to 40 pixel/cm. The intensity is sampled in
256 values, displayed in gray level time interval along time axis to produce space – time
diagrams ),( TXI  of the pattern. To extract the spatial and temporal properties we have
performed the complex demodulation technique of the signal [1] which allows in particulary,
to separate the right traveling and left traveling waves and to represent them as

)](exp[),( txkiTXA AA ω−  and )]([exp),( txkiTXB BB ω− .

The phase and group velocity of waves are calculated from the relation vph = ω/k and vg =
dω/dκ. We may choose the length scale as d, the time scale as τ = d2/ν, leading to
dimensionless wavenumber and frequency  q = kd and Ω =  ω�G

2/ν. The velocities are scaled
by the characteristic diffusion velocity ν/d.

We investigated regimes of spirals which we have observed as a first supercritical
instabili ty mode from the base flow in a case of counter-rotating cylinders [2] for

500180 << iR  and 1551155 −<<− oR . A typical space-time diagram shown in the Figure 1
exhibits very clearly the position of phase fronts of wave disturbances corresponding to right
and left traveling spirals.



a)

b)

Figure 1 : a) Space – time diagram and b) spatial profile of the averaged amplitude for
counter-propagating spirals propagating for =oR 622, =iR -341( 015.0=ε ).

The curves of axial variation of time averaged amplitude of left and right traveling
waves (Fig.1-b) exhibit three distinct zones : two zones where there is only one wave (I L,R)
and a zone of interaction (II L, R). The zones (I L,R) are characterized by small amplitudes (0
< A < 0.1 Amax), and the zones (II L,R) are characterized by large amplitudes (0.1Amax<A
<Amax). In the  strongly interacting region of left and right wave (III) , the amplitude decreases
rapidly. The localized  distribution of amplitudes of counter propagating waves was found for
small supercriticaliti es (ε  < 0.03). The local depressions in the averaged amplitude profiles
correspond to the presence of defects in the pattern.

The counterpropagating waves have the same wavenumber but slightly different
frequencies which are dependent on spatial coordinate. Near the source, the wavenumber and
frequency pertain a strong change due to phase jump. The  right traveling wave (for x > 0) has
an average frequency 31.62=ΩR  (equivalent HzR 64.1=ω ) different from that of left
traveling wave (for x < 0 : 21.59=ΩL  equivalent HzL 56.1=ω ). The  wanumber is almost
constant in the zone of interaction (III) ,  it decreases linearly  in the zones (II L,R) where
there is only one wave, and in the zones (I L, R) it is constant within spatial experimental
resolution. The local depressions in the wavenumber profiles correspond to the presence of
defects in the pattern.
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Using the spatial variation of wave parameters (amplitude, wave frequencies, wave
numbers), it is possible to plot the curve of dispersion in different region for different
amplitude interval separately for left and right wave (Fig.2).The dispersion curve )(qf=Ω in

different zones for amplitude  allows for computation of  the group velocity dqdVg /Ω= as a
function of the amplitude for left and right wave separately. We have found that  the group
velocity of the right traveling spiral is positive for large amplitude while it is negative for
small amplitude  max05.00 AA<< ; the group velocity of left travelling spiral is negative for
large amplitude and positive for small amplitude max35.00 BB<< . We therefore have
anomalous dispersion for small amplitudes and normal dispersion for large amplitudes.

a) b)
Figure 2 : Group velocity dependence on amplitude : a)  for left and b) right spiral

The field of spiral pattern can be described by [3-6]

U = A(T,X)ei(-qX+ mθ + ΩT) + B(T,X)ei(qX+mθ+ ΩT) + c.c. (1)

where Ω is the bifurcation Hopf frequency, m is the azimuthal integer wavenumber, c.c.
stands for complex conjugate. The amplitudes of right and left traveling spirals A(T,X) and
B(T,X) satisfy the coupled Ginzburg-Landau equations [7-9]:
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Here 0τ  is the characteristic time, 0ξ  is the characteristic length, LgRV ,  represent linear group

velocity of right and left spirals, 1,0c  are linear dispersion coefficients 3,2c  are coefficients of

nonlinear dispersion coefficients which leads to a shift of frequency, d expresses the mutual
suppression of the modes.
 Different theoretical analysis of equations (2) have shown that sources and sinks occur when
the coupling ceofficient d >g, in this case, each mode suppresses the other [7-9]. The flow
pattern tends to form domains of either left or right traveling waves separated by domains
walls.  If one assumes that the linear group velocity entering the system of equations (2) Vg is
negative, then one finds that the front between counterpropagating spirals observed in our
experiment is a source.  Moreover, some of the constants of the pattern (linear group velocity,
characteristic time τ0, the ratio d/g) can be determined from comparison of approximate
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theoretical solutions and experimental profiles. In particular, it is found that in the linear
growth regime, the group velocity has a sign opposite to that of the phase velocity for each
left and right wave respectively.

We have shown that the supercritical spiral pattern in counter-rotating Couette-Taylor
system exhibits a spatial variation with anomalous dispersion for small amplitude regions and
normal dispersion for large amplitude and that left and right traveling spirals are separated by
a stable source.  The anomalous dispersion can be explained within the framework of the
coupled Ginzburg-Landau equations for counterpropagating waves.
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