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ABSTRACT

We consider the finite amplitude instability of incompressible spherical Couette flow between two con-
centric spheres of radii

���
and

�����	�
����
in the narrow gap limit, ��� �������������������� �

, caused
by rotating them both about a common axis with distinct angular velocities � �

and � �
respectively.

In this limit it is well known that the onset of (global) linear instability is manifest by Taylor vortices
of roughly square cross-section close to the equator. According to linear theory this occurs at a criti-
cal Taylor number ��� �"! # which exceeds the local value � �%$'& obtained by approximating the spheres as
cylinders in the vicinity of the equator, remarkably even as ��(*) , as shown in [1].

The weakly nonlinear extension of Soward and Jones’ results [1] is not straightforward and so Harris et
al. [2,3] focussed their attention on the case of almost co-rotation with +-, � � �.� � �/��� � �10324� � �65	� � .
In this limit the complex amplitude 7 �98;:=<>�

determining spatio-temporal modulation of the vortices is
governed by the amplitude equation?

7? < 0A@CBEDGFIHKJL8M�N8 � �PO 7 O �RQ 7 D
? � 7? 8 � : �	�S�

in which
BUTG� � � � �%$'& ��� � and

JVT + � � �65	� measure the excess Taylor number � � � � $& and angular
velocity increment + respectively, while

<
is a suitably scaled time and

8WTYXZ� � �65	�
is a stretched latitude�[X

. The linearised version of (1) is locally unstable on the range
O 8\O^]EB �65	�

, on which the preferred
frequency at given latitude is

F_JL8
. Though the system is locally unstable whenever

B
� ) , the onset of
(global) instability occurs when

B`0
B � �9! # 0UJ � D
�[0324�%J � �
. This in part determines

� � �"! # 0 � �%$& DE24� + � ��DE24� � �ba �%Fc�
the

24� � � correction is an estimate of higher order effects. The linear solution 7 Tedgfih^�	� �� 8 � DjHKJk8l�
at onset is localised near the equator over the latitudinal extent,

X�0m24� � �65	� �
, namely

8n0324�	�S�
, while

the vortex width
24� � �*��

is modified by a small factor
24� + � because of the phase factor

JL8
. Curiously,

when
Jjo �

, the unstable mode only occupies a small part of the locally unstable region of angular
extent

2�� + � , namely
8p0m24�%J �65	� �

.

The nonlinear version of (1) including the Stuart-Landau term [4] was first investigated by Hocking
and Skiepko [5]. They identified the supercritical steady finite amplitude solution that follows the initial
bifurcation and a secondary Hopf bifurcation to drifting phase solutions having the structure 7 �98;:=<>�q0dgfih^��H � <>� rs�98t�

. This forms the start of a rich bifurcation sequence unravelled in [2,3] by numerical
integration of (1). Essentially for numerically large values of

J
, typified by

Ju0wv
, it was found that the

steady state lost instability via a supercritical Hopf bifurcation to a vacilating solution. That expanded
until it led to a gluing bifurcation, glued at the undisturbed state. Following the gluing bifurcation,
waves travelling towards the equator were isolated characterised by a chevron pattern of space-time
contours. These travelling wave solutions were subcritical and could be isolated for values of

B
far

less than
B � �9! # . Indeed the system typically underwent further bifurcations, which pointed to solutions

exhibiting the underlying structure

7 �98.:=<>�x0Pdgfih^��H � <>�Ly r{z|�98V�W8^z>:=<>�Zdgfih}��H�~��q<>�b: �%�IrL�



where each amplitude function
r z �98V�n8 z :=<>�

is localised about8N0 8 z`0 �� � � �IJb��Dm~ � 8 :
separation length

� 8N0 �� �9�;�IJb�b: �%���R�
but with only a slow dependence on

<
. Each term in the series (3a) determines a pulse which exhibits the

local frequency � D ~��
, and the sum determines a pulse train. For large

J
the numerical results suggest

the existence of such pulse trains when
B

is
2��%J �=5�� �

, small compared to the onset value
B � �9! # 0324�%J � �

.
It determines � 0 � �%$& D 2���� + � � �=5�� � �9vZ�
a value, which unlike (2) tends to the local cylinder value ��� as �u(p) . At such Taylor numbers, the
latitudinal extent of local instability is

X�0 24��� +S� � �65�� � , namely
8
0 24�%J �65�� �

, while the pulse width
is
� X 0 24��� � � � + � �65�� � corresponding to

� 8m0 24�%J	� �65�� �
. The ratio of these lengths provides the

estimate
24�%J �=5�� �

for the number of pulses located in the locally unstable region.

