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ABSTRACT

In this work we study some aspects of the dynamics of the plane Poiseuille problem in dimension 2,
in what refers to the connection among different configurations of the flow. The fluid is confined in a
channel of plane parallel walls. The problem is modeled by the incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∆u, ∇ · u = 0, (1)

being Re the Reynolds number, together with no-slip on the channel walls and L-periodic boundary
conditions (L = 2π/α, being α the parameter wave number). We have considered two different
formulations to drive the fluid through the channel: holding constant the total flux or the mean pressure
gradient. For each of them we obtain a different definition of Re = hUc/ν, where h represents half
of the channel length, Uc the velocity of the laminar flow in the centre of the channel, and ν the
kinematic viscosity. To be precise ReQ = 3Q/ν, Rep = Gh3ρ/2µ2, corresponds to the Reynolds
numbers when we keep Q as a constant flux or G as a constant mean pressure gradient respectively.
The fluid is supposed of constant density ρ and viscosity µ. The numerical approximation is detailed
in [1]. Roughly, it employs Fourier and Chebyshev spectral discretizations of velocities and pressure in
the periodic and transversal directions respectively. The temporal variable is approximated by means
of finite differences.

In figure 1 we represent bifurcating curves of periodic and quasi-periodic flows obtained numerically
in [1] using N = 8 and M = 70 spectral modes in the x and y spatial directions respectively. For the
temporal discretizacion the time step has been prescribed to ∆t = 0.02. Each point of those curves
corresponds to the amplitude A (distance to the laminar flow in L2-norm) of the flow (periodic or
quasi-periodic) for the given value of Re. It is also marked on the curves the different stability regions,
together with several Hopf bifurcations. In figure 1b at ReQ1, the Hopf bifurcation of periodic flows
give rise to a family of quasi-periodic solutions, whose stability is also presented. The main load of the
computations has been carried out in parallel in a Beowulf cluster of PCs.

Unstable invariant manifolds of periodic flows
In our study of the dynamics of plane Poiseuille flow, we are going to analyse the connection between
different configurations of the flow, such as laminar, periodic or quasi-periodic. We want to know how
the fluid evolves and to which kind of solution it is conducted when it starts near an unstable periodic
solution, as the ones shown in figure 1. We have selected several flows for α = 1.02056 and α = 1.1,
taking for the spatial discretization N = 8 and M = 70 and for the temporal one ∆t = 0.02. As
[2] shows, periodic solutions of Poiseuille flow are stationary in a certain moving frame of reference,
and therefore we study their stability by means of linearization. We consider unstable flows that have
one real unstable eigenvalue and the remaining ones stable, or a couple of complex conjugate unstable
eigenvalues and the remaining ones stable. The lower branch of periodic flows in figures 1a and 1b
belong to the first group. In the case of constant pressure, the arc of the upper branch before Rep1 and



UPPER BRANCH
α = 1.02056 α = 1.02056 α = 1.1 α = 1.1 α = 1.1

Rep attractor Rep attractor Rep attractor Rep attractor ReQ attractor

4638 laminar 8336 2-torus 3803 laminar 8839 2-torus 5264 2-torus
4654 laminar 8688 2-torus 3816 laminar 9316 2-torus 5402 2-torus
4680 laminar 9067 2-torus 3835 laminar 9832 2-torus 5601 2-torus
6952 2-torus 9478 2-torus 7268 2-torus 10388 2-torus 5801 2-torus
7184 2-torus 9921 2-torus 7615 2-torus 10990 2-torus 6069 2-torus
7438 2-torus 10398 2-torus 7991 2-torus 11638 2-torus 6321 2-torus
7713 2-torus 10912 2-torus 8398 2-torus 6589 2-torus
8012 2-torus 6682 2-torus

6776 2-torus
LOWER BRANCH

α = 1.02056 α = 1.1 α = 1.1 α = 1.1 α = 1.1
Rep attractor Rep attractor Rep attractor ReQ attractor ReQ attractor

