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ABSTRACT

A hypersonic boundary layer on a concave surface is considered. It is supposed, that a non–dimensional
surface curvature is smallk ¿ 1, a gas is perfect, a viscosityµ has the linear dependence upon an
enthalpyh and pressure perturbations due to the boundary layer displacement thickness and the surface
curvature effect are small in comparison with the free stream pressure value. Then a boundary layer
with the characteristic thickness∆y ∼ δ ∼ M2∞/Re

1/2
∞ is described by the self–similar equations

f ′′′ + ff ′′ = 0,
h′′

Pr
+ fh′ + (f ′′)2 = 0 (1)

f(0) = f ′(0) = 0, h(0) = hw or h′(0) = 0, f ′(∞) = 1, h(∞) =
1

(γ − 1)M2∞
HereM∞ À 1 is the free stream Mach number,Re∞ = ρ∞u∞L/µ∞ À 1 is the Reynolds number,
Pr is the Prandtl number andγ is the specific heat ratio.

It is known that two–dimensional laminar boundary layer on a concave surface can lose stability if the
Görtler numberG∞ = 2kRe

1/2
∞ /M2∞ exceeds some critical value. Then extended streamwise steady

Görtler vortices are formed in a boundary layer. Below, the vortices development is investigated when
their wavelength exceeds a boundary layer thickness and the Görtler number is largeG∞ ∼ k/δ À 1.

It is supposed that the vortices occupy all boundary layer thickness and their formation generates non-
linear disturbances (for example, for the longitudinal velocity∆u ∼ u ∼ 1). Then it is obtained from
the comparison of orders of the Navier–Stokes equations convective terms that in the vortical region
with the thickness∆y ∼ δ in a centrifugal flow field there is the additional pressure perturbation
∆p ∼ kδ/M2∞, which induces the spanwise velocityw ∼ (kδ)1/2. Estimates for the vortical region
spanwise scale∆z ∼ (kδ)1/2∆x and the vertical velocityv ∼ δ/∆x are obtained from the discontinu-
ity equation, here(δ/k)1/2 ≤ ∆x ≤ 1 is the longitudinal scale of the vortical region. If∆x ∼ 1 we can
obtain the estimate for the vortical region maximal spanwise scale or the maximum vortex wavelength
in gas –∆zmax ∼ (kδ)1/2. The upper estimates show also that the interaction between the vortical
region and an external oncoming flow is absent. Therefore for the vortical region with the characteristic
scales

∆y ∼ δ, ∆z ∼ (kδ)1/2∆x,

(
δ

k

)1/2

≤ ∆x ≤ 1, ∆y ≤ ∆z ¿ ∆x

it is possible to formulate boundary–value problem for the nonlinear development of long–wave Görtler
vortices
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, ρh = 1, µ = h

u = v = w = 0, h = hw or
∂h

∂y
= 0 (y = 0); u → 1, w → 0, h → 1

(γ − 1)M2∞
(y →∞)

u = u0(y), v =
∆x

Re
v0(y), w = 0, p = −

y∫

0

ρ0u
2
0dy, ρ = ρ0(y), µ = µ0(y), h = h0(y) (x = 0)

f(x, y, z) = f(x, y, z + 2π), f = u, v, w, p, ρ, h, µ

whereRe ∼ 1 is the local Reynolds number,λ ≥ 1 is referred to a boundary layer thickness vortex
wavelength and the index ”0” corresponds to the function profiles in the undisturbed boundary layer (1)
in some sectionx0 ∼ 1.

If the longitudinal scale of the vortical region is small∆x ∼ (δ/k)1/2 ¿ 1 the spanwise scale (or the
vortex wavelength) is asymptotically equal to a boundary layer thickness∆z ∼ ∆y ∼ δ. In this case
the vortices evolution will occur in the one–dimensional parallel flow and viscous terms will negligible
in the equations (2). The subsequent linearization, the solution normal–mode approach using

F (x, y, z) = F (y)exp(βx)(sinz, cosz)

and the boundary layer vertical coordinate introduction will transform them to the ordinary differential
equation for functionV1 = V/u0 whereV is the vertical velocity
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The asymptotic structure of such vortices was considered also in [1–3].

The eigen–value problem solution (3) has shown that the first mode incrementB1 is increased with
the Mach number and the relative vortex wavelengthΛ growth, but the higher mode increments are
decrease withM∞ growth and do not depend onΛ practically. Such property of incrementB1 change
means that the first mode is separated from the higher ones when the vortex wavelength increase and
the linear development have to occur on the smaller characteristic scale∆x.

