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ABSTRACT 

The endwalls in a cylindrical Couette flow cell introduce Ekman boundary layers that interact with 
the centrifugal instability. We investigate this interaction for both the rotor-stator configuration and 
for counter-rotating cylinders via direct numerical simulation using a spectral method. We consider a 
radius ratio of η = 0.75 in a short annulus having a length-to-gap ratio of Γ = 6.  To analyze the 
nature of the interaction between the vortices and the endwall layers, several endwall boundary 
conditions were considered: fixed endwalls, endwalls rotating with the inner cylinder, endwalls 
rotating with the outer cylinder (for counter-rotating cylinders), and stress-free endwalls. Below the 
critical Taylor number in the rotor-stator case, endwall vortices for rotating endwalls are more than 
twice the strength of the vortices for fixed endwalls.  Except for stress-free condition, the endwall 
vortices reduce the sharpness of the bifurcation diagram based on the radial velocity near the center 
of the annulus.  The endwall conditions also have a strong effect on wavy vortex flow in the rotor-
stator case, changing the number of vortical rolls and azimuthal waves.  In some cases, there is 
evidence that the endwalls suppress the waviness to some extent.  For counter-rotating cylinders, the 
role of the endwall boundary condition is more complex.  Some endwall conditions tend to stabilize 
the structure of the flow, while in other endwall conditions tend to make the flow more disordered.  

INTRODUCTION 

The study of the centrifugal instability of the shear flow between differentially-rotating, concentric 
cylinders provides insight into flow stability and low-dimension bifurcation phenomenon.  In most 
cases, the effects of the bounding endwalls on the flow are avoided.  In theoretical studies the 
cylinders are assumed to be infinitely-long; in experimental studies the cylinders a made long 
compared to the gap between the cylinders; and in computational studies periodic boundary 
conditions are used to avoid endwall effects.  Here we specifically consider the interaction between 
the boundary-driven flows at the endwalls and the centrifugal instability in the Taylor-Couette 
configuration.  In particular, we focus on the effect of endwall vortices on the bifurcation from stable 
to vortical flow and the effect of the endwalls on the vortex structure in wavy vortex flow for the 
rotor-stator case.  In addition, we consider the effect of endwalls for a variety of wavy and spiral 
flows in the case of counter-rotating cylinders. 

In the cylindrical Couette configuration, the stable flow is geostrophic, so that the centrifugal force 
is balanced by the pressure gradient far from the endwalls.  Below the critical conditions where the 
flow becomes centrifugally unstable, the no-slip boundary condition at the endwalls upsets the 
geostrophic force balance near the endwalls resulting in a radial velocity along the endwalls and a 
vortical structure that can propagate from the endwalls toward the center of the length of the annulus 
[1-3].  Above the critical Reynolds number, Taylor vortices replace the boundary-driven Ekman 
vortices and fill the annulus, but the sense of rotation of the vortical structure initiated by the Ekman 
vortices is maintained, even for relatively long cylinders.  The cases of wavy vortex flow and 
counter-rotating cylinders are more complex. 

We used direct numerical simulation to study the unstable flow between short, finite-length 
cylinders in both the rotor-stator and the counter-rotating configurations. This allows us to consider a 
variety of vortical flows in which the position and degree of the centrifugal instability vary.  By using 
the various endwall conditions, we attempt to understand the interaction between the vortical flow 
due to the centrifugal instability and the Ekman endwall boundary layer flow. 



DIRECT NUMERICAL SIMULATION 

The configuration that is considered is an annular cavity between two concentric cylinders of inner 
and outer radii ri

* and ro
*, respectively, that rotate independently at Ωi and Ωo. The flow is described 

by the incompressible 3D Navier-Stokes equations written using cylindrical variables (r*,z*,θ) 
according to the velocity-pressure formulation. Parameters characteristic of the physical problem are 
the Reynolds numbers Rei = Ωiri

*d /ν  and  Reo = Ωoro
*d /ν, the radius ratio η = ri

*/ro
*, and the aspect 

ratio Γ = 2h / d where d = ro
* - ri

*.  We consider four endwall conditions, depending on the rotation 
of the endwall, Ωe:  1) stationary endwall (Ωe=0); 2) rotation of the endwall with the inner cylinder 
(Ωe=Ωi); 3) rotation of the endwall with the outer cylinder (Ωe=Ωo); and 4) a stress-free boundary 
condition on the endwall, which is equivalent to a free surface (designated Ωe=F). 

