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ABSTRACT 

The technical relevance of swirling flows has inspired numerous investigations into the field: 
swirling flow burners, trailing vortices of delta wings, separators etc. are some of the applications 
where such research has yielded interesting results. At the same time, geophysics-inspired general 
swirling flow studies provided much input to this field. A subcategory of swirling flows is that where 
vortex breakdown is observed. Vortex breakdown is a condition where a vortex core undergoes a 
transformation from a slender flow entity to a structure of a drastically different nature: in the 
literature, numerous manifestations of this phenomenon have been reported, along with classification 
proposals for the flow structures connected with vortex breakdown. 
   
A particular class of vortex breakdown types, i.e. that of bubble breakdown, has attracted a 
significant portion of the attention of researchers in the field, for its technical relevance, but also for a 
reason that is of particular interest to this work: it has been shown that steady and unsteady bubble-
type vortex breakdown can be produced in a almost ideally controllable environment, i.e. in a 
completely enclosed cylindrical container with one spinning endwall, figure 1, (or in more intricate 
variations of this system). Such a geometrical configuration enjoys the benefit of being described 
fully by 2 parameters, i.e. the Reynolds number (based on the container diameter and the angular 
velocity of the rotating lid) and the aspect ratio. Additionally, there are no arbitrary or difficultly 
controllable boundary conditions (inflow/outflow), since all boundaries are either stationary or 
spinning solid walls.  
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Figure 1. Schematic configuration of the cylindrical container with one rotating endwall, location of 
vortex breakdown bubble of interest to this work and controlling parameters. 
 
An additional strong motivating force favoring the investigation of flow configurations like the one 
described herewith has emerged recently: in microfluidic configurations, swirling flows are possibly 
the best candidates for achieving high mixing efficiencies: one of the principal reasons that  
microscale flow-based devices are very difficult to manufacture is that it is practically impossible to 
benefit from the intense mixing introduced by turbulent scales, because turbulence is non-existent at 
those small scales, [1]. 
 
The system under consideration has been particularly attractive to swirling flow investigators because 
strong experimental evidence supported the observation that for a particular range of the parameters, 
the flow seems to maintain the geometric symmetries of the confining geometry and forcing and thus 
presents us with axisymmetric conditions, [2]. Based on such observations, numerous computational 



investigations have been conducted, [3], [4], etc. that yielded excellent qualitative and quantitative 
comparisons with available experimental observations and measurements and moreover led to very 
interesting and novel insights on the system and its evolution as the parameters change.  
 
Recently however, departures from this track have been reported: more specifically, in [5] an 
experimental investigation was conducted that showed both indications of vortex breakdown bubbles 
that were significantly more disorganized than the axisymmetric hypothesis allowed, and revealed 
sidewall flow structures that departed from a typical helical trajectory and involved patterns not 
explicable under the rotational symmetry assumption. This set of observations was further reinforced 
by computational investigations into the details of the breakdown bubbles: in [6] it was showed that 
the bubbles might not be the assumed closed recirculating entities that were believed to be, but that 
very rich dynamics were hidden in the subtle asymmetries that were a posteriori identified in all 
experimental visualizations but not paid due attention. Subsequently, [7] showed that the vortex 
breakdown bubbles can be objects exhibiting chaotic advection and that the origin of their anomalous 
behavior is the three-dimensionality originating at the side wall of the container. In [8] it was shown 
that the computational origin of the above mentioned phenomena can be attributed to perturbations 
imposed by the mesh topology. However, in the same work it was shown that the same non-
axisymmetric and chaotic bubble behavior can be reproduced by other, more physically addressable 
types of perturbation, like minute distortions of the shape of the container. In the same work it was 
shown that the exact same numerics can produce axisymmetric bubbles under zero perturbation 
conditions. As a corollary it was argued that a perturbation-free environment is impossible in real 
experimental rigs, thus the forced symmetry breaking of perturbed containers (real and numerical) is 
the technically relevant case to look into.  In a recent addition to the literature in the field, [9], it was 
shown numerically that even minute differences in the density between the working fluid and the 
agent utilized for visualization are adequate to lead to observations that carry non-axisymmetric 
features, even under the assumption of an underlying axisymmetric flow field. 
 
