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We study the nonlinear mode competition of various spiral instabilities in magnetised
Taylor-Couette flow. The resulting finite-amplitude mixed-mode solution branches are
tracked using the annular-parallelogram periodic domain approach developed by Deguchi
& Altmeyer (2013). Mode competition phenomena are studied in both the anti-cyclonic
and cyclonic Rayleigh-stable regimes. In the anti-cyclonic sub-rotation regime, with the
inner cylinder rotating faster than the outer, Hollerbach, Teeluck & Rüdiger (2010) found
competing axisymmetric and non-axisymmetric magneto-rotational linearly unstable
modes within the parameter range where experimental investigation is feasible. Here
we confirm the existence of mode competition and compute the nonlinear mixed-mode
solutions that result from it. In the cyclonic super-rotating regime, with the inner cylin-
der rotating slower than the outer, Deguchi (2017) recently found a non-axisymmetric
purely hydrodynamic linear instability that coexists with the non-axisymmetric magneto-
rotational instability discovered a little earlier by Rüdiger, Schultz, Gellert & Ste-
fani (2016). We show that nonlinear interactions of these instabilities give rise to rich
pattern-formation phenomena leading to drastic angular momentum transport enhance-
ment/reduction.

1. Introduction

The objective of this study is the nonlinear interactions between various instabil-
ity modes occurring in magnetised Taylor-Couette flow, i.e. the fluid flow between
independently rotating concentric cylinders. The purely hydrodynamic Taylor-Couette
flow, in the absence of magnetic field, has long served as a theoretical, numerical and
experimental test bench for the study of centrifugal and shear instability mechanisms.
Keeping the outer cylinder stationary, Taylor (1923) observed that the flow is destabilised
by purely hydrodynamic axisymmetric perturbations at a certain critical speed of the
inner cylinder. The balance between rotational and shear effects can be modified by
further introducing a rotation of the outer cylinder. The independent variation of the
inner and outer cylinder speeds results in a rich diversity of secondary nonlinear flow
patterns, as reported by Andereck et al. (1986). The stability and nonlinear states of
Taylor-Couette flow are commonly studied in the Ri–Ro parameter space schematically
depicted in figure 1, where Ri and Ro are the Reynolds numbers associated with the
inner and outer cylinder speeds, respectively. In accordance with the symmetries of the
problem, the Ri-Ro parameter plane is invariant to π-rotation about the origin, such
that only the upper half plane needs to be explored. The right/left half of the semi-plane
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Figure 1. Ri–Ro parameter space representation of Taylor-Couette flow. The plane is divided
into the counter-rotation and the co-rotation regimes. This latter is further subdivided into
sub-rotation and super-rotation by the solid-body rotation line defined by equal angular speed
of both cylinders. The shaded regions denote inviscid instability of circular Couette flow
following the Rayleigh criterion. The portion of the subrotation regime comprised between the
Rayleigh and solid-body rotation lines goes by the name of anti-cyclonic regime (also called
Quasi-Keplerian), while the rest of the plane is called cyclonic.

corresponds to cylinders rotating in the same/opposite direction (i.e. co-rotation/counter-
rotation). The first quadrant (co-rotation regime) is divided into sub-rotation and super-
rotation by the solid-body rotation line (equal angular speed of the cylinders), depending
on whether the outer cylinder rotates slower or faster than the inner. For any given
speed of the outer cylinder, Rayleigh’s inviscid stability criterion establishes that circular
Couette flow remains centrifugally stable to infinitesimal axisymmetric perturbations as
long as the inner cylinder is steady or in co-rotation up to a certain speed, delimited
by the so-called Rayleigh line (the wedge-shaped white region in figure 1 comprised
between the Rayleigh line and the horizontal Ri = 0 line). Taking viscous effects and
non-aximsymmetric perturbations into account affects the stability boundaries, but it
is widely accepted that the Rayleigh line acts as a fairly approximate threshold below
which circular Couette flow remains the only stable state, given that no experimental or
numerical evidence of nonlinear flow states has been found to date (see Ji et al. 2006;
Edlund & Ji 2014; Lopez & Avila 2017). Note however that no first-principle theory
has been advanced so far to support the nonlinear hydrodynamic stability in the quasi-
Keplerian flow regime (see Balbus 2017, for a summary on the matter).

The Rayleigh-stable region is further subdivided into the anti-cyclonic and super-
rotation cyclonic regimes by the solid body rotation line, corresponding to both cylinders
rotating at the same angular speed. Immediately to the right of the Rayleigh line
and all the way down to solid rotation, (co-rotation and sub-rotation) is said to be
anti-cyclonic and laminar Couette flow is allegedly linearly stable. This region is of
utmost astrophysical interest, since Keplerian rotational flow, a vastly used model for
accretion disks, is precisely anti-cyclonic. The rate at which angular momentum is radially
transported in astrophysical accretion disks observation requires the flow to be turbulent.
This has motivated a wealth of studies (see the review paper Rüdiger et al. (2018a))
exploring magneto-rotational instabilities (henceforth referred to as mri) as a possible
alternative source for turbulence in a flow that appears otherwise to always revert back to
laminar in the absence of magnetic fields. The pioneering works by Velikhov (1959) and
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Chandrasekhar (1960) showed that a uniform external magnetic field in the axial direction
indeed destabilises the anti-cyclonic regime, while the importance of the instability in the
astrophysical context was noted for the first time by Balbus & Hawley (1991). This type
of mri is nowadays called the standard type of mri, smri for short.

A different approach was nevertheless taken in the first experimental observation of the
mri (Stefani et al. 2006). The smri is actually very difficult to reproduce in liquid metal
experiments where the magnetic Prandtl number Pm is very small, as magnetic induction
is essential in this case. As shown by Goodman & Ji (2002), the critical Reynolds number
of the smri is inversely proportional to the magnetic Prandtl number Pm for small
Pm, meaning that the cylinders must rotate at an extremely fast rate to trigger the
smri in the experimental apparatus. The crux in reproducing a mri at relatively small
Reynolds numbers was the numerical finding by Hollerbach & Rüdiger (2005) that, when
both azimuthal and axial external magnetic fields are applied simultaneously, the critical
Reynolds number saturates at a finite value even in the inductionless limit of Pm → 0.
Soon after the discovery of this helical mri (henceforth referred to as hmri), growth of
axisymmetric perturbations was confirmed in the series of promise experiments (Stefani
et al. 2006, 2007; Rüdiger et al. 2006). Later on, Hollerbach et al. (2010) found that non-
axisymmetric modes arise instead when purely azimuthal magnetic fields are considered
in the sub-rotation regime just below the Rayleigh line. They further showed that these
so-called azimuthal magneto-rotational instability (amri) modes persist when a small
axial magnetic field is added to the predominantly azimuthal field, thus implying that
they could potentially interact with the axisymmetric hmri mode. In fact, when the
strength of the azimuthal and axial external magnetic fields are suitably adjusted, the
critical Reynolds numbers for the axisymmetric and non-axisymmetric modes become
comparable. The competition of these modes may yield rich nonlinear flow patterns at
this particular hmri regime. This nonlinear mode interaction is the first subject we will
tackle in this study.

