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Three-dimensional stationary structure of the flow over a backward-facing step is observed
experimentally showing a periodicity in the spanwise direction., with longitudinal vortices. A local
Rayleigh discriminant and a local Görtler number are computed from numerical simulations. It is
shown that the observed instability is consistent with a centrifugal instability raising just downstream
the recirculation zone.

1. Introduction

We are generally interested in the origin of the three-dimensionality occurring in separated flows
and this communication focuses on experimental work about stationary three-dimensional aspect of
the flow over a backward-facing step.

The backward-facing step is one of the simplest geometry to study the phenomenon of separation
in flows. As a major benchmark for two-dimensional numerical simulations the backward-facing step
has been the subject of many experimental [1] and numerical investigations [2]

Only few studies exhibit the three-dimensional aspects of this flow, especially in the steady
regime. Armaly et al. [1] and Williams & Baker [3] focused on the side-wall effects experimentally and
numerically. More recently linear stability analysis of Barkley et al.[4], based on numerical
simulations, shows that the stationary two-dimensional flow over a backward-facing step is not stable
above a certain Reynolds number. They actually predict a stationary three-dimensional intrinsic
instability.

2. Experimental set up

The flow is produced by gravity in a horizontal water tunnel. The test channel has a cross-section
of 10*15 cm_ and a total length of 82 cm, which allows visualizations and measurements far
downstream. The mean flow velocity can range from 0.2 to 20 cm.s-1. The step geometry is shown in
Figure 1; it is composed of a ramp of angle 9.5° upstream a backward-facing step of height h. The
Reynolds number is based on the step height h and the maximum velocity of the step edge profile,
U0. With this definition the Reynolds number ranges from 10 to 300 in the present study.

The flow is visualized by means of Laser induced fluorescence  (LIF) in different planes x = cst
and z = cst. The dye injection is performed in the upstream boundary layer through 50 holes of 0.7
mm of diameter. The velocity field is measured with a PIV set-up in different planes z = cst.

Figure 1. Experimental set-up for the configurations with the 1 cm high step
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3. Experimental results

The velocity profile at the step edge, in the plane of symmetry,  is not a Poiseuille flow but a flat
profile with about a 1 cm thick boundary-layer. In the recirculation zone downstream the step, the
velocities are very low compared with those of the mean flow velocity. The separation surface is then
submitted to a strong shear. For higher Reynolds numbers, the flow becomes unstationary; the
separation surface is subjected to shear-layer instabilities above a critical Reynolds number (Rc = 313
for h =  1 cm). The present study is only concerned by the stationary regime.

The recirculation length is obtained from the PIV measurements  by measuring the distance
between the step edge and the point of reattachment on the bottom wall. This point is characterized
by a zero longitudinal velocity in the extreme vicinity of the bottom wall. The Figure 2(a) represents
the recirculation length in the plane z = 0 obtained with the 1 cm high step versus the Reynolds
number. In order to quantify the topology of the separated zone, we perform several measurements of
the reattachment length in the spanwise direction (corresponding to different PIV planes z = cst).

Figure 2. Non-dimensional recirculation length for the 1 cm high step deduced from PIV
measurements: (a) measurements in the symmetry plane z  =0 versus the Reynolds number; (b)

measurements at Re =100 versus z.

The recirculation length versus the spanwise coordinate z is plotted in Figure 2(b). These
measurements made at Re = 100 indicate a strong three-dimensional effect since the recirculation
length ranges from 1.5h to 7h. On both side of the channel (z < -70mm and z > 70 mm), we observe a
side-wall effect similar to the one described by Armaly et al. [1] and later  called wall-jets by Williams
& Baker [3]. In the centre part of the channel ( -50 < z < 50), we can observe a spanwise oscillation of
the recirculation length with a wavelength of about 3 cm.

Figure 3. Visualization of the flow in the plane x=25h at Re=100 with the 1 cm high step. The
flow is coming in the direction of observation

We performed LIF visualizations in the transversal planes (x= cst). A clear periodic spanwise
structure of the flow is observable -Figure 3-. The dye, firstly homogenously injected, separates into
five patches for the small step and into five mushroom-like vortices for the big step. These structures
reveal the presence of counter-rotating longitudinal structures. We observed this kind of spanwise
structures for lower and higher Reynolds numbers in a range of 20 to 200. We were then never able
to observe any threshold. Actually, these structures always appear after a very long time (typically 30
minutes) compared to the advection time of the dye to pass above the separated region (1 minute).
The disturbance of the velocity field induced by the longitudinal structures should then be very low
compared to the basic flow.