All the calculations in [3] were undertaken with finite numerical values of
J

. So to test the pulse train
proposal, Bassom and Soward [6] developed an asymptotic theory based on the limit ��(`) at fixed
finite + (corresponding to

J�
�
) with say

Bj0UJ �=5����B
. Their strategy was to investigate the possibility

of constructing pulse train solutions in the neighbourhood of some latitude
X 0 X��W0 24��� + � � �65�� � ,

corresponding to some
8n0YJ �65�� �8��

, on an intermediate angular scale large compared to the pulse width24��� � � � + � �65�� � but small compared to the breadth
24��� +S� � �65�� � of the locally unstable region. On that

intermediate scale we can approximate
BY�w8 �

by
J �=5�� � �BU� �8 �� �u0 J �=5����B��

a constant. Then upon
writing 7 TNr|��� :��=�1dgfih^�%FIHKJ�� 5�� �8 � <>�

, where
�pT3� ��X*� X � �

and
�

are a rescaled local coordinate and
time respectively, we arrive at the modified equation? r? � 0 @�� D3H��w� O r�O �/Q rnD

? � r? � � : ���c�
in which

� T �B��
.

The steady version of (5) with

? rL� ? ��0 ) has curious properties. Its linearised version certainly has
no localised solutions and all previous attempts to find nonlinear solutions with

r! ) as
O �tO" �

have failed (Hocking private communication circa. 1980, and [7]). The possibility of pulse trains was
proposed for a related system in [8] but was not explored in the context of (5), as it was erroneously be-
lieved that their non-existence would be a consequence of the absence of isolated pulses. This negative
view was cast into doubt by the evidence in [3]. So solutions of initial value problems with the property
that

dgfih^�	��H��#��� r
is spatially periodic in

�
were sought numerically using Fourier transform methods

developed in [8]. Following the decay of transients robust pulse trains were identified with the structurer|��� :��'a%$1� 0 d !'& 5 � y ( z dgfih*) H @ F�~ D �� Q $+�-, r|���u� @ F�~ D �� Q $1�
DVd � !'& 5 � y ( z dgfih*)K�[H @ F�~ D �� Q $+�-, r|���4D @ F�~ D �� �-$ Q : �/._�

parameterised by the constant
$

which measures the distance between the pulse centres. The functionr|���|�
(
0 r � �	�0�|�

, where the star denotes the complex conjugate) characterising each pulse solves1 � r1 � � D � � D`H2�|� rj0 y(�354 z�6 354 z rs���u�879$\� rs��� �n~	$1� r � ��� � ��7 D ~^�-$1�b: ��:IrL�

where, for integer
7

,
~

,

6 354 z 0<; ���l: 7
and

~
are both odd,�l:

otherwise,

��:��R�



subject to
r  ) as

O �lO  �
. The phase shifts between neighbouring pulses evident in the structure

of (7) are crucial and lead to the curious coefficients 6 354 z in (8a). Without the phase shifts all the 6 3 4 z
would be unity, and in that simpler case we continue to believe that no solution exists as in the steady
case. Herein lies the success of the new results. We must stress however that such solutions exist over
a finite range

$ � !�� � � ��� $�� $ ���
	 � � �
dependant on

�
, provided that

� � � !���� , F� ��v ) . v , where$ � !�� � � !���� �q0 $ ���
	 � � !���� � � $ !���� , F� �_� :_�i�
.

On the one hand, the pulse train solutions appear to be robust in the sense that our time stepped nu-
merical solution with given periodicity length

$
locked on to them rapidly. On the other, we compared

our predictions with the
JV0ev

results obtained by Harris et al. [3] and found excellent qualitative and
quantitative agreement despite the fact that

J
was only moderately large. For example at

� 0 v
we

found that the pulse mean energy

����� � �F�� ���� � ��� 5	�� � 5	� O rs���^:����RO � 1 � 1 �40 �$ ���� � O r������RO � 1 � : ���c�

where � 0�� � $
(temporal period

v � ), is maximised over
$ � !�� �9vZ�! , �� F#"%$&� $'� $ ���
	 �9vZ�! , F� .�.($

at
$ , F� ���

. For a well-studied case with
� 03�� : . �

at the equator
X 0 ) , Harris et al. [3] obtained$ , F� v{F

.