In the early years of the pattern-formation theoretical studies in purely hydrodynamic
Taylor-Couette flow, weakly nonlinear analysis was employed to investigate mode in-
teractions among multiple linear instability modes near criticality (e.g. Davey et al.
1968; Iooss 1986; Golubitsky et al. 1988; Chossat & Iooss 1994). The simplest mode
interaction occurs between two identical but mutually-symmetric, with respect to an
axial reflection, spiral modes. In this case, the fully nonlinear mixed-mode solution
can be computed in numerical simulations using a periodic axial-azimuthal orthogonal
domain (Tagg et al. 1989). However, when the interacting spirals are not mutually
symmetric and have a different absolute pitch, as are indeed the two mode interactions
studied here, the numerical computation of the fully nonlinear mixed mode is no longer
straightforward. The periodic computational domain must fit an integer number of both
constituent modes in order to faithfully reproduce the mixed mode, which may lead to
unaffordably large domains. This may be feasible in some occasions (Pinter et al. 2006;
Avila et al. 2006; Altmeyer & Hoffmann 2010), but it is at the very least inefficient from
a computational point of view, if not altogether prohibitive. A convenient methodology
for the computation of general mixed-mode states was provided by Deguchi & Altmeyer
(2013), who realised that the infinite annulus might be subdivided into a regular tiling of
a suitable parallelogram-shaped periodic box that can be chosen optimally small for any
flow pattern arising from nonlinear interaction of two modes, as we are considering here.
Extension of the nonlinear code to magnetised problems might prove highly valuable
to the study of mri, as nonlinear simulations in cylindrical/annular domains have only
recently been undertaken (Guseva et al. 2015, 2017).

In the second half of this paper we shall also study the nonlinear mode competitions
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occurring in the other Rayleigh stable regime, i.e. the super-rotation regime seen in
figure 1. Recently, magnetohydrodynamic instabilities in this regime have attracted much
attention as they are thought to be relevant for turbulence generation in a part of Sun’s
tachocline. In this second subject we shall investigate the nonlinear competition of two
recently discovered linear instability modes.

For the purely hydrodynamic problem, nonlaminar flow patterns in the inviscidly
stable super-rotation regime were first reported several decades ago in Taylor-Couette
experiments by Wendt (1933) and Coles (1965), but at the time it was not clear whether
the instability was legitimate or an end-wall effect induced by the cylinder lids. Advance
in computational power eventually allowed to numerically confirm the existence of
subcritical spiral turbulence and intermittency found experimentally (Van Atta 1966;
Prigent et al. 2002; Hegseth et al. 1989; Burin & Czarnocki 2012) in the counter-rotation
regime in the absence of end-wall effects (Meseguer et al. 2009; Dong 2009). Nonlinear
coherent states have indeed been followed into the super-rotation regime, crossing the
Ri = 0 boundary, as illustrated by the computation of the first rotating wave in
cyclonic super-rotation (Deguchi, Meseguer & Mellibovsky 2014) and by direct numerical
simulation (Ostilla-Monico, Verzicco & Lohse 2016). All non-trivial flow patterns hitherto
observed in super-rotation are finite amplitude and highly nonlinear, such that they by no
means belie the widely assumed linear stability of super-rotating hydrodynamic Taylor-
Couette flow, in view of countless numerical studies of the neutral curve (see the review
article by Grossmann et al. (2016)). The recent unexpected discovery by Deguchi (2017)
of a linear instability in the super-rotation regime came therefore as a big surprise.
Considering non-axisymmetric perturbations and a relatively long axial wavelength were
key ingredients to the finding. This instability mode of a purely hydrodynamic nature,
hereafter called the d17 mode, is the first of the two modes we shall consider in our
second mode competition study.

The other mode at play inherently originates from the mri mechanism and is called
the super-amri (Rüdiger, Schultz, Gellert & Stefani 2016, 2018b), where the prefix super
refers to the super-rotation regime. This mode belongs, along with the usual forms of
hmri and amri for sub-rotation, to the class of inductionless mri. It has long been known
that mri is not easily triggered in the super-rotation regime for the axisymmetric case. For
ideal fluids, Velikhov’s condition states that the axial magnetic field cannot destabilise
this regime (Velikhov 1959), while according to Michael’s condition (Michael 1954), an
azimuthal field can only be destabilising provided its modulus increases outwards at a
sufficiently fast rate. Moreover, when the azimuthal magnetic field is current-free, it can
be formally shown that axisymmetric mri are impossible in spite of the diffusive effect
(Herron & Soliman 2006). A breakthrough regarding instability in the cyclonic super-
rotation regime is due to Stefani & Kirillov (2015), who pointed out that for sufficiently
narrow gaps the non-axisymmetric instability could be continued into the super-rotation
regime using the so-called local approximation and the inductionless limit (Pm → 0).
However, the existence of the super-amri was not conclusive at this stage given that a
local approximation does not always necessarily provide accurate insight into the global
problem. Soon after, conclusive numerical evidence of the super-amri was reported by
Rüdiger et al. (2016, 2018b), who concluded that the destabilisation seems to occur for
fairly arbitrary magnetic field profiles as long as the flow is double-diffusive, i.e. Pm 6= 1.

The paper is organised as follows. Section §2 formulates the problem based on the
inductionless limit of the magneto-hydrodynamic equations. The section addresses in
detail the numerical discretization of the equations in annular-parallelogram periodic
domains and, in particular, describes the Newton solver for the computation of nonlinear
mixed-mode travelling waves using the transformed coordinate system and a suitable
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co-moving reference frame. Section §3 is devoted to the anti-cyclonic regime. The helical
magnetic field is imposed to find the nonlinear mixed-mode solutions that arise from the
mode competition advanced by Hollerbach et al. (2010). The first part of section §4 deals
with the interaction between the classical non-axisymmetric and the d17 modes in purely
hydrodynamic counter-rotating Taylor-Couette flow. In the second half of the section we
shall see how an imposed azimuthal magnetic field alters the nature of this interaction.
Finally, in section §5, we briefly summarise the results and present concluding remarks.

2. Formulation of the problem

Consider an electrically conducting fluid of density ρ∗, kinematic viscosity ν∗, and
magnetic diffusivity η∗, confined between two concentric cylinders of inner and outer
radii r∗i and r∗o , independently rotating at angular speeds Ω∗i and Ω∗o , respectively. In
addition, the fluid is subject to the action of a magnetic field of typical strength B∗0 .
Throughout the paper we use the length d∗ = r∗o − r∗i , time d∗2/ν∗, velocity ν∗/d∗, and
magnetic field ν∗

√
ρ∗µ∗/d∗ scales for non-dimensionalisation, where µ∗ is the magnetic

permeability. As a consequence of using the viscous time scale, the Reynolds numbers
are absorbed into the expression for the base state flow fields and disappear form the
non-dimensional equations for the perturbation. The key parameters of the flow are the
radius ratio η, the inner Ri and outer Ro Reynolds numbers, along with the magnetic
Prandtl number Pm, and the Hartmann number H:

η =
r∗i
r∗o
, Ri =

Ω∗i r
∗
i d
∗

ν∗
, Ro =

Ω∗or
∗
od
∗

ν∗
, Pm =

ν∗

η∗
, H =

B∗0d
∗

√
ρ∗µ∗η∗ν∗

. (2.1)

The non-dimensional external magnetic field is proportional to P
−1/2
m H. The reason for

using H is that we will consider the so-called inductionless limit Pm → 0 where H is
typically fixed as a constant.