The spanwise wavelength corresponds satisfactorily to the spanwise wavelength observed in
Figure 2(b) for the reattachment length. We find that the wavelength does not depend on the step
height. We checked the influence of the upstream ramp on the flow using an experimental
configuration without step: the dye remains homogenously distributed at the bottom wall.
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4. Centrifugal instability

We study a possible mechanism for the origin of the three-dimensional structure of the flow. Our
strategy is to study the stability of a two-dimensional flow obtained by direct numerical simulation
on the same geometry as the experiment..

As the Reynolds numbers are very low, we perform direct numerical simulation DNS of the flow.
The numerical procedure is based on a control volume, finite difference method. The equations are
solved using the SIMPLE (Semi Implicit Method for Pressure Linked Equation) algorithm with an
iterative line-by-line matrix solver. We use a structured mesh with a very fine grid so that it can be
used for a rather wide range of Reynolds number. The mesh is refined in the boundary layer regions,
in the separation region, and in the recirculation bubble  The smallest resolution in the vertical
direction  is 0.25 mm. The total grid size is 43 000 cells.

We computed a local Rayleigh determinant, corresponding to a local criterion for a potential
centrifugal instability as Mutabazi et al.[5] and Sipp & Jacquin [6]. The Rayleigh discriminant F ,
computed numerically from the results of the 2D numerical simulation, is obtained from the
expression:
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where U(x,y) is the module of the velocity, w(x,y) is the vorticity and R(x,y) is the local algebraic
radius of curvature that can be expressed [6] from the velocity field as follows:
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where (u,v) are the components of the velocity field and (ax,ay) the components of the convective
acceleration  (u.—)u

Figure 4. Contour plot of the Rayleigh discriminant F (black lines) superimposed with the
streamlines obtained from the numerical simulation (grey lines) at Re=100. Three potentially
unstable regions appear: each minimum is displayed with a cross and the contour plot around

corresponds to its half-minimum value.

The results of the computation are plotted in the Figure 4. We can distinguish three regions of
high curvatures where the sign of F   is negative and the flow at these points (x,y) is potentially
unstable:  the region in the front of the ramp I, the region in the recirculation zone II and finally the
region just above the reattachment location III. The intensity of F is measured as the local minima. It
is -0.0056 in the region III, -0.0027 in II and -0.0401 in region I. The spatial extension is measured as
the contour plot at half the minimum. The largest extension corresponds to region III, the
intermediate to region I, the smallest to region II.

The Rayleigh criterion gives a necessary condition for the centrifugal instability but it does not
take into account the stabilizing viscosity effect. The Görtler number actually compares the curvature
effects with the viscosity effects:
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where n is the kinematic viscosity of the fluid and d is the characteristic size of the unstable zone.
When the Görtler number is high enough (above a threshold that has to be defined) the curvature
effect dominates the viscosity effects and the flow is unstable.

From the numerical simulation we are able to evaluate the Görtler number G at the three
locations of potential instability exhibited in Figure 4. We define the characteristic size of each
unstable zone d as the width of the contour of the half-minimum value of the Rayleigh criterion.



The Figure 5 presents the results of the evaluation of the Görtler number in these three regions
versus the Reynolds number. We observe that the largest Görtler number is not found in region I
where the Rayleigh criterion is the strongest, but in region III. Moreover, in region I, the Görtler
number saturates around 75 while it is still increases in region III up to 400. In region II, the Görtler
number remains, in comparison, very small and never exceeds 15.

Figure 5. Estimated Görtler number for each potentially unstable region versus the Reynolds number
(crosses for region I, filled circles for region II and empty circles for region III).

5. Discussion

A relevant fact is that we do not observe instability when the geometry of the experiment is
modified and the step is eliminated. So, the region I, with the ramp alone, is not modified and we can
then deduce that region I is stabilized by the viscosity. As a result the value of the Görtler number in
the region I is below the threshold of stability. It implies that region II should be stable since the
Görtler number is always smaller than this reference value. On the other hand the Görtler number of
region III is always larger than the Görtler number of region I, so it is then plausible that region III
could be unstable through centrifugal instability.

Our experiment is the first to show a spanwise periodicity of the flow. Previous works [1,3] report
sidewall effects but not intrinsic three-dimensional instability. With the support of direct numerical
simulation we show that the observed instability is consistent with a centrifugal instability raising just
downstream the recirculation zone.
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