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ABSTRACT 

An incompressible liquid flow in the gap between two coaxial cylinders, such that the inner rotating 
(wavy) cylinder has a periodically varying radius along the axial direction while the outer stationary cylinder 
has a constant radius, is studied experimentally and theoretically. The basic attention is focused on the 
symmetry-breaking phenomenon of the vortex flow arising from the rotation of the inner wavy cylinder. It is 
found that the symmetry-breaking phenomenon of the vortical flow structures in this geometry is 
accompanied by occurrence of a self-induced axial pressure gradient. A generalized formulation of the 
problem of periodic vortical flow prevailing in the gap between two coaxial wavy cylinders having large 
axial length is presented. The comparison between the computed and the experimental results is presented 
and the underlying phenomena are discussed. 

INTRODUCTION 
An incompressible liquid flow between two coaxial cylinders, arising from the rotation of the inner 

cylinder, is well known in hydrodynamics as Taylor-Couette flow (see [1]). The modified Taylor flow is 
realized in geometry, where one or both rigid surfaces have axisymmetric wavy shape due to periodically 
varying radius along the axis of rotation. The existence of such flows, caused by the wavy surface of the 
rotor was investigated in the works [2] (1999) and [3] (2001). The modified Taylor flow, with both inner and 
outer cylinders having a wavy shape, has been analyzed numerically in  [4] (2002).  

In the present work the experimental and numerical investigations of the case, where the fixed external 
cylinder has a constant radius, while the radius of the inner rotating cylinder varies along the axial direction 
following a cosine law, are presented. The attention is focused on the symmetry-breaking phenomenon of the 
vortical flow, which is accompanied by occurrence of a self-induced axial pressure gradient. The symmetry-
breaking phenomenon of the flow in the region having geometrical symmetry has been scrutinized in a 
number of studies. The existence of periodic flow in the non-periodic pressure field with the given gradient 
is well known too. But the possibility of occurrence of a self-induced pressure gradient in the periodic flow 
field of an incompressible liquid in a closed region having large axial lengths has never been studied. In the 
present work this phenomenon is investigated theoretically and a generalized formulation of the problem of 
periodic vortical flow calculation in the region with the large axial lengths is presented. The computed results 
are compared with experimental observations and measurements. 

1. Experimental apparatus, the methods and means of experimental investigation. 
We use the same experimental apparatus as in the work [2]. It consists of the transparent outer cylinder 

with the radius R=64.11 mm and the length H=263 mm. Inside the outer cylinder there is a coaxial rotating 
cylinder representing one of 6 bodies of rotation. The geometrical parameters of the variety of inner 
cylinders (rotor) used in this study are given in Table-1. Experiments are performed using one cylinder 
having a constant radius (CR1) and five cylinders (WR2,…,WR6) with periodically varying radius along the 
axial direction, as described by the formula: 

 
R1(z)=a0+a1cos(2πz/λ)             (1) 

Table-1 
(Made dimensionless by R) rotor 

 a0   a1   λ 
CR1 0.8002 0 - 
WR2 0.8002 0.1221 1.1192 
WR3 0.8002 0.1221 0.5597 
WR4 0.8002 0.0610 1.1192 
WR5 0.8002 0.0610 0.5597 
WR6 0.8002 0.0306 1.1192 

 
Hereinafter the internal radius (R) of the cylindrical container is used as characteristic dimension. 
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The methods and means employed for experimental investigations consist of: (i) Measurement of rotor 
rotation speed in the range 30-1000 rpm with an error less than ±3 rpm, (ii) measurement of temperature of 
the liquid in the range 15-40 0C; (iii) visualizations and video recording of the flow pattern at the outer 
cylindrical wall by the kaliroscope particles; (iv) visualizations and video recording of the flow pattern in 
(r,z)-plane using a laser sheet with the kaliroscope particles; (v) measurements of velocity distribution (r,z)-
plane using Particle Image Velocimetry (PIV) and (vi) measurement of a stationary pressure difference 
between two points located on the outer cylinder (error < ±0.1 mm of water). As a main parameter 
determining the flow regime the Taylor number is used: 
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Where a0 is the dimensionless average radius of the rotating cylinder, µ=[0.045-0.065] Pa/s is the 
viscosity and ρ=1.027g/cm3 is the density of the liquid in the gap and ω is the angular velocity of the rotor.  

2. Mathematical model and numerical methods. 
Consider the region confined between the inner rotating and outer stationary cylinders. Let the axial 

length H of the region along the z-axis be much greater than the radius R of the external cylinder and the 
wavelength λ of the rotor surface (H >> R; H >> λ). Let the gap between the cylinders be filled with an 
incompressible viscous liquid having constant viscosity. A cylindrical coordinates system centered at the 
axis of rotation of the inner cylinder, such that the radial axis r passes through one of the maxima of the 
wavy surface, and is approximately equidistant from the left end A and right end B of the fluid column, is 
introduced. 