From the point of view of (1), the pulse train solution (7) must be slowly modulated as
�

is a function
of latitude. Nevertheless, we may keep

$
fixed as suggested by (3). Significantly, as

�
decreases to zero

at the edge of the locally unstable region the pulse train amplitude decreases to its minimum (but finite)
value when

�
satisfies

$ ���
	 � � � 0 $
. Beyond that latitude no pulses are possible and so the vortex

amplitude collapses to zero over the pulse width
$

. Evidently our theory cannot be applied at the edge
of the pulse train. There conditions are delicate, which probably explains why the long time behaviour
of Harris et al.’s solutions generally exhibited complex behaviour. For some (but not all) equator values
of
�

a beating frequency could be identified.

Interestingly, however, in addition to the physical processes captured by (1), we identify a group velocity)�* proportional to the latitude
��X

directed away from the equator and of magnitude
24��� + � � �RO XbO +>��� �g�

,
where

+
is the viscosity. This is of exactly the same magnitude of the phase (i.e. the drift) velocity )-, of

the Taylor vortices which is also proportional to the latitude
��X

but directed towards the equator. Thus
the pulses themselves drift outwards at the group velocity. In consequence their separation

$
increases

with time, fortunately at a rate independent of position, so that the pulse train structure can remain
spatially uniform. Nevertheless, there are necessarily long time repercussions. For with

$
increasing

indefinitely, the train must either eventually collapse or undergo instability. Our belief is that, due to
the robust nature of the pulse trains, they will reemerge with

$
values which tend to maximise pulse

energy.

Our physical picture is as follows. At a given latitude
��X

there is a natural Taylor vortex frequency24��� + � � � �RO XsO +>��� � � �
. However, the realised value rather than varying continuously retains a constant

value over the pulse width
2���� � � � + � �65�� ���'�

. Under the pulse all Taylor vortices, width � �x�
, propagate

towards the equator at the same speed, the phase speed )�, based on that frequency. In view of the
uniformity of the pulse separation

$
, the frequency increment between any two neighbouring pulses is

the same
24��� + � � � � �=5�� ��+>��� � � ���

and this enables each pulse to interact coherently with its neighbours.
Significantly, the frequency increment determines a corresponding phase speed increment. This means
that the space-time chevron pattern for the vortices will exhibit dislocations half way between the pulse
centres at the point where one pulse looses dominance to its neighbour (i.e. the inclination of the wave
fronts to the

X 0 ) axis, which are constant for each pulse, decrease to a shallower angle on moving
away from the equator from one pulse to the next).



Evidently the link with both laboratory and numerical experiments is somewhat tenuous. The main dif-
ficulty faced is that we have identified behaviours on three different length and time scales, which are
most readily appreciated for the important + 0 �

case corresponding to the situation when the outer
sphere is at rest. In summary, there is the short length scale � � �

and time scale � � � � � ��+
of the vortices.

Second, there is modulation on the intermediate length scale � �=5�� ���
of the pulses for which the rele-

vant time scale � � 5�� � � � ��+
is inversely proportional to the frequency increment between neighbouring

pulses. This is the space-time range over which our analysis is valid. Third, the pulses exist and are
spatially modulated on a relatively wide locally unstable region width

24� � �65�� ���'�
, though this is still

short compared to the
24������

length associated with the distance between the pole and the equator.
The long time associated with temporal modulation caused by pulse separation due to the group ve-
locity is

24� � � 5�� � � � ��+>�
. We can only speculate on the complicated spatio-temporal evolution over these

longest scales. It would be difficult to conduct experiments at a sufficiently small � such that these scale
separations can be distinguished.

Though we have not proved that the pulse-trains persist on the longest time scales we have shown
how the basic pulse unit can support the existence of its neighbour. Indeed the essential idea is that
at every location there is a preferred frequency which increases linearly with respect to distance from
the equator. Moreover the initial value calculation for spatially periodic solutions was formulated with
the factor

dgf h^��H2�����
, as explained below (5), to accommodate that preference. Nevertheless the realised

temporally periodic forms to which the solution settles after the transients decay possess the discrete set
rather than a continuous distribution of frequencies. Each pulse is localised in the vicinity of the point
at which the frequency is preferred. Furthermore, the constant frequency jump between neighbouring
pulses is essential for their mutual resonance. The fact that the pulse-train solutions emerge naturally as
the solution to an initial value problem suggests that they are robust. Before the calculations reported in
[6] were undertaken, it was far from clear whether pulse-trains were even possible. Our demonstration of
their existence provides an affirmative answer to the long outstanding question as to whether subcritical
finite amplitude solutions can occur in the vicinity of the local critical cylinder Taylor number � �%$& .
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