    Percentage 
 
Type of  
disturbance  

 
0.0 % 

 
0.1% 

 
0.5% 

 
1.0 % 

 
2.0 % 

 
5.0% 

Oval x2 mode G1, G2 G1, G2 G1,G2,G3 G2 G2 G2 
Oval x4 mode    G2   
Top tilt  G1,G2 G2 G1 G2 G2 
Eccentric rot.  G2 G2 G1,G2 G2 G2 
Combination   G1,G2 G1,G2   

G I grid: 101 x 49 x 33 G II grid: 201 x 97 x 67 G III grid: 201 x 193 x 67 
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Table 1. Summary of cases examined and grids utilized. The set of cases designated as 

“Combination” entails  the co-existence of all 3 disturbances, in a randomly non-aligned manner. 
  
We are reporting a small yet representative set of results examining the correlation between 
geometric imperfections of the container and observable departures from axisymmetric conditions.  
Our goal is to connect the subtle (or often not so subtle) non-axisymmetric features observed in all 
the available experimental results with possible underlying sources for the perturbations. Moreover, 
we are examining the perturbation kinetic energy distributions for various types of disturbances, thus 



identifying regions and modes that accumulation of energy is occurring in such forced symmetry 
breaking conditions. 
 
A large number of spatially and temporally resolved simulations have been performed in order to 
understand the behavior of the system under investigation.  An initially perfectly axisymmetric 
discretization that is distorted at modes and proportions that are characteristic of realistic 
imperfections present at experimental rigs constitutes the basis of this investigation. Table 1 
describes sketchily the perturbations imposed, the runs conducted and the grids utilized. It has been 
shown, [8], that although Grid I of this Table is probably inadequate for the capturing of the 
perturbation quantities (in spite of the fact that it portrays the basic flow parameters accurately), 
Grids II & III yield practically identical results for all observables of interest.  Although the 
computations were conducted in a time accurate manner, all simulations led eventually to fully 
stationary solutions. All the results reported here were computed using a second order accurate (in 
space and time) pressure correction method, based on the PISO approach, on a staggered grid, [10]. 
 
Results concerning the sidewall flow response to the distortion are shown in figure 2. Figure 2.a. 
shows iso-surfaces of radial perturbation velocity (one positive and one negative).  The perturbation 
quantities have been computed either by referring both the distorted and ideally axisymmetric 
solutions to the ideally axisymmetric grid (thus making a small error due to the fact that the 
geometric locations of the distorted grid nodes differ slightly from those of the non-distorted grid), or 
by conducting a tri-cubic interpolation from the distorted field (grid and velocities) to the ideal grid 
and conducting the subtraction at the same node locations (introducing however the interpolation 
error).  Both results were visually identical and we chose to report those of the second approach.  
Figure 2.b. shows the kinetic energy carried by the perturbation field. In spite of the fact that the 
distortion in the case presented was of mode x2, the kinetic energy of the disturbance presents us 
with 4 branches. 
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Figure 2.a. Positive and negative iso-surfaces for the radial perturbation velocity component, 1.0% of 
a mode x2 oval distortion. b. Iso-surface of the kinetic energy carried by the perturbation velocity 
field, for the same test case. 
 
Figure 3.a. depicts the circumferentially averaged kinetic energy for the case of mode x2 oval 0.5% 
distortion, whereas figure 3.b. shows the same quantity for twice the distortion (1.0%). The relative 
magnitudes of the peak perturbation energies differ by more than 1 order of magnitude, an 
observation that underpins the sensitivity of the system to geometric imperfections. A similar trend 
was found for the rest of the cases of this type of distortion simulated, as well as for other types of 
container imperfection, where such observations could be conducted.   
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Figure 3.a. Depiction of the circumferentially averaged kinetic energy of the perturbation for a case 
of oval mode x2 disturbance of 0.5% magnitude. b. Same quantity for the oval mode x2 case of 1.0% 
distortion magnitude.  Dashed line designates the axis of symmetry, rotating wall at bottom. 
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