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ABSTRACT

Hagen-Poiseuille flow through a pipe of circular cross section belongs to the class of shear flows that
does not become linearly unstable. The situation is similar to Taylor-Couette flow with the inner cylinder
at rest as well as to Taylor-Couette in the limit of large radii where the system approaches plane Couette
flow [3]. In these cases the transition to turbulence is not related to series of symmetry-breaking linear
instabilities but rather with the formation of nonlinear 3-d states that are not connected to the laminar
profile and that seem to form a chaotic saddle.

As indicators for this process we present exact coherent states to pipe flow, we discuss the sensitive
dependence on initial conditions quantified by the Lyapunov exponent of turbulent trajectories, and
the exponential distribution of life times of the turbulent state. All our findings are consistent with the
formation of a strange saddle (repellor) in phase space.

For the numerical solution of the full Navier-Stokes equation we use a Fourier-Legendre collocation
method in cylindrical coordinates, with Lagrange multipliers to account for no-slip boundary conditions
at the wall and the constraints that the flow field is solenoidal, analytical and regular at the centerline.
The code was verified by reproducing literature values for the linearized problem, for the nonlinear
dynamics of optimal modes and for the statistical properties of fully developed turbulent flow up to
Reynolds numbers of

�������
.

A family of three-dimensional travelling waves for flow through a straight pipe of circular cross section
has been identified (Fig. 1,2) [1]. They were found by a Newton-Raphson method which was imple-
mented with a spatial resolution of 21 modes in azimuthal and downstream direction and 44 Legendre
polynomials radially. This gives us about ��� ��� dynamically active velocity coefficients.

Figure 1: Travelling wave with threefold
azimuthal symmetry at the bifurcation at�
	�� 
�� ���

. The frames are cross sec-
tions at different downstream positions sep-
arated by ��� � �������

. Only half a pe-
riod is shown: the last frame is the same as
the first one up to a reflection at the hor-
izontal diameter ( ��� �����! #"$� �% &" ).
Velocity components in the plane are in-
dicated by arrows, the downstream com-
ponent by color coding: velocities faster
than the parabolic profile are shown in
green/yellow/red, slower ones in blue.



Figure 2: Travelling waves with symmetries ��� with � � �
, � , � , and

�
(invariance under rotation

around the pipe axis by an angle
����� � ). In order to highlight the topology of the states all states are

averaged in downstream direction. The representation of the velocity field by vectors (in-plane motion)
and color (downstream component) is as in Fig. 1. The absolute scale for the velocity fields is given in
Table 1.

They originate in saddle-node bifurcations at Reynolds numbers as low as

�� ���

, where
�
	

is based on
the mean downstream velocity and the pipe diameter. All states are immediately linearly unstable at the
bifurcation.

The travelling waves are dominated by pairs of downstream vortices and streaks (Fig. 1,2). The high
speed streaks near the wall move much less than the low speed streaks closer to the center of the
pipe. The dominating structures are streamwise streaks and streamwise vortices that closely resemble
coherent states in other shear flows like the wavy-vortex flow in Taylor-Couette or plane Couette flow.
Some selected properties of the waves at bifurcation are given in Table 1. The dynamical significance
of the exact coherent states is that they provide a skeleton for the formation of a chaotic saddle that
can explain the intermittent transition to turbulence and the sensitive dependence on initial conditions
in this shear flow [1,2].

For dynamical lifetime experiments a spatial resolution of 33 modes in azimuthal direction, 29 modes
in downstream direction and 50 Legendre polynomials radially has been used. For an accurate simu-
lation of turbulent dynamics at transitional Reynolds numbers the streamwise periodicity

�
is set to
 � �

which is about the minimal value needed to justify periodic boundary conditions, i.e., for velocity
fluctuations to be uncorrelated at a streamwise separation of half the pipe length. As in the experiments
of Darbyshire & Mullin [4] we keep the volume flux constant. We extended our numerical investiga-
tions to times of

� �����
or more (unit of time: mean streamwise velocity/radius), far exceeding the values

accessible in the longest currently available laboratory experiment. As initial conditions we used a high
amplitude uncorrelated superposition of spectral modes. The spatial structure is so rich and the ampli-
tude so high that the probability to trigger turbulent dynamics is maximal for a wide range of Reynolds
numbers.

Various conclusions can be drawn from our lifetime experiments: We find a transitional Reynolds num-
ber somewhat below

�
	 � � �����
. The minimum amplitude to trigger a long living turbulent dynamics

decreases with Reynolds number. We observe strong sensitivity on initial conditions as well as on pa-
rameters which results in large fluctuations in turbulent life times (Fig. 3) [2]. The regions of quickly
decaying and long-living trajectories are separated by complicated, fuzzy stability borders. The results
are in agreement with experiments by Darbyshire & Mullin [4].

In order to quantify the sensitive dependence on initial conditions the largest Lyapunov exponent has
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Figure 3: Lifetime of turbulent trajectories as
function of

�
	
and initial disturbance am-

plitude. The color-coding separates runs that
would have decayed within usual experimen-
tally accessible lifetimes and those that would
have appeared as sustained.

been calculated along ensembles of turbulent trajectories. Its typical value is about
��� � � 
 ����� at transi-

tional Reynolds numbers and it slowly increases with
�
	

. This corresponds to an amplification factor of
the order of


 ���
over

� ���
time units which is a typical time scale for a nonlinear regeneration cycle. The

short time Lyapunov exponents are strongly correlated with the large energy fluctuations in the system.
When new large scale structures are generated the energy grows strongly and the Lyapunov exponent
increases whereas at the end of a nonlinear regeneration cycle the energy goes down and it decreases as
well.

The strong sensitivity of lifetimes on initial conditions and on parameters calls for a statistical descrip-
tion of the transition process. Therefore, the distribution of turbulent lifetimes has been calculated and
it is shown in Fig. 4.
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Figure 4: The probability for
a single trajectory to still be
turbulent after a certain inte-
gration time. Between

���
and
 ���

trajectories have been in-
tegrated per Reynolds number.

Although the fluctuations are large an exponential distribution can be identified within the statistical
errors. This can be interpreted as a constant rate of escape from the turbulent state which is a major
characteristics of a chaotic repellor.

Increasing the Reynolds number up to 	 ��� ���
the median of the turbulent life times as well as the

fluctuations increase rapidly until the median reaches the cut-off life time of
� �����

. It might even be the
case that the escape routes from the repellor are closed and it is turned into a strange attractor.



symmetry � � ��� ����
	��
1350 1250 1590��� � �
4.19 2.58 2.51

� ��� 1.43 1.29 1.17
�
	 2 1 4
 �� ��� 0.38 0.35 0.34
 �
 ��� 0.035 0.046 0.045

Table 1: Selected properties of travelling waves at the saddle-node bifurcation. Given is the critical
Reynolds number

�
	��
at the optimal wave length

���
, the phase velocity � and the number of unstable

dimensions ��	 .  �� is the maximum deviation of the streamwise velocity from the laminar flow,  �
 is
the maximum in-plane velocity component.
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