Non-dimensionalisation of the velocity v = uer + veθ + wez and magnetic B =
Aer + Beθ + Cez fields, expressed here in cylindrical coordinates (r, θ, z), yields the
incompressible viscous-resistive mhd equations

∂tv + (v · ∇)v − (B · ∇)B = −∇p+∇2v, (2.2a)

∂tB + (v · ∇)B− (B · ∇)v = P−1m ∇2B, (2.2b)

∇ · v = ∇ ·B = 0, (2.2c)

where p is the total pressure and t is time. Equation (2.2a) expresses momentum conser-
vation, while equation (2.2b) is the induction equation. Equations (2.2c) correspond to
continuity and Gauss’ law. Along the cylinder walls at radii

ri =
η

1− η
, ro =

1

1− η
, (2.3)

we assume no-slip and perfectly insulating boundary conditions. In our formulation, the
velocity and magnetic fields are decomposed into the base and the perturbation flows
following

v = vb(r)eθ +Gwp(r)ez + ṽ(r, θ, z, t), (2.4a)

B = P−1/2m H{Bb(r)eθ + Cb(r)ez}+ B̃(r, θ, z, t), (2.4b)

where the tilde denotes perturbation quantities. The pressure perturbation is therefore
written as p̃. Here vb(r) = Rsr + Rpr

−1 is the laminar Couette flow solution, with
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coefficients.

Rs =
Ro − ηRi

1 + η
, Rp =

η−1Ri −Ro
1 + η

r2i , (2.5)

where the subscripts denote the solid-body rotation (s) and the potential (p) components
of the flow. External magnetic mechanisms induce the base magnetic fields Bb(r) and
Cb(r), which will be duly introduced in (3.1) and (4.1) for the two types of predominantly
azimuthal fields that will be considered throughout the paper.

We will assume further that there is no axial net mass flux. This is accomplished by
imposing an external instantaneously adjustable axial pressure gradient that induces the
well-known base annular Poiseuille flow profile

wp(r) = (r2 − r2i ) ln ro + (r2o − r2) ln ri − (r2o − r2i ) ln r. (2.6)

The product Gwp in (2.4a) represents the axial flow induced by the external pressure
gradient, whose strength is measured by the coefficient G. That coefficient is a time-
dependent additional unknown in the constant mass flux problem. For travelling wave
states G is merely a constant. Moreover, it is easy to show that when the flow possesses
some symmetry in z, G must vanish.

For liquid metals used in laboratory experiments Pm is very small (10−5 ∼ 10−7). It
is therefore reasonable to apply the inductionless limit approximation Pm → 0 to the
governing equations (see Davidson 2017, for example). The magnetic field perturbation is

rescaled as b̃ = P
−1/2
m H−1B̃ and the size of the variables ṽ, b̃, p̃ and Ri, Ro, H are fixed

as O(P 0
m) quantities during the limiting process. The resulting leading-order equations

are (∂t + r−1vb∂θ +Rpwp∂z)ũ− 2r−1vbṽ
(∂t + r−1vb∂θ +Rpwp∂z)ṽ + r−1(rvb)

′ũ
(∂t + r−1vb∂θ +Rpwp∂z)w̃


−H2

 (r−1Bb∂θ + Cb∂z)ã− 2r−1Bbb̃

(r−1Bb∂θ + Cb∂z )̃b+ r−1(rBb)
′ã

(r−1Bb∂θ + Cb∂z)c̃

+ (ṽ · ∇)ṽ = −∇p̃+∇2ṽ, (2.7a)

−

 (r−1Bb∂θ + Cb∂z)ũ
(r−1Bb∂θ + Cb∂z)ṽ − r(r−1Bb)′ũ

(r−1Bb∂θ + Cb∂z)w̃

 = ∇2b̃, (2.7b)

along with the solenoidal conditions ∇ · ṽ = ∇ · b̃ = 0. The time derivative drops
out from the induction equations on account of applying the inductionless limit, and
(2.7b) becomes a mere linear system linking the velocity and the magnetic field. It can
thus be used, as will be shown shortly, to eliminate the magnetic perturbation from the
momentum equation (2.7a).

2.1. Spectral discretisation on a parallelogram domain

We shall be looking here for nonlinear travelling wave solutions of the above result-
ing equations. The hydrodynamic and magnetic perturbation fields ṽ and b̃ are both
solenoidal, so they admit a toroidal-poloidal decomposition of the form

ṽ(r, θ, z, t) = eθv(r) + ezw(r) +∇×∇× {erφ(r, θ, z, t)}+∇× {erψ(r, θ, z, t)},(2.8a)

b̃(r, θ, z, t) = ∇×∇× {erf(r, θ, z, t)}+∇× {erg(r, θ, z, t)}, (2.8b)

where v(r) and w(r) are the azimuthal and axial components, respectively, of the mean
velocity field. It can be easily shown that no mean magnetic field can be generated in the
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Figure 2. Sketch of the parallelogram domain introducing the new variables (ξ1, ξ2) that
replace the usual azimuthal and axial coordinates (θ, z).

inductionless limit. The poloidal and toroidal potentials φ, f and ψ, g introduced in (2.8a)
and (2.8b) uniquely determine the physical hydrodynamic and magnetic perturbation

fields ṽ and b̃, except for the obvious gauge freedom (addition of a constant).

The coherent flows addressed in this work are mixed modes resulting from the nonlinear
interaction of pairs of spiral waves propagating in the (θ, z)-plane. Following Deguchi &
Altmeyer (2013), we introduce the two phase variables

ξ1 = m1θ + k1z − c1t, ξ2 = m2θ + k2z − c2t, (2.9)

describing the wavefronts of the two interacting spirals, which propagate at speeds c1
and c2, and whose azimuthal and axial wavenumbers are the integer (m1,m2) and real
(k1, k2) constant pairs, respectively. Travelling mixed modes resulting from the nonlinear
interaction of spiral modes of the form given by (2.9) are naturally represented on doubly
2π-periodic parallelogram domains of the form

(r, ξ1, ξ2) ∈ [ri, ro]× [0, 2π]× [0, 2π], (2.10)

unwrapped and outlined in figure 2 for any given value of the radial coordinate. Straight-
forward algebraic manipulation shows that any function of ξ1, ξ2 can also be written in
terms of θ − cθt and z − czt with

cθ =
k2c1 − k1c2
m2k1 −m1k2

, cz =
m2c1 −m1c2
m2k1 −m1k2

. (2.11)

The solutions sought are therefore travelling waves propagating both azimuthally and
axially with the phase speeds cθ and cz just given, respectively.

The initial-boundary value problem (2.7a)-(2.7b) is reformulated in the new phase
variables assuming 2π-periodicity of the toroidal and poloidal potentials introduced in
(2.8a)-(2.8b)

[φ, ψ, f, g](r, ξ1 + 2π, ξ2) = [φ, ψ, f, g](r, ξ1, ξ2 + 2π) = [φ, ψ, f, g](r, ξ1, ξ2). (2.12)
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The potentials are then discretised using spectral Fourier expansions of the form

φ(r, ξ1, ξ2) =
∑
n1,n2

φ̂n1n2(r) ei(n1ξ1+n2ξ2), ψ(r, ξ1, ξ2) =
∑
n1,n2

ψ̂n1n2(r) ei(n1ξ1+n2ξ2),(2.13a)

f(r, ξ1, ξ2) =
∑
n1,n2

f̂n1n2(r) ei(n1ξ1+n2ξ2), g(r, ξ1, ξ2) =
∑
n1,n2

ĝn1n2(r) ei(n1ξ1+n2ξ2),(2.13b)

where the Fourier radial functions φ̂n1n2(r), ψ̂n1n2(r), f̂n1n2(r), and ĝn1n2(r) are iden-
tically zero for n1 = n2 = 0. For n1 6= 0 or n2 6= 0, these radial functions are suitable
expansions of modified Chebyshev polynomials satisfying homogeneous no-slip boundary
conditions at the inner and outer cylinder walls

φ = ∂rφ = ψ = v = w = 0. (2.14)