The solutions to the Navier-Stokes equations are computed using a pseudo-spectral Fourier-
Chebyshev collocation method taking advantage of the orthogonality properties of Chebyshev 
polynomials and providing exponential convergence.  The time scheme is semi-implicit and second-
order accurate.  It is a combination of the second-order backward implicit Euler scheme for the time 
term, an explicit Adams-Bashforth scheme for the non-linear terms, and an implicit formula for the 
viscous diffusion term.  The simulations for the transition to Taylor vortex flow are two-dimensional, 
while the simulations for wavy vortices and counter-rotating cylinders are three-dimensional.  Details 
of the simulations are provided elsewhere [4,5]. 

RESULTS AND DISCUSSION 

Consider first the case of endwalls fixed (Ωe = 0), shown in Fig. 1.  Even well below the transition 
to Taylor vortex flow (ε = Rei/Rei,crit< 1), the inward flow at the endwalls induces a strong endwall 
vortex with substantially weaker near the center of the annular length.  As ε increases, the vortices 
near the center grow in strength.  Above the transition (ε > 1), the vortices near the center grow in 
strength, eventually growing somewhat stronger than the endwall vortex.  For all vortices, the 
maximum radial velocity is about 3 - 4 % of the surface speed of the inner cylinder.  This suggests 
that while the mechanism that generates the vortices is quite different for Ekman vortices and Taylor 
vortices, the geometry of the situation, specifically the gap width d, and the inherent velocity scale in 
the problem (riΩi) determine the magnitude of the velocity for the vortices.  The thickness of an 
endwall boundary layer should scale as δE /L ~ Ek1/2 = (ν/ΩL2)1/2 according to the theory for Ekman 
layers [6] indicating an endwall boundary layer thickness of 0.19 d, assuming that the significant 
length scale is L = d.  The computational results indicate that δE ranges from 0.23 d for ε < 1 to 0.29 d 
for ε > 1.  Similar results occur for Ωe = Ωi, except that the Ekman flow is stronger and directed 
toward the outer cylinder.  For stress-free 
endwall conditions (Ωe = SF), vortices 
appear only for ε > 1, since Ekman vortices 
do not form.  For mixed boundary conditions 
(Ωe = Ωi at the lower endwall and Ωe = SF at 
the upper endwall), the vortices propagate 
from the lower endwall to the upper endwall 
as ε increases. 

 

  

 

ε = 0.874 ε = 0.956 ε = 1.002 ε = 1.049 ε = 1.096 
 
Fig. 1: Velocity vectors midway across the annular gap 
near the transition from nonvortical to vortical flow for  
Ωe =0.  The inner cylinder is the right vertical line. 

It is clear that the endwall conditions 
affect the nature of the bifurcation at the 
transition from nonvortical to vortical flow.  
We examine the bifurcation by considering 
the maximum radial velocity near the center 
of the axial length of the annulus as a 
function of ε, as shown in Fig. 2.  Depending 
on the endwall boundary conditions, the 
inflow and outflow boundaries occur either 
at the midpoint of the axial length or 
approximately d above or below the 
midpoint.  Considering first the inset in Fig. 
2, it is clear that except for the case of both 



endwalls being stress-free, the endwall 
vortices reduce the sharpness of the 
bifurcation.  The only case where the 
bifurcation is sharp is that for a stress-free 
endwall, consistent with previous 
predictions [7]. From the entire range of ε, it 
is clear that above the transition to vortical 
flow, the radial velocity at the inflow 
boundaries is only about 60% of the 
magnitude of the radial velocity at the 
outflow boundaries and that the radial 
velocity at outflow boundaries collapse onto 
a single curve, regardless of the endwall 
condition.  

Fig. 2:  Bifurcation diagram based on the maximum 
radial velocity nondimensionalized with Ωiri

* at 
outflow regions and inflow regions near the axial 
center of the annulus.  ∆, Ωe = 0; □, Ωe = Ωi ; ○, Ωe = F
both endwalls; x, mixed endwall conditions. 

