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ABSTRACT

If the working fluid is electrically conducting, the classical Taylor-Couette problem has aspects which
are relevant to astrophysics.

Here we consider two examples. In the first we study hydro magnetic Couette flow in the presence
of an axially imposed magnetic field (Ruediger and Zhang 2001). We find that the applied magnetic
field greatly destabilises the azimuthal Couette profile, and that the instability extends in the hydrody-
namically Rayleigh-stable region. The result is important in the context of accretion discs (Balbus and
Hawley 1991).

In the second example we remove the imposed magnetic field and find that the helical motion of the
fluid in the Taylor vortex flow regime can excite a self-sustaining magnetic field by dynamo action.
This result is relevant to the current experimental attempts to recreate in the laboratory a fundamental
process of astrophysics such as a dynamo (Gailitis et al 2001; Stieglitz and Mueller 2001).

Magneto-rotational instability

We consider two concentric cylinders of inner radius � � , outer radius � � and infinite length which
rotate at constant angular velocities 	 � and 	 � . The governing equations of motion for the velocity
field 
����������������� , the pressure ������������������ and the magnetic field ������������������ are

� 
� �
 ��
"!�#$�%
'&)(�#*�  # � 
  +,�-'�.#0/1�2�3/4�5� (1)

� �� � &
�,6- # � �  #0/7��
8/1�2��� (2)

#)!9
'&:#;!<�'&:=>� (3)

The dimensionless parameters of the problem are the Reynolds numbers
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the radius ratio
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the angular velocity ratio
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the Chandrasekhar number
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and the magnetic Prandtl number
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In writing these equations we used A & � � (:� � as unit of length, A �	� B as unit of time, and
� �

(the strength of the applied magnetic field) as the unit of magnetic field. The fluid contained be-
tween the cylinders is characterised by constant density � , kinematic viscosity B , magnetic diffusivity� & � � � � � � � , electrical conductivity

�
and permeability � � . The equations are solved using a spec-

tral method (Willis and Barenghi 2002a) assuming no-slip boundary conditions for 
 and electrically
insulating boundary conditions for � .

It is well know that in the absence of magnetic field inviscid Couette flow is linearly stable if the
Rayleigh criterion ��
�� � is satisfied. Figure 1 shows the critical Reynolds number �@? �� of the inner
cylinder versus �@? � at different values + of the applied magnetic field. It is apparent that if + is large
enough a flow which would be Rayleigh stable becomes unstable. The symmetry ?��

-��
of the most

unstable mode (to which the figure refers to) is � & = .
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Figure 1: �@? �� vs �@? � at � & =,+.- and
, - & � at different values of + . The upper dotted line is

Rayleigh’s criterion, the lower dotted line is solid body rotation



The destabilising effect of the magnetic field is larger the larger
,�-

is (Willis and Barenghi, 2002b), as
shown in Figure 2. The significance of this result is due to the possibility that large values of

, -
exist

in central regions of galaxies (Kulsrud and Anderson 1992).
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Figure 2: �@? �� vs �@? � at � & =,+.- and + & �9= at different values of
,2-

. The upper dotted line is
Rayleigh’s criterion, the lower dotted line is solid body rotation

Dynamo action

Figure 3: Isosurfaces of
� � �

for � & =,+.- , � & = and
,2- & �

.

We repeat the calculation without the imposed magnetic field. The same dimensionless parameters are
used as before, but now the unit of magnetic field is � � � � � ��� � B � A . First we solve Eq. 1 and create a
steady axisymmetric flow at given values of �@? � and �@? � 
 �@? �� where �@? �� is the critical velocity



for the onset of Taylor vortex flow. Then we integrate Eq. 2 and study if the magnetic field, driven by
the imposed Taylor vortex flow, grows or decays. We find that the most favourite mode for the growth
of magnetic field is � &;� and that the largest growth rate is obtained with some co-rotation. Finally we
integrate Eq. 1 and 2 together, and show that it is possible to achieve a saturated self-consistent dynamo
(Willis and Barenghi 2002c). Figure 3 shows the isosurface of

� � �
. Most of the magnetic energy is in

the azimuthal � &)� mode, with less energy at higher (odd) values of � . Similarly, most of the kinetic
energy is in the � & = mode, with less energy at higher (even) values of � . Figure 4 shows that the
magnetic energy (in units of the energy ������� of the circular Couette flow) initially grows exponentially
with time and then achieves saturation. The curves (a) and (b) refer to rotation of the inner cylinder only
and co-rotation respectively.
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Figure 4: Magnetic energy versus time in units of � ����� for � & =,+.- and
, - & �

. (a): � & = ,
�@? � &)� +.- �@? �� and ������� &�� + � -$/ �9= � ; (b): � &"! � �	� � , �@? � & � �@? �� and �#����� &"! +%$&!$/ �9=&' .

Conclusion

Hopefully these results will stimulate more work on the nonlinear saturation of the magneto-rotational
instability and on dynamos at the very small values of

,5-
relative to experiments done in the laboratory.
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