The hydrodynamic radial functions are thus

φ̂n1n2
(r) =

∑
l

X
(1)
ln1n2

(1− y2)2Tl(y), ψ̂n1n2
(r) =

∑
l

X
(2)
ln1n2

(1− y2)Tl(y), (2.15a)

v(r) =
∑
l

X
(1)
l00(1− y2)Tl(y), w(r) =

∑
l

X
(2)
l00(1− y2)Tl(y), (2.15b)

where Tl(y) is the lth Chebyshev polynomial and y ≡ 2(r − ri) − 1 ∈ [−1, 1] is
the rescaled radial coordinate. Similarly, the magnetic radial functions are expanded
employing Chebyshev polynomials modified to satisfy perfectly insulating conditions

f̂n1n2(r) =
∑
l

X
(3)
ln1n2

{
(1− y2)Tl(y) + αln1n2 + βln1n2y

}
, (2.16a)

ĝn1n2(r) = γn1n2(r)f̂n1n2(r) +
∑
l

X
(4)
ln1n2

(1− y2)Tl(y), (2.16b)

where a detailed description of the coefficients αln1n2
, βln1n2

, and of the function γn1n2
(r)

can be found in Appendix A.
For computational purposes, the Fourier-Chebyshev expansions (2.15a - 2.16b) are

truncated at l = L, |n1| = N1 and |n2| = N2. After substituting the truncated expansions
into system (2.7a - 2.7b), these are then evaluated at the Chebyshev nodes

y = cos

(
l + 1

L+ 2
π

)
, (l = 1, . . . , L). (2.17)

This procedure leads to a system of nonlinear algebraic equations of the form

0 = L1

[
X

(1)
ln1n2

X
(2)
ln1n2

]
+H2L2

[
X

(3)
ln1n2

X
(4)
ln1n2

]
+ [X

(1)
ln1n2

, X
(2)
ln1n2

]N

[
X

(1)
ln1n2

X
(2)
ln1n2

]
, (2.18a)

L3

[
X

(1)
ln1n2

X
(2)
ln1n2

]
= L4

[
X

(3)
ln1n2

X
(4)
ln1n2

]
. (2.18b)

Here L1,L2,L3,L4 are matrices, and N is a third-order tensor, whose form is unchanged
from the purely hydrodynamic case. Isolating the magnetic unknowns by solving the
linear system (2.18b) and substituting into (2.18a) yields a nonlinear system of equations

for the hydrodynamic unknowns X
(1)
ln1n2

and X
(2)
ln1n2

0 = (L1 +H2L2L−14 L3)

[
X

(1)
ln1n2

X
(2)
ln1n2

]
+ [X

(1)
ln1n2

, X
(2)
ln1n2

]N

[
X

(1)
ln1n2

X
(2)
ln1n2

]
. (2.19)
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Matrix L1 depends implicitly on the unknown speeds c1 and c2 appearing in (2.9) and
that correspond to the co-moving reference frame in which the mixed mode remains a
steady solution. Since these two speeds are also unknown, two additional phase-locking
conditions are required to lift the rotational/travelling degeneracy of solutions from
the system of equations. Similarly, system (2.19) must also be complemented with an
additional constraint to allow determination of the unknown axial pressure-gradient
G required to ensure the zero mass-flux condition. The nonlinear system of equations
(2.19), along with the aforementioned constraints, is solved numerically using Newton’s
method. The hydrodynamic part of the code is identical to that used in Deguchi &
Altmeyer (2013), and more detailed documentation of the computational methodology
can be found in Deguchi & Nagata (2011).

For the purely hydrodynamic problem, we have also computed and continued in pa-
rameter space the bifurcating mixed modes using an independent numerical formulation.
This alternative methodology is based on a solenoidal Petrov-Galerkin scheme described
in Meseguer et al. (2007), suitably adapted to the annular parallelogram domain (2.10).
In this formulation, the solenoidal velocity perturbation ṽ is approximated by means of
a spectral expansion ṽs of order N in ξ1 = m1θ + k1z, order L in ξ2 = m2θ + k2z, and
order M in r

ṽs(r, ξ1, ξ2, t) =
∑

n1, n2,m

an1n2m(t)Φn1n2m(r, ξ1, ξ2). (2.20)

The Φn1n2m are trial bases of solenoidal vector fields of the form

Φn1n2m(r, ξ1, ξ2) = ei(n1ξ1+n2ξ2)vn1n2m(r), (2.21)

where the radial fields vn1n2m(r) are suitably constructed to satisfy ∇ · Φn1n2m = 0.
Since ṽs represents the perturbation of the velocity field, it must therefore vanish at the
inner (r = ri) and outer (r = ro) walls of the cylinders. Therefore, vn1n2m must also
satisfy homogeneous boundary conditions

vn1n2m(ri) = vn1n2m(ro) = 0. (2.22)

These radial fields are built from suitable expansions of modified Chebyshev polynomials.
After introducing expansion

ṽs(r, ξ1, ξ2, t) =
∑

n1, n2,m

aTW
n1n2mein1(ξ1−c1t)ein2(ξ2−c2t)vn1n2m(r) (2.23)

into the hydrodynamic equations, the weak formulation described in Meseguer et al.
(2007) leads to a system of nonlinear algebraic equations for the unknown coefficients
aTW
n1n2m, similar to (2.19), to which the zero mass-flux constraint is also imposed. The

resulting system of equations were solved using a matrix-free Newton-Krylov method
(Kelley 2003). The converged nonlinear solutions were then continued in parameter space
using pseudo-arclength continuation schemes (Kuznetsov 2004). To avoid cluttering the
paper with unnecessary detail and because of the intricacies that are inherent to the
numerical approach undertaken, a detailed description of the method will be published
separately.

In the classic rectangular domain, the Petrov-Galerkin solenoidal discretization has
been successfully used in the numerical approximation of transitional flows in cylindrical
geometries (Mellibovsky & Meseguer 2006) and in the computation of subcritical rotating
waves in annular domains (Deguchi et al. 2014). In the latter study, the code was cross-
checked against the codes used in the aforementioned Deguchi & Nagata (2011) and
Deguchi & Altmeyer (2013). In §4, the favourable comparison of the nonlinear results
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produced by the annular-parallelogram extension of the two independent codes based on
completely different formulations serves as an unbeatable procedure for code validation.
The results for the linear magnetic part of (2.19) has instead been checked against the
linear results by Hollerbach et al. (2010) in the next section.

For a travelling wave solution, the absolute values of torque on the inner and outer
cylinders are always equal and represent the angular momentum transport. The torque
on the inner cylinder can be computed indistinctly as

T ≡ {−r3∂r(r−1v)}|r=ri = −{r3∂r(r−1v)}|r=ro , (2.24)

while the torque on the outer cylinder is −T to keep the inner and outer cylinder
rotating at constant speeds. We have characterized all Newton-converged nonlinear
solutions throughout by their torque normalised by the corresponding base-flow torque
Tb = {−r3∂r(r−1vb)}|r=ri = −{r3∂r(r−1vb)}|r=ro

τ =
T

Tb
=

∂r(r
−1v)

∂r(r−1vb)

∣∣∣∣
r=ri,ro

, (2.25)

such that the normalized torque τ is unity for laminar cicular Couette flow.

3. The anti-cyclonic regime

Let us consider the normalised base magnetic fields

Bb(r) =
ri
r
, Cb(r) = δ (3.1)

to reproduce both the axisymmetric hmri and non-axisymmetric amri modes found
in the anti-cyclonic regime by Hollerbach et al. (2010). The constant δ represents the
strength of the axial magnetic field relative to the azimuthal field, which is induced by a
current running through the inner cylinder, parallel to its axis.