We consider next the effect of the 
endwall conditions on wavy vortex flow, 
with an emphasis on the structure of the 
flow in the center of the annular length and 
near the endwalls.  To obtain wavy vortex 
flow for rotating endwalls, a m = 5 (five 
azimuthal modes) perturbation was imposed on an initial condition of axisymmetric flow at ε = 8.  
The resulting steady-state flow had two azimuthal waves (m=2) and six vortical rolls including two 
large Ekman vortices adjacent to each endwall, as shown in Fig. 3a.  A surface at an azimuthal 
velocity of vθ/riΩi = 0.48 is shown in the figure, with the color indicating the radial velocity, vr/riΩi.  
Each of the two ridges in the center of the annulus represents outflow region between counter-
rotating vortices.  Thus, there are two vortices between the ridges.  The m = 2 waviness is evident in 
the ridges.  The large surface at each end of the annulus represents the strong azimuthal velocity in 
the Ekman rolls near the rotating endwall.  Here the azimuthal waviness is suppressed, presumably 
because of the endwalls. 

       
    a             b 

Fig. 3: Isosurfaces of vθ/riΩi = 0.48 with color showing vr/riΩi at ε = 8.  a) Endwalls rotating at Ωe 
=Ωi.  b) Stress-free endwalls. 

To obtain a wavy flow with stress-free endwalls, it was necessary to first compute the flow for 
fixed endwalls starting from the case shown in Fig. 3a resulting in m = 2 waviness with eight rolls.  
Using that flow as an initial condition, the endwalls were made stress-free resulting in a flow with 
eight rolls and m = 2, shown by the vθ/riΩi = 0.48 surfaces of Fig. 3b.  Again the ridges represent 
outflow regions, so that there are two rolls between ridges and a single roll above or below the ridges 
nearest the endwalls.  Because of the stress-free condition, the endwall vortices are fairly similar to 
the vortices in the center of the annulus, in contrast to the case of rotating endwalls, where the 
endwall vortices are much longer in the axial direction.  Surprisingly, the waviness on the side of the 
endwall vortices nearest the center of the annulus is not suppressed by the endwalls.  
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Fig. 4:  Surfaces of vr /roΩo = -2.33 x 10-3 for various endwall conditions with Ri =375 and Ro = -500.  a) Ωe = 
Ωi; b) Ωe = Ωo; c) Ωe = 0; d) Ωe = SF. 

Finally, we consider the case of counter-rotating vortices with various endwall conditions. 
Although we have considered several conditions, we show results here for an inner cylinder Reynolds 
number of Rei = 375 and an outer Reynolds number of Reo = -500.  These conditions result in wavy 
interpenetrating spirals (WIS), which are most readily visible when plotting surfaces of radial 
velocity vr, as shown in Fig. 4.  The nature of the vortical flow depends on the endwall conditions.  
For the endwall rotating with the inner cylinder (Fig. 4a) and fixed (Fig. 4c), the flow is more ordered 
with smooth isosurfaces and regular intersections of surfaces compared to the endwall rotating with 
the outer cylinder (Fig. 4b) or a stress-free endwall condition (Fig. 4d).  In the first case (Ωe = Ωi), 
there are 4 pairs of vortices having similar strength with one member of the pair closer to the inner 
cylinder and the other closer to the outer cylinder.  In the second case (Ωe = 0), all of the vortices are 
nearer the inner cylinder.  When the endwall rotates with the outer cylinder (Fig. 4b) or a stress-free 
boundary condition is applied to the endwalls (Fig. 4d), the flow is less ordered.  For Ωe = Ωo, the 
vortices vary substantially in their strength around the circumference.  For stress-free conditions, the 
vortices are stronger.  The endwall vortices also differ substantially from case to case.  For the 
endwall rotating with the inner cylinder, there is a strong, flat vortex near the endwall; for the 
endwall rotating with the outer cylinder, there is a weak vortex near the outer cylinder; for a fixed 
endwall, the vortex near the endwall rotates opposite the Ekman flow; and for the stress-free endwall, 
the vortex structure at the endwall varies substantially with azimuthal position. 
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