4636 laminar 3802 laminar 7813 2-torus 3658 periodic 7359 2-torus
4649 laminar 3885 periodic 8192 2-torus 3694 periodic 7639 2-torus
4689 laminar 3969 periodic 8642 2-torus 3816 periodic 7995 3-torus
4722 laminar 4172 periodic 9094 2-torus 4020 periodic 8389∗ 3-torus
4766 periodic 4570 periodic 9489 2-torus 4559 periodic 8682∗ unknown
4821 periodic 4872 periodic 9589 unknown 4611 periodic 9045 unknown
4890 periodic 5272 periodic 10513 2-torus 4814 periodic 9363 unknown
4975 periodic 5789 periodic 11078 laminar 5101 2-torus 9589 unknown
5079 periodic 6397 periodic 11375 2-torus 5500 2-torus 9848 unknown
5205 periodic 6917 periodic 5822 2-torus 10139 unknown
5361 periodic 6049 2-torus 10390 unknown
5554 periodic 6499 2-torus 10746 unknown
5772 periodic 6791 2-torus 11096 unknown

7097 2-torus 11395 unknown
TABLE 1. Attractors of the flow to which is connected the unstable manifold of periodic solutions on the upper and
lower branch of the amplitude curve. In all cases N = 8, M = 70 and ∆t = 0.02. The attractors on the lower
branch corresponds to one direction of the unstable manifold. On the opposite direction the attractor is the laminar
solution, except for a few cases. See the text for details. The temporal evolution is presented in figures 2a and 2b
for Re marked with ‘*’ in the table.

after Rep2 for Rep < 14000, correspond to the second group. On the other hand, for ReQ, only the arc
between ReQ1 and ReQ2 belongs to the second group. For each of those periodic flows up(x, y, t), we
have studied its unstable manifold and which new state of the fluid they are connected to. By means of
the Jacobian matrix (the linearization of the discretized version of (1)) computed to analyze the stability,
we can obtain the eigenvector w ∈ CK (being K the dimension of the discretized system) associated
with the unstable eigenvalue. The perturbed flow up +rw for |r| � 1 is thus a first order approximation
of the unstable manifold of up, which in turn is an attracting manifold. Using the numerical integrator
of (1), we have followed the temporal evolution of up +rw until an attracting state is reached. Likewise,
in the case that up has only one real unstable eigenvalue, we have considered two ways of escaping
from up namely, taking r > 0 or r < 0. When there is a couple of complex conjugate eigenvalues, we
have chosen an arbitrary direction in the plane generated by the real and imaginary parts of w.

The different configurations obtained for several values of Rep, ReQ and α are summarized in table 1.
The attractors presented in table 1 for the lower branch are obtained in one direction of the unstable
manifold. On the opposite direction the attractor is the laminar solution, except for a few cases. For
ReQ = 5822, α = 1.1, both directions of the unstable manifold are connected with a 2-torus. For
Rep = 5772, α = 1.02056, both directions of the unstable manifold are connected with the periodic
flow on the upper branch.

For the case of Rep, α = 1.02056, the lower branch is connected with the laminar flow for Rep . 4722,
and with a periodic solution for 4766 . Rep . 5772. For the case of Rep, α = 1.1, the connection of
the lower branch is with the laminar flow for Rep . 3802, with a periodic flow for 3885 . Rep . Rep2,
with a 2-torus for Rep2 . Rep . 9500, and with different configurations for Rep & 9500. For ReQ,
α = 1.1, the lower branch is connected with a periodic solution for ReQ 6 ReQ1, with a 2-torus



ReQ attractor ReQ attractor ReQ attractor

7953 3-torus 8322∗ 3-torus 8894 possible 3-torus
7975 3-torus 8486 3-torus 9005∗ possible 3-torus
8043 3-torus 8623 3-torus 9096 unknown
8157 3-torus 8767 3-torus 9204 unknown
8278 3-torus

TABLE 2. Attractors of the flow to which is connected the unstable manifold of quasi-periodic solutions. In all
cases N = 8, M = 70, α = 1.1 and ∆t = 0.02. The temporal evolution of the flow until the attracting solution
is reached is presented in figures 2c and 2d for Re marked with ‘*’ in the table.