Following Hollerbach et al. (2010), we fix the rotation ratio to µ̂ = Ω∗o/Ω
∗
i = Roη/Ri =

0.26. Note that for the anti-cyclonic regime µ̂ must remain in the interval [0.25, 1], where
the lower bound corresponds to the Rayleigh line µ̂ = η2 = 0.25, while the upper bound
embodies solid-body rotation. The quasi-Keplerian rotation regime frequently used in
astrophysical studies on accretion disks is charcterized by µ̂ = η3/2 ≈ 0.35. This rotation
law results from applying Kepler’s law to both the inner and outer cylinder angular
velocities, which results in a fair approximation of a strictly Keplerian flow across the
gap. The choice µ̂ = 0.26, used in the experimental demonstration of amri by Seilmayer
et al. (2014) places the flow in the anti-cyclonic regime but very close to the boundary
set by the Rayleigh line. Liu et al. (2006) used a locally periodic approach to show
that there is a limiting value µ̂ ≈ 0.3 above which hmri halts, and the analysis was
later extended by Kirillov et al. (2012) to amri. To what extent this limit is actually
relevant to fully cylindrical flows is however still under debate (see Rüdiger & Hollerbach
2007; Child et al. 2015). The radius ratio of the cylinders is set to η = 0.5. For this
particular value of η, our definitions of Ri and H become identical to the hydrodynamic
Reynolds number and the Hartmann number, respectively, used by Hollerbach et al.
(2010). Most importantly, the parameter range studied there is feasible in the promise
experiments, where both axisymmetric (Stefani et al. 2006, 2007; Rüdiger et al. 2006)
and non-axisymmetric (Seilmayer et al. 2014) modes were actually realised. Travelling
waves similar to those predicted in the numerical studies were indeed observed. These
waves originate from absolute instability (even global), rather than mere convective, as
shown by the comprehensive experimental study on hmri by Stefani et al. (2009).
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Having fixed µ̂ and η, we have performed a linear stability analysis of the base flow
by exploring the eigenspectrum of the linearized hydromagnetic equations for combi-
nations of Ri, H, δ, and azimuthal-axial pairs (m, k) of the associated spiral eigen-
functions. We started by reproducing the neutral curves in the H–Ri plane for δ =
0, 0.02, 0.03, 0.04, 0.05, and for the optimal axial wavenumber k > 0 that maximizes the
growth rate. For δ = 0, the instability originates from the symmetric spirals with opposite
tilt (m = ±1). The primal effect of finite δ is the breaking of that reflection symmetry.
Moreover, the axisymmetric mode (m = 0) emerges and for sufficiently large δ ≈ 0.05 it
dominates over the non-axisymmetric modes. The non-axisymmetric modes are of amri
origin, while the axisymmetric mode only becomes dominant for distinctly helical fields,
which leaves a finite range of δ where all three modes compete. The neutral curves we
have computed are in perfect agreement with figure 3 of Hollerbach et al. (2010), where
it was already pointed out that, for δ ≈ 0.04, the critical Reynolds numbers of all three
modes become comparable. Here we have identified that at δ = 0.0413 there is a point
where all three modes become neutral simultaneously, as clearly shown in figure 3.

For the sake of clarity, we shall focus on the computation and continuation of nonlinear
solutions along the straight line across parameter space Ri = (1896/128)H (green solid
line in figure 3a) that passes through the triple critical point at (H,Ri) = (128, 1896).
Figure 3b depicts the bifurcation diagram corresponding to the 6 different nonlinear
solution branches, as characterized by torque as a function of the Hartmann number. At
the tricritical point, the three eigenmodes, (m, k) = (0, 5.672), (m, k) = (1, 4.672) and
(m, k) = (−1, 2.818), become neutral simultaneously. As anticipated by weakly nonlinear
analysis, bifurcation of various mixed modes is therefore expected. The Newton method
described in §2 does indeed converge to one or another of the nonlinear pure- or mixed-
mode solutions when a suitably weighted superposition of the three neutral eigenmodes
is taken as an initial guess. Solutions have initially been computed in this way in the close
neighbourhood of the tricritical point and then continued as a function of H using either
natural or pseudo-arclength continuation algorithms. Three of the solution branches,
converged from single-mode initial guesses fed into the Newton method, correspond to
helically-invariant travelling spiral waves (black curves in figure 3b). These solutions we
have dubbed as spim, with the subscript m (solid black line for m = 0, dashed for m = 1,
dotted for m = −1) denoting the azimuthal wavenumber of the mode (see table 1). All
three branches bifurcate supercritically from the base laminar flow. Since these solutions
can be computed in the usual rectangular domain using regular coordinates (θ, z), we
omit a detailed analysis.

Suitable proportions of the weights applied to the critical eigenmodes in generating the
initial seeds for the Newton method have allowed computation of all three possible mixed-
mode nonlinear solution branches (red curves in figure 3b). These mixed modes have been
labeled as mixm2

m1
, with the sub- and super- scripts representing the azimuthal wavenum-

ber of the two interacting modes, and duly reported in table 1. As mentioned earlier,
these mixed modes can only be identified using an appropriate annular-parallelogram
domain, as the superposition of the two modes does not fit any rectangular domain of
affordable size.

All three mixed-mode branches bifurcate supercritically. A very remarkable feature of
these mixed modes is that some of them have larger torque than the spirals. This aspect
is of special relevance to the study of astrophysical accretion disks, as it is a paramount
requirement for the large outward angular momentum flux that is believed to be the
key to the observed rate of inward mass accretion. The mix0

−1 mode possesses the largest
torque of all mixed modes, as is also clear from the azimuthal mean flow distortion shown
in figure 4 for H = 140, (Ri, Ro) ≈ (2074, 1078). Figure 5 shows the corresponding total
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Figure 3. Linear stability analysis and continuation of bifurcated nonlinear solution branches
in the anti-cyclonic regime for (δ, η) = (0.0413, 0.5). (a) Neutral stability curves along the line
Ro = 0.26Ri/η (black curves) for modes m = 0 (solid) and m = ±1 (dashed for +1, dotted for
-1). Wavenumber k is the one that maximises growth rate. The black circle indicates the triple
critical point at (H,Ri) = (128, 1896). (b) Bifurcation diagram along Ri = (1896/128)H (green
line in pannel a). The black circle corresponds again to the triple-critical point, whence three
spiral (spi0, spi±1; solid, dashed and dotted black lines) and three mixed (mix−1

1 , mix0
1, mix−1

0 ;
solid, dashed and dotted red lines) modes are issued.

azimuthal vorticity distribution of the three mixed modes, represented through θ–z plane
colourmaps at mid gap r = ri+0.5. As expected, mode mix0

−1 has the strongest flow field
perturbation, clearly reflected in the colour bar range of the panels. The visualisations
shown in figures 5a and 5b for mix1

0 and mix0
−1, respectively, are reminiscent of wavy

Taylor vortex flow (see e.g. Andereck et al. (1986)) except that the patterns are tilted
and wavy vortex pairs accumulate an azimuthal phase shift as they pile up in the
axial direction. The reason for this is that one of its constituents is a zero-pitch spiral,
which corresponds to a toroidal-vortex-pair solution much like Taylor vortices, while the
superposition of a spiral mode generates the tilted azimuthal modulation. Meanwhile, the
structure of the mix−11 mode shown in figure 5c are evocative of the wavy spiral solution
found in the hydrodynamic studies by Altmeyer & Hoffmann (2010) and Deguchi &
Altmeyer (2013).
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Figure No. Abbreviation Solution type (m1, k1) (m2, k2)