An increasing of the Mach number leads to a boundary layer heating with increasing of its thickness
δ ∼ M

3/2
∞ δf and the vortical region longitudinal scale∆x ∼ M

3/4
∞ ∆xf in comparison with the values

for a fluid boundary layer. It causes the reduction in the vortex growth rate (refereed to a characteristic
length of the order of unity)

Be ∼ B
∆x

∼ B

M
3/4
∞ ∆xf

as in this fraction the denominator change is the main.



It is obtained that the surface heating from a strongly cooled surface to an adiabatic one increases a
little the incrementB1 but the higher mode increments are increased approximately twice. However,
the surface heating increases the boundary layer thickness and the vortical region scales also. Therefore
it is unable to estimate the surface heating influence on the vortex growth rateBe.

It is obtained that the Prandtl numberPr increasing raises a little the valueB1 and does not change the
higher mode increments practically.

It is found that the vortex growth rateBe ∼ B/∆x ∼ B/Λ decreases withΛ growth, as in this fraction
the denominator change is the main also.

It is shown from the eigenfunction profilesV that with Λ increasing their attenuation occurs on the
increasing distances from a surface.

It is considered now the vortices development when they induce only small disturbances (∆u ¿ u ∼ 1,
for example) in the boundary layer main part with the thickness∆y ∼ δ and nonlinear disturbances
(∆u ∼ u ¿ 1) in its near–wall part with the thickness∆y/δ ¿ 1. Assuming that the friction–stress
and the heat–flux preserve their orders of magnitude in the boundary layer near–wall part it is possible
to get the profiles of the longitudinal velocityu and the enthalpyh

u ≈ y

δhw
, h ≈ hw +

y

δhw
at

(y

δ

)1/2
¿ hw ≤ 1 (4)

Supposing, that the flow in the vortical region near wall part (region 3) is viscous, three–dimensional
and nonlinear it is possible to obtain from the Navier–Stokes equations the estimates for its thickness
∆y ∼ hwδ∆x1/3 and the pressure perturbation∆p ∼ ∆z2/M2∞hw∆x4/3.

In the vortical region main part (region 2) with the thickness∆y ∼ δ the pressure perturbation is
created by the centrifugal effects∆p ∼ kδ∆u/M2∞. As it should have the same order of magnitude
as in the region 3 it is possible to obtain estimates for the longitudinal velocity perturbation∆u ∼
∆z2/hw∆x4/3kδ and for the vertical velocityv ∼ ∆z2/hw∆x7/3k.

The pressure perturbation grows in the order of magnitude in region 2 and on its outer edge is∆p ∼
∆z2/hw∆x4/3. Such pressure perturbation induces the vertical velocityv ∼ ∆z/hw∆x1/3 in the
vortical region outer part (region 1) with the thickness∆y ∼ ∆z À δ (it is the disturbed part of an
uniform oncoming flow).

The obtained estimates show, that the interaction of the regions 3 and 2 or the regions 2 and 1 is realized
at ∆z ∼ hwk1/2δ1/2∆x5/6 or at∆z ∼ k∆x2. When these conditions are carried out simultaneously
it is that∆x ∼ h

6/7
w (δ/k)3/7, ∆z ∼ h

12/7
w k1/7δ6/7 and the triple–deck structure with an interaction of

the vortical flow is realized. Then the next boundary–value problem is obtained for the region 3
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u = v = w = 0 (y = 0); u → y + γ1D, w → 0 (y →∞)

u → y, v, w, p, D → 0 (x → −∞); p = γ2P (Y = 0) + D

u, v, w(x, y, z) = u, v, w(x, y, z + 2π); p,D(x, z) = p,D(x, z + 2π)



where the parametersγ1 andγ2 define an interaction measure of the regions 3 and 2 and the regions 2
and 1 accordingly. The boundary layer edge is moved on the region 3 displacement thicknessD(x, z)
and it induces the pressure distributionP (x, Y, z), which is determined from the solution of a wave
boundary–value problem for region 1
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(Y = 0); P (x, Y, z) = P (x, Y, z + 2π) (6)

where the parameterγ3 defines the property of wave disturbances propagation. Subsequent boundary–
value problem (5) linearization and using the normal–mode solution representations allows to reduce it
and (6) to the ordinary differential equations system, for which it is possible to get a dispersion ratio

γ2β
2

(1 + γ3β2)1/2
− 3γ1Ai′(0)β5/3 = 1

It differs from the appropriate expression for a fluid [4,5] only by the parameterγ3 presence. The
estimates show, thatγ3 ∼ h

12/7
w . Therefore at surface cooling the wave disturbances extending (6)

accepts the fluid character, the dispersion ratio is transformed to the fluid kind, the incrementβ does
not depend any more onhw and the transformed to characteristic length∼ 1 vortex growth rate
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is increased due to the surface enthalpyhw and the boundary layer thicknessδ reduction. Thus it is
analytically shown, that the surface cooling increases the long–wave Görtler vortex growth rate.
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