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ABSTRACT

Introduction

The bifurcation theory with theO(3) symmetry is a powerful tool in the spherical B´enard problem.
But a such experiment cannot be realised on the earth beacause the earth gravity breaks the spherical
symmetry. So, till now this bifurcation theory with theO(3) symmetry has not been corroborated by the
experiment. The GEOFLOW-experiment on the International Space Station is an opportunity to check
this theory.

In this problem, there are two natural bifurcation parameters: one is the Rayleigh numberRa which is
proportional to the buoyancy force responsible for the onset of convection; the second one is the aspect
ratio � which is the ratio of the inner to the outer radius of the shell. When the Rayleigh number is
increasing the ”trivial” solution loses its stability. Generically, a unique spherical mode` is unstable
(codimension 1, onlyRa is allowed to vary). In this case, we expect only stationary or travelling waves
solutions [1]. For specific aspect ratio numbers�c, two modes(`; ` + 1) are unstable (codimension 2
bifurcation,Ra and� vary). For this mode interaction the dynamics are more complex. It is already
known since the article of Guckenheimer and Holmes [2] that structurally stable heteroclinic cycles
between group orbits of equilibria (i.e. steady states) can arise due to the symmetry of the problem. The
(1,2) interaction was studied from a numerical point of view by Friedrich and Haken [3] and later by
Armbruster and Chossat [4] using group theoretic methods. A general study of the(`; `+1) interaction
was presented in Chossat and Guyard [5]. The authors show, under certain ”generic” conditions, that
heteroclinic cycles of various types exist and these connections are ”robust” against small perturbations.
Furthermore, it has been proved [6] that the heteroclinic cycle does not completely destroy when the
system is slowly rotating around an axis.

In this paper, we focus on the existence of heteroclinic cycles with the GEOFLOW-experiment require-
ments. We neglect the thin conductor wire in the shell and the domain does not rotate, so the problem
has theO(3) symmetry. The difference between the previous works is the pseudo-gravitational field:
in our case it is a1=r5 field instead of the classical Newtonian one. Thus, the existence requirements
of heteroclinic cycles in [5] and [6] can be only numerically checked. In [7], we have found that for
�c = 0:33 and�c = 19:8 the (2; 3) interactions holds. Furthermore forPr = 0:24, it occurs a dege-
naracy necessary to the existence of such heteroclinic cycles. In the following we study the codimension
2 bifurcation with these previous parameters values.

Mathematic Background

The gouverning equations for perturbation~v of the velocity field of the fluid and� of the temperature
field are set in the Boussinesq approximations. After a convinient choice of length scale, the spherical
shell domain is
 = fr 2 R; � < jrj < 1g, and the dimensionless equations are given in this domain
by:
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with the boundaries conditions:�(�) = �(1) = 0 (imposed temperature) and ,�!v (�) = �!v (1) = 0

(viscous fluid). The functionsg(r) = 1

r5
andh(r) = 1

r3
represent the dimensionless gravity field and

the gradient of temperature respectively.Pr is the Prandtl number and� is proportional to the square
root of the Rayleigh number:
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The vector spaceV` of the`th critical mode has the dimension(2`+1) and it is a irreductible represen-
tation space ofO(3). We shall denote(�`m)m=�`:::` the complex eigenvectors ofV̀ associated with the
generalized spherical harmonics [7]. Then, for the interaction(2; 3), the eigenspaceV = V2 � V3 has
the dimension 7+5=12 and a vectorU(t) 2 V can be expressed as

U(t) =
2X

m=�2

xm(t)�
2
m +

3X
n=�3

yn(t)�
3
n;

wherex�m = (�1)m�xm andy�n = (�1)n�yn.

The dynamics and bifurcation from the basic state near the critical values�c and�c can be examined by
varying the two system parameters� and�. The original system of PDE’s (1) is reduced on its center
manifolds. This last one is parameterized by the spaceV . So, the bifurcation equations is governed by a
system of ODE’s which it consists of 5 equations forxm and 7 equations foryn. These equations admit,
at any order, a Taylor expansion and an equivariant structure. In [7], the truncated equations are given
at the third order and the coefficients are computed for a large range of the Prandtl numberPr.

For the Prandtl valuePr = 0:24, heteroclinic cycles can exist [7]. When only the mode 2 is unstable,
we obtain two axisymmetric solutions�� (in O(2) � Z

2
c isotropy subgroup) which differ with respect

to the direction of the flow. These two kinds of flows are described by the amplitudex0. On the line
x0, the solutions�� are stable for� > �c and� > �c. Now, let us consider two isotropy subgroups�1
and�2 such their fixed point space containx0. For example, if�� is a sink inFix(�1) and a saddle
in Fix(�2) and if �+ is a saddle inFix(�1) and a sink inFix(�2), then it can exist branches which
connect the both equilibria��. In our case, only the two different cycles are possible [5]:

� (O(2)� Z
c
2; O(2)

�; Dd
6): type I.

� (O(2)� Z
c
2;D2 � Z

c
2;D

d
6): type II.

In order to determine the existence region of these cycles, we have to study the stability of�� in the
fixed-point plan of the previous cycles. Furthermore, we have to check that for each plan the only
equilibria are�� (no mixed solutions).

Results and Discussion

In agreement with [5], only the heteroclinic cycle of the type I has an open basin of attraction. Let us
�� = 100���c

�c
and�� = 100���c

�c
. The figure 1 shows in the plane of the parameters(��; ��), the region

of type I heteroclinic cycles. The both black lines delimit the stability of the trivial solution. The red
line is the limit of the stability of� in regardsy0 (Fix(O(2)�), it is the most constraining requirement.
The dotted black line is the limit of the existence of mixed solution in the different fixed-point spaces.
An example of a heteroclinic cycle for�� = �0:04 and�� = �0:5 is described. The figure 2 show that
the transition time is short compared to the stay close to an equilibrium. Furthermore the dynamic stay
more longer in the�� than�+. The evolution of the dynamic during the cycle is showed at the figure 3.
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Figure 1: Heteroclinic cycles region delimited by the red and the black dotted lines.

At the relative timetr = 360 the dynamic has theO(2)� symmetry and attr = 872 the dynamic has
the hexagonal anti-symmetry:Dd

6 .
In order to find a heteroclinic cycle, the relative variation of� must be inferior to 0.12%. But, in the
experiment we can obtain a such precision (1% for the temperature), so it will be very difficult to
observe such phenemona. It would be interesting to determine the dynamics “far” from the bifurcation
point.
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Figure 2: Time evolution of the amplitudesx0 (a) andIm(y3); y0 (b)
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Figure 3: Temporal evolution of the radial velocity for a heteroclinic cycle (�� = �0:04; �� = �1:5).