3b spi0 Spiral (0,5.672) n/a
spi1 Spiral (1,4.672) n/a

spi−1 Spiral (-1,2.818) n/a
mix−1

0 Mixed mode (0,5.672) (-1,2.818)
mix0

1 Mixed mode (1,4.672) (0,5.672)
mix−1

1 Mixed mode (1,4.672) (-1,2.818)

7a spi Spiral (1,40.6) n/a
spiD17 Spiral (1,1.002) n/a

rib Ribbon (1,40.6) (-1,40.6)
ribD17 Ribbon (1,1.002) (-1,1.002)
mix+ Mixed mode (1,40.6) (1,1.002)
mix− Mixed mode (1,40.6) (-1,1.002)

7b spiD17 Spiral (1,0.616) n/a
spiMRI Spiral (1,1.984) n/a
ribD17 Ribbon (1,0.616) (-1,0.616)
ribMRI Ribbon (1,1.984) (-1,1.984)
mix+ Mixed mode (1,1.984) (1,0.616)
mix− Mixed mode (1,1.984) (-1,0.616)

Table 1. Abbreviations used to describe the various nonlinear solution branches. Note that
spi0 is a zero-pitch spiral, and therefore a toroidal-vortex-pair solution.
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Figure 4. Azimuthal mean flow distortion (v − vb) of the three different mixed modes shown
in figure 3b for H = 140, and (Ri, Ro) ≈ (2074, 1078).

4. From counter-rotation to the cyclonic super-rotation regime

In this section we focus our attention on the bifurcations arising on the left-half plane
of figure 1, as some of the instabilities carry on to the super-rotation regime. For η = 0.1,
figure 6 outlines the neutral curves obtained from linear stability analyses corresponding
to different levels of magnetization. We begin our analysis by first focusing on the purely
hydrodynamic case in the absence of magnetic effects. Shown in figure 6 are the classical
neutral curve (dashed black) alongside the neutral curve for the d17 mode (solid black),
recently dicovered by Deguchi (2017) through linear stability analysis.
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(a) (b)

(c)

Figure 5. Colourmaps of the total azimuthal vorticity (ωθ = ∂zu − ∂rw) distribution at the
mid radial plane r = ri + 0.5 of the three mixed-mode mri solutions. (a) mix0

1, (b) mix0
−1, and

(c) mix1
−1.

Along the classical boundary, the critical value of Ri increases with |Ro|, which is
consistent with extensive numerical evidence as well as physical insights and the large
Reynolds number formal asymptotic result (Esser & Grossmann 1996; Grossmann et al.
2016; Deguchi 2016). As a consequence, the neutral curve, which corresponds to a non-
axisymmetric leading mode with large m (a spiral), cannot be continued across the line
Ri = 0 into the super-rotation regime.

In contrast, the neutral curve for the d17 mode, typically with m = ±1, does indeed
extend to the cyclonic super-rotation regime. The reason for choosing such a low value of
the radius ratio (η = 0.1) follows from the observation that the curve shifts to very high
counter-rotation rates as η is increased and narrower gaps are considered. For instance,
taking Ri = 0 and η = 5/7 pushes the critical Ro value to O(107), whereas for η = 0.1 it
remains within order O(104). In figure 6, the classical stability threshold (dashed black)
and the new one set by the neutral curve of the d17 mode (solid black) meet at a
bicritical point (black filled circle) located at (Ri, Ro) ≈ (1045,−10434), with associated
critical wavenumbers (m1, k1) = (1, 40.6) and (m2, k2) = (1, 1.102), respectively. The
critical axial wavenumbers k1 and k2 associated to either mode differ significantly, which
explains why the latter, mode d17, escaped detection for so long. The asymptotic theory
provided by Deguchi (2016) formally proved that the critical axial wavenumber of the
classical mode gets asymptotically large for increasing Reynolds numbers, while that for
the d17 mode seems to be insensitive to Reynolds number variations.

The various nonlinear solution branches that bifurcate from the bicritical point (black
filled circle in figure 6) are shown in figure 7a. All branches bifurcate supercritically.
The black curves correspond to the spiral solutions for the classical mode (spi, dashed)
and the d17 mode (spiD17, solid). The structure of the single-mode solutions, the
nonlinear spirals, are qualitatively identical to the linear neutral mode (see Deguchi
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Figure 6. Neutral curves for H = 0, 40, 60, 84 (black, green, blue, red, respectively) and η = 0.1.
The wavenumber pairs (k,m) are optimized to detect the most unstable eigenvalue. Neutral
curve for the classical non-axisymmetric hydrodynamic mode (dashed black) is shown alongside
those for the d17 mode (solid black) and the mri mode (dotted). While m is large and obeys
the asymptotic result by Deguchi (2016) for the classical neutral curve, the d17 and mri neutral
curves have typically m = ±1. Bicritical points, where direct bifurcation of mixed-mode solution
branches are expected, are indicated with filled circles.

2017). Since the system is symmetric with respect to axial reflections (z → −z), spiral
modes become neutral in pairs, with exact opposite pitch. As a result, there are actually
four modes that simultaneously become neutral at the linear bicritical point (the black
filled circle in figure 7a). Consequently, there exist six mixed modes arising from all
possible combinations of modes taken in pairs. Two of them merely correspond to ribbon
solutions (blue curves in figure 7a), labelled as rib (dashed, spi-spi interaction) and
ribD17 (solid, spiD17-spiD17 interaction), and listed in table 1. While ribbon solutions
can be computed in a rectangular domain, all other mixed modes require the use of the
annular-parallelogram domain. In fact, only two of the four remaining modes actually
require computation, as the other two can be easily obtained from simple z-reflection
and, since the torque is invariant under this symmetry operation, the solution branches
are exactly coincident. The branches corresponding to these mixed-mode solutions are
painted in red in figure 7a. The branch labelled as mix+ originates from the interaction
of two modes with pitches of the same sign, while the one labelled mix− arises from the
nonlinear coupling of modes with opposite sign, as reported in table 1.

All hydrodynamic results reported in this work and initially computed with a code
based on the hydromagnetic-potential formulation (2.13) have been reproduced using the
independently developed solenoidal Petrov-Galerkin parallelogram formulation (2.20).
A few nonlinear solutions at selected values of the parameters have been chosen and
indicated with triangles in figure 7a to convey the excellent qualitative agreement between
the two methods employed for the computations. Quantitative comparison shows that the
torque discrepancy stays below 0.06% for all the purely hydrodynamic nonlinear mixed-
mode solutions computed. Figure 8a represents the azimuthal mean flow distortion for
the mixed modes at (Ri, Ro) = (1100,−10434). The distortion is the most significant in
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Figure 7. Bifurcation diagrams of spirals, ribbons and mixed nonlinear modes in super-
and counter-rotation configurations. (a) Purely hydrodynamic case, in counter-rotation with
Ro = −10434 and H = 0. The black circle indicates the linear bicritical point at Ri = 1045. A
bunch of mixed-mode solutions computed with the alternative Petrov-Galerkin code are marked
with triangles. (b) Magnetised case in the super-rotation regime with Ro = −35150 and H = 84.
The bicritical point at Ri = −231.5 is indicated with a filled black circle.

the vicinity of the inner cylinder, which indicates that the perturbation is strongest in
this region. For the same values of the parameters, figure 9 shows azimuthal vorticity
colourmaps for both mixed modes on an unwrapped radial plane at r = ri + 0.05. The
observed flow structure is very different from any of the mixed-mode solutions reported
by Deguchi & Altmeyer (2013). The observed small-large scale interaction reminds of
the stripe pattern that is characteristic of intermittent spiral turbulence (Meseguer et al.
2009; Dong 2009). While the Reynolds numbers and the gap are too large to claim there
exists any relation between the mixed modes presented here and spiral turbulence, the
similarity of the patterns indicates that spiral turbulence might indeed be supported
by mixed-mode solutions of very different pitches as the ones investigated here in a
completely different setting.