The mathematical model considers time-independent axisymmetric Navier-Stokes equations. Velocity, 
and pressure scales are defined as: 2

ss )R(P;RV ωρω == . The geometrical parameters are made 
dimensionless by R.  Although, the mathematical model considers a general case of the modified Taylor 
geometry with both wavy surfaces, the shapes of which can be described by any continuous functions R1(z), 
R2(z) with the identical period λ=2π/s, in the present work a special case where the outer cylinder having a 
constant radius (R2=1) is considered. Without loss of generality, the pressure can be represented by: 

]zG)z,r(P[)R(PP̂ 2
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Where P(r,z,t) remains a bounded function for an infinite increase of region length H.  
The no-slip boundary conditions are applied at the rotor and the fixed cylinders, 

r=R1(z):  u=v=0 , w= R1(z)  ;  r=1 : u=v=w=0     (4) 
and the same conditions are applied on the axial (left A and right B) ends of the region, 

z=ZA , z=ZB : u=v=w=0        (5) 
where v, w, u are the radial, azimuthal and axial velocity components, respectively. Besides it is 

necessary to set a value of pressure in the one arbitrary point in the region. 
0)0,1(PorP)0,1(P̂ 0 ==        (6) 

The classical statement of a problem for the movement of an incompressible liquid in the closed region 
described above does not depend on the region size H and provides the locally unique stationary solutions, 
for at least small Taylor numbers T. The local uniqueness of solutions can be broken only at bifurcation 
points. 

We assume periodicity of all variables along the z-axis with wavelength λ (wave number s) and 
represent the solution in a form of a Fourier series. The Fourier coefficients of non-linear terms from Navier-
Stokes equations are obtained in an analytical form. The system of differential equations containing Fourier 
coefficients is solved by the finite differences method. The calculation domain is discretized using 12-25 
harmonics per wavelength and 41-81 points on the radial coordinate.  

3. The analysis of investigation results 
Symmetric stationary vortical flow: Experiments performed using 6 different rotating inner cylinders 

as listed in Table-1 and the flow regimes in the range from T=0 to T= 600 are explored. The numerical 
analyses are performed for all variants of the rotor geometry and majority of stationary flow regimes existing 
in the range of T=0 to T=500 are explored. In addition, at T=84 and T=325 the stationary flow is investigated 
with a continuous variation of the parameters 0.03 < a1 < 0.15, 0.34 < λ < 0.97. 

The experimentally observed and numerically computed flow patterns and velocity field shows a good 
qualitative and quantitative agreement for stationary regimes both. In Fig.1 the experimental flow pattern in 
the (r,z)-plane using the rotor WR5 at T=210 is shown. From Fig.1, one deduces that unlike the classical 
Taylor flow, the modified Taylor flow is two-dimensional and axisymmetric even at small T<<1. It has a 
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fixed wavelength, which is equal (or a multiple) to the wavelength λ of the rotor surface.  The investigations 
have shown that, for small and moderate values of T, the stationary vortical structures follow the symmetry 
of flow region, if such symmetry is present. Here one wavelength consists of two symmetric vortices with 
opposite circulation. The presence of two vortices in one wavelength is not a strict property. For T>55, using 
rotors WR4, WR6 the symmetric flow with 4 vortices per wavelength are observed, and the branch of the 
solutions with 6 vortices per wavelength is found in calculations. In the tests with rotors WR3, WR5, the 
stationary periodic flows are obtained up to T=400, which indicates the large stability of such flows. A 
similar result has been found in the work [3]. Even after intense pulsations appear at large T, the modified 
Taylor flow continues to keep the large-scale vortical structure pertaining to the geometry of the region.  

Asymmetric stationary vortical flow: One of the most interesting and unexpected results of 
experimental studies is the detection of stationary, asymmetric vortical structures in (r,z)-plane using the 
rotor WR5. These structures arose from symmetric vortices at Taylor number greater than a critical value 
T*≅250. In Fig.2 the flow pattern observed with rotor WR5 at T=325.3 is shown. In comparison with the 
Fig.1, here one vortex became 1.5 times greater than the other. 

 

T=210.49

Fig.1 The symmetric flow in the (r,z) plane for the 
rotor WR5 at  T= 210.5 (experiment). 

T=325.30

 
Fig.2 The asymmetric flow in the (r,z) plane for the 

rotor WR5 at  T= 325.3 (experiment). 
 