for ReQ1 6 ReQ . 7950, with a 3-torus for 7950 . ReQ . 8500, and with unknown sets for
ReQ & 8500. In this case, for ReQ > ReQ1 the perturbed unstable periodic flow is first connected with
the periodic solution on the upper branch and then is directed to the final attractor. The upper branch
is connected with the laminar flow for Rep 6 Rep1, and with a 2-torus for Rep2 6 Rep 6 Rep3, for
α = 1.02056 and, α = 1.1, being Rep3 the next Hopf bifurcation after Rep2. For the case of ReQ,
α = 1.1, the upper branch is also connected with a 2-torus for ReQ1 6 ReQ 6 ReQ2. In figures 2a
and 2b we present the evolution of the perturbed periodic flow. On those figures we plot the projection
of the discrete velocity on the plane of 2 coordinates (956 and 210 out of 1156, to be precise) when the
flow crosses an appropriate Poincaré section (see [1] for details) Σ1. For instance, on Σ1 the evolution
of a stable periodic flow is represented by a single constant point on those projections and the laminar
flow by coordinates (0, 0).

Unstable invariant manifolds of quasi-periodic flows
In the case of constant flux the bifurcation diagram of periodic flows is qualitatively different to that of
constant pressure, as is shown in figures 1a and 1b. For ReQ and α = 1.1 there is a change of stability
at the minimum Reynolds ReQ0 of the curve of amplitudes, but no new bifurcations are born there. The
first Hopf bifurcation occurs at the point labeled ReQ1 in figure 1b.

The quasi-periodic solutions found from ReQ1 are stable for ReQ1 < ReQ . 7950. At ReQ ≈ 7950
the branch of quasi-periodic solutions loses stability to give rise to a family of attracting tori of 3 basic
frequencies at a new Hopf bifurcation.

In table 2 we show the connections of the unstable manifold corresponding to the unstable 2-tori
for ReQ & 7950. The procedure follows the same lines as for the case of periodic flows described
previously. For each unstable 2-torus uq , we approximate the linear part of the Poincaré map Pc defined
on Σ1 (quasi-periodic flows are proved in [2] to be periodic in an appropriate moving frame and thus
fixed points of Pc), by means of extrapolated finite differences. Then we perturb uq in the direction of the
most unstable eigenvectors of the linear part of Pc, associated to two complex conjugate eigenvalues of
modulus greater than 1. We follow the temporal evolution of this perturbed flow until an attracting state
is reached. For ReQ . 9000 the attracting flow seems to be a 3-torus, but for greater ReQ the solution
becomes apparently disordered. In figures 2c and 2d we show the temporal evolution for the perturbed
quasi-periodic flows for ReQ = 8322 and ReQ = 9005. The attracting solution for ReQ = 8322 is a
quasi-periodic flow with 3 basic frequencies close to resonant. In the case of ReQ = 9005, the final
attractor observed in the Poincaré section resembles a possible 3-torus.
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FIG. 1. Bifurcating curves of periodic flows based on Re p (a) and ReQ (b) in the horizontal axis and A in the
vertical one. The number of retained spectral modes in the x and y direction are N = 8 and M = 70 respectively.
The ‘*’ on each curve of (a) corresponds to Hopf bifurcations; two of them are labeled as Rep1 and Rep2. They
divide the different regions of stability to superharmonic disturbances, which are also labeled in the plot as ‘s’ for
“stable” and ‘u’ for “unstable”. The plot in (b) is the analogous of (a) based on ReQ only for α = 1.1 but including
a branch of quasi-periodic flows. At Re Q0 there is no bifurcation whereas three Hopf bifurcations labeled as ReQ1,
ReQ2, and ReQ3 are presented on the upper branch. The symbol ♣ indicates a Hopf bifurcation in the curve of
quasi-periodic flows.
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FIG. 2. Different time-evolutions of perturbed flows. In (a) and (b) the flow starts from the perturbed unstable
periodic solution on the lower branch for ReQ = 8389 and ReQ = 8682 respectively, and α = 1.1. In (a) the
fluid is first directed to the unstable periodic solution on the upper branch and then attracted by a 3-torus. In (b)
the fluid is attracted by a strange set plotted in bigger dots, which is unstable and finally drives the fluid to another
strange set. In (c) the perturbed 2-torus for ReQ = 8322 is attracted by a nearly resonant 3-torus, as can be
observed. Finally in (d) the perturbed 2-torus for ReQ = 9005 is attracted by a set that reminds a 3-torus.