Now we turn our attention to the magnetised problem, where we will impose an external
magnetic field with a strictly azimuthal orientation. For the mri studies in an annulus,
the azimuthal base magnetic field is typically the weighted superposition of r−1 and r
components. The respective coefficients can be tuned by an appropriate uniform current
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Figure 8. Azimuthal mean flow distortion (v − vb) of mixed-mode solutions. (a) Purely
hydrodynamic case at Ri = 1100 from figure 7a. (b) Magnetised case at Ri = −280 and H = 84
from figure 7b.

imposed within the inner and outer cylinders. Rüdiger et al. (2016, 2018b) considered two
extreme cases: Bb(r) ∝ r−1 (i.e. there is no current between the cylinders) and Bb(r) ∝ r
(i.e. the axial current is homogeneous between the cylinders). The latter also receives
the alternative name z-pinch, and is known to become unstable for sufficiently large
Hartmann number even with both cylinders at rest (Tayler 1957). As the Tayler instability
does not exist for the current-free case, the behaviour of the neutral curve for small
Reynolds numbers must necessarily be quite different from that for the homogeneous-
current case. Rüdiger et al. (2016, 2018b) found that for η & 0.8, the neutral curves
behave qualitatively alike in both cases when Reynolds numbers are moderately large,
thereby suggesting that super-amri is rather insensitive to the choice of the azimuthal
magnetic field profile.

We have confirmed that the d17 mode is stabilised by both the current-free and the
z-pinch cases. Nonetheless, when the two azimuthal magnetic field components exist
simultaneously, the d17 mode can be destabilised, as clearly illustrated by the behaviour
of the neutral stability curves in figure 6. Here the specific magnetic field profile used is

Bb(r) =
ri
r
− r

ro
, Cb(r) = 0. (4.1)

Although the arguments by Rüdiger et al. (2016, 2018b) for the current-free case may
not be applicable to the large gap η = 0.1 we tackle here, a MRI does indeed arise
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(a) (b)

Figure 9. Visualisation of the total azimuthal vorticity (ωθ = ∂zu − ∂rw) at r = ri + 0.05 for
the purely hydrodynamic mixed mode solutions at Ri = 1100 in Fig. 7(a). Λ = 2π/1.002 ≈ 6.27.
(a) mix− and (b) mix+. The corresponding mean flow distortion was shown in Fig. 8(a).

when a current is considered. This phenomenon had already been anticipated by a
locally periodic approach (see Liu et al. 2006; Kirillov et al. 2014), but the nature of the
method used renders the approximation rather crude in view of the not-so-large critical
wavenumbers we encounter here. As the Hartmann number is increased, the super-amri
mode eventually takes over the classical mode, and hence changes the character of the
bicritical point. In view of figure 6 atH = 60, the double critical point is already the result
of the interaction of the d17 and the super-amri modes. The base flow remains stable
within the region bounded by their respective stability thresholds. Along the combined
neutral curve, the critical axial wavenumber experiences a discontinuous leap across the
bicritical point, whence it must be inferred that the two instability mechanisms are
indeed distinct. By further increasing the Hartmann number, the bicritical point moves
towards and eventually crosses into the super-rotation regime. We have determined that
the bicritical point crosses the Ri = 0 line somewhere between H = 80 and H = 84.

The nonlinear solution branches issued from the bicritical point (Ri, Ro) ≈
(−231.5,−35150) at H = 84 have been computed in the same way they were for the
strictly hydrodynamic case studied above. The critical wavenumbers of the magnetised
d17 mode at this point are (m, k) = (1, 0.616), while those for the super-amri modes
are (m, k) = (1, 1.984), which entails flow structures of similar sizes. The bifurcation
diagram of figure 7b has been obtained by varying Ri at constant Ro. To the right (left)
of the linear critical point, the base flow is unstable to the d17 (super-amri) mode. The
imposed azimuthal magnetic field does not break any of the inherent symmetries of the
hydrodynamic Taylor-Couette system so that, as in the hydrodynamic case discussed
above, there still arise two spirals (along with their mirror-images), two ribbons, and
two mixed modes (and mirror images). See table 1 for an account of all modes. Both
nonlinear spiral branches (black curves: solid for spiD17, dashed for spiMRI) bifurcate
subcritically, in the sense that they exist when the corresponding linear mode is stable.
However, this is only true while their amplitude remains small, and the branch associated
with the d17 mode turns back in a saddle-node bifurcation towards lower |Ri|. The
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ribD17 (solid blue) and ribMRI (dashed blue) solution branches exist both to the right of
the critical point (blue curves in figure 7b). We note in passing that the super-amri-type
ribbon solutions found by Rüdiger et al. (2016) were shown stable by direct numerical
simulation. The mixed-mode solution branches (red curves) come in two types, namely
mix+ and mix−, depending on whether the interacting modes have the same or opposite
pitch, respectively. Unlike all other solution branches issued from the bicritical point,
these extend to large |Ri|, and may thus govern the dynamics within the region of the
super-rotation regime closest to solid body rotation.

As clear from figure 7b, the nonlinear solution branches associated with the super-
amri instability have the unforseen property that the torque is reduced with respect to
the laminar base value. The dependence of torque on Reynolds number associated with
the two mixed modes follows very similar trends. The torque initially grows away from
the bifurcation point as the branches dive deep into the super-rotation regime, but the
trend is soon reversed and the torque eventually drops below laminar values.

The reason for torque reduction can be understood from the energy balance, since
torque corresponds to one of the energy input mechanisms. The perturbation energy
budget can be found by integrating ṽ·(2.7a)+H2b̃·(2.7b). For travelling-wave-type solu-
tions perturbation energy must be time-independent and thus the balance〈

r
(vb
r

)′
ũṽ

〉
−H2

〈
r−1(rBb)

′(ãṽ − ũb̃)
〉

= 〈ṽ · ∇2ṽ〉+H2〈b̃ · ∇2b̃〉 (4.2)

should be satisfied. Here the angle brackets denote integration over the annular-
parallelogram domain. The first term in the right and left hand sides are related to the
torque, since integration of vbeθ·(2.7a) yields

−
〈
r
(vb
r

)′
ũṽ

〉
= 〈vbeθ · ∇2ṽ〉 (4.3)

and integration by parts of the first term in the right hand side results in

〈v · ∇2v〉 =
(
r−1o Ro − r−1i Ri

)
T − 〈|∇v|2〉. (4.4)

The energy balance equation (4.2) then becomes

−H2〈b̃ · ∇2b̃〉 −H2
〈
r−1(rBb)

′(ãṽ − ũb̃)
〉

=
(
r−1o Ro − r−1i Ri

)
T − 〈|∇v|2〉. (4.5)

Showing that torque cannot decrease below the laminar value for purely hydrodynamic
Taylor-Couette flow is a straightforward exercise, because the terms on the left hand
side are identically zero. The calculus of variations can then be used to prove that the
minimum value of the functional F(v) = 〈|∇v|2〉 under the divergence-free constraint
for v is realised by the solution to the Stokes equation (see Doering & Gibbon 1995,
for example), namely the laminar Couette solution. Imposing 〈|∇v|2〉 > 〈|∇vb|2〉 =(
r−1o Ro − r−1i Ri

)
Tb on (4.4) demands that τ > 1 for the purely hydrodynamic case.