After reconsideration of the given problem, we made the assumption that the asymmetric vortical flow 

arises from the symmetrical one as a result of symmetry breaking bifurcation at the certain Taylor number 
T*. The Navier-Stokes equations have such asymmetric solutions, which can be found numerically. 

Assuming that for some range of Taylor numbers the established flow in the region consists of the main 
part having the length L>>1 and buffer zones attached to ends A, B, having limited size a∼b ∼1. In the main 
part of region the flow is periodic with the period equal to λ or its integer number Λ=mλ. In the buffer zones 
the deviations from the flow periodicity and geometric symmetry are possible. 

Proceeding from the classical statement of the problem of incompressible fluid flow, we formulate the 
problem of seeking the periodic solutions in the main part of the region by assuming that the liquid motion is 
governed by the Navier-Stokes equations with the no-slip boundary conditions (4) on the inner and outer 
surfaces, however, instead of conditions on the ends A, and B the condition of periodicity of the velocity 
vector is used, which as a consequence of searching the periodic solutions is generalized up to the 
requirement of periodicity of all variables in the Navier-Stokes equations, along with equation (6) to set 
pressure at an arbitrary point. It is to be noted that the Navier-Stokes system contains a parameter G due to 
pressure representation in the form (3). In the case of the closed borders A, B (5) the external pumping is 
absent and the axial pressure gradient is G=0. But, conceptually by decomposing the solution domain into 
the main part and the buffer zones, parameter G becomes uncertain and the problem becomes ill posed. As 
the Navier-Stokes equation for whole region is completely determined, it should contain a closing condition, 
concerning the periodic flow in the main part. Such a condition, comes from the ends A and B of region, and 
is the condition of zero net axial flux through any cross section of the region. 

0drr)z,r(u2Qz
1

R1

=⋅⋅= ∫π    (7) 

We emphasize that for correct formulation of the problem, the initially given condition is the zero net 
axial flux (7), but the pressure gradient G is dependent parameter to be searched for along with the rest of 
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dependent variables. With this formulation the asymmetric stationary periodic solution is obtained (T>T*) in 
the first attempt of calculation. Agreement of the calculated flow lines and experimental trajectories of 
particles is very good. 

The most important property of asymmetric vortex flows is the self-induced pressure gradient, the 
dimensionless value of which under conditions of Fig.2 is G=0.0089. The presence of the pressure gradient 
means that in such flows the periodic field of a velocity vector coexists with the non-periodic pressure field 
(3). Which implies that in the experiment there should be a pressure difference between the appropriate 
points separated from each other by an integer number wavelength λ. For verification, the pressure is 
measured at two points separated from each other by 4λ.  

 
The tests have shown that approximately 

at T=230 the pressure difference begins to 
grow quickly and T=335 it reaches a value of 
20.1 mm.  

In Fig.3 the results of these tests are 
given in the dimensionless form, together 
with a calculated bifurcation curve of the 
self-induced pressure gradient. The 
agreement of these results is good.  

These analyses show that the 
asymmetric solutions have the property of 
continuous dependence on the parameters of 
the problem. The calculations also show that 
the asymmetric branch of the solutions exists 
at least up to T=550.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3 Self induced pressure gradient G for the rotor WR5. 

 
Conclusions 

 
The experimental and numerical investigation presented here allows making the following conclusions: 

Unlike the classical Taylor flow, the modified Taylor flow is two-dimensional and axisymmetric even at 
small Taylor number T<<1. It has a fixed period, which is equal (or multiple) to the wavelength λ of the 
rotor surface. In the modified Taylor flow at small and moderate values T, the stationary vortical structures 
follow the symmetry of the flow region, if such symmetry is present. The stationary regimes of the modified 
Taylor flow, as a rule, keep the stability in wider range of Taylor numbers than classical Taylor flow. In the 
modified Taylor flow with the symmetric shape of internal region geometry, the asymmetric periodical 
stationary vortical structures can exists, which arises from the symmetric solution, as a result of symmetry 
breaking bifurcation at certain critical Taylor number T*. This bifurcation is accompanied by occurrence of a 
self-induced axial pressure gradient, but the net axial flux remains zero. The Navier-Stokes equations have 
asymmetric stationary periodic solutions in symmetric region with the arbitrary length H>>1. Such solutions 
exist, these are stable and they continuously depend on problem parameters in the wide range of their 
variation. The generalization of the problem for the periodic vortical flow calculation in the region with the 
large axial length includes the pressure representation as the sum of function periodic along z-axis and 
gradient member G(t)⋅z , which is unknown and should be calculated together with other dependent 
variables. 
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