Moreover, the balance equation further leads to the conclusion that torque reduction
cannot occur at all if the base magnetic field is current free, as this entails that the
second term in the left hand side of (4.5) is absent. The proof is again straightforward as

integration by parts shows that −H2〈b̃·∇2b̃〉 is positive definite. The resulting inequality(
r−1o Ro − r−1i Ri

)
T >

(
r−1o Ro − r−1i Ri

)
T +H2〈b̃ · ∇2b̃〉 = 〈|∇v|2〉

>
(
r−1o Ro − r−1i Ri

)
Tb,

(4.6)

yields again τ > 1. This outlines the necessity of a base current field if torque reduction
is to be observed.
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(a) (b)

Figure 10. Visualisation of the total azimuthal vorticity (ωθ = ∂zu− ∂rw) at r = ri + 0.05 for
the magnetized mixed mode solutions at Ri = −280 in Fig. 7(b). Λ = 2π/0.616 ≈ 10.2 (a) mix−
and (b) mix+. The corresponding mean flow distortion was shown in Fig. 8(b).

As seen in figure 7b, the torque reduction is stronger for the mix+ mode, reflecting the
fact that the perturbation is slightly larger for that mode. This is evidenced by figure 8b,
where the azimuthal mean flow distortion across the gap is plotted at Ri = −280. The
oscillatory modulation of the flow near the inner cylinder is responsible for the torque
reduction and is driven by the vortex structure near the inner cylinder, as shown in the
θ-z sections of figure 10. Here again we choose r = ri + 0.05, very close to the inner
cylinder, as the reference radius. As expected, the perturbation of the mix+ mode has
larger amplitude than that for the mix− mode. The flow patterns are similar to those
of the wavy spiral computed by Altmeyer & Hoffmann (2010) and Deguchi & Altmeyer
(2013), because the critical wavenumbers of the interacting modes are of comparable size.

5. Conclusions

We have investigated nonlinear mode competitions in the mhd Taylor-Couette flow
subject to predominantly azimuthal magnetic fields. For this purpose, a Newton solver
devised by Deguchi & Altmeyer (2013) for the Navier-Stokes equations in annular-
parallelogram domains has been extended for its application to the inductionless limit of
the mhd equations.

For the anti-cyclonic regime (see figure 1), a suitably adjusted weak axial magnetic
field in addition to the azimuthal field stimulates linear instability modes with m =
−1, 0, 1, as anticipated by Hollerbach et al. (2010). Consistent with their results, we
find particularly rich nonlinear dynamics for δ ' 0.04. In section §3, we identified
that there is a triple critical point involving all three modes for δ ≈ 0.0413. We have
tracked the three nonlinear mixed-mode solution branches that bifurcate simultaneously
at the triple critical point using the purposely devised Newton solver and arclength
continuation. Some of the mixed-mode solutions possess a larger angular momentum
transport (they require application of higher driving torque to keep the cylinders rotating)
than the single-mode solutions they result from. This increased transport of angular
momentum makes these mixed-mode solutions an interesting target for future study, as
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they might be relevant in astrophysical flows involving accretion disks. In particular,
a better understanding of what might their role be in the nonlinear dynamics of such
flows will require direct numerical simulations and experiments such as those by promise
(Stefani et al. 2006, 2007; Rüdiger et al. 2006).

In §4, we have studied mode competitions involving the d17 mode. In the purely
hydrodynamic case, there is a point where both the classical spiral mode and the d17
mode become neutral simultaneously. This bicritical point lies within the counter-rotation
regime (see figure 1). The corresponding mixed-mode solutions consist of an interesting
stripe pattern where the small-scale classical spirals are modulated by the larger-scale
structure of the d17 mode. All purely hydrodynamic results presented here are in
excellent agreement with analogous computations done with an independently developed
Petrov-Galerkin code devised by Meseguer et al. (2007) and presently extended to allow
computation of mixed-mode travelling-rotating wave solutions in annular-parallelogram
domains. This code is better suited for the study of large-scale pattern formation
in Taylor-Couette flow and includes not only travelling-rotating-waves Netwon-Krylov
matrix-free solver (thus being capable of handling a much larger amount of degrees of
freedom), but also stability analysis, a solver for modulated travelling-rotating waves
and pseudo-arclength continuation of solution branches adapted from Mellibovsky &
Meseguer (2015), and also direct numerical simulation. Details of this second code and
its adaptation to annular-parallelogram domains will be presented in our future work in
the study of large-scale pattern formation in Taylor-Couette flow. The intricacies of the
method reach beyond the scope of the present study.

The application of an external azimuthal magnetic field alters the picture obtained in
the purely hydrodynamic case completely. The non-axisymmetric super-amri mode found
by Rüdiger et al. (2016, 2018a,b) appears at moderate Hartmann numbers and eventually
outweighs the classical mode for sufficiently strong magnetic fields. We clearly show that
the mechanisms behind the magnetised d17 mode and the super-amri mode are distinct.
Destabilisation of the d17 mode occurs for a given external magnetic field profile (4.1). As
a result, an increase of the Hartmann number gradually shifts the bicritical point at which
both modes are simultaneously destabilised towards the super-rotation regime. This fact
renders this mode interaction interesting from an astrophysical point of view. Several
nonlinear solution branches are issued from the bicritical point in both Ri directions
at fixed Ro. While spirals and ribbons return towards the counter-rotation regime, the
mixed-mode solution branches plunge deep into the super-rotation regime.

The solutions computed in §4 show how the complex interplay between the nonlinear
shear-Coriolis and the magneto-rotational instabilities can sometimes lead to torques
lower than that of the base flow. This surprising result is in sharp contrast with what
is typically assumed in purely hydrodynamic shear-flow studies, where nonlinearity is
known to invariably enhance angular momentum transport. This torque reduction occurs
even for finite Pm and sub-rotation of the cylinders; see Appendix B. In view of this result
the torque reduction might be a generic property of mhd flows in the presence of shear
and Coriolis forces. A particularly interesting potential application of this phenomenon
would be to design control strategies to reduce drag on the curved boundary layers by
imposing suitable magnetic fields.

We have analysed the d17 / super-amri mode interaction for a large gap η = 0.1.
Interesting as it would be, we have not attempted here to track these modes to smaller
annulus gaps in the order η ∼ 0.8 and test the robustness of the coalescence point of both
instabilities. The extremely large Reynolds numbers at which the d17 mode bifurcates in
the narrow annulus case renders the task overly demanding from a computational point
of view, if not altogether unaffordable.
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Imposing more intense helical magnetic fields might also be an appealing topic for
future research. The two axisymmetric super-hmri modes found recently by Mamat-
sashvili et al. (2019), in combination with some of the modes studied here, may also
yield rich interaction patterns worth exploring. While their type 2 super-hmri mode
belongs to the class of mri requiring induction together with smri, the type 1 super-
hmri mode is inductionless and might therefore coexist with the super-amri mode and
interact nonlinearly. Both types of super-hmri modes might of course interact with the
d17 mode. For hmri, the further consideration of current in the fluid brings about even
richer instability phenomena as anticipated by a locally periodic approach (Liu et al.
2006; Kirillov & Stefani 2013; Kirillov et al. 2014). The interaction of short wavelength
modes found using the locally periodic approach with longer wavelength modes such as
d17 or super-amri modes would generate band-like patterns much as those in figure 9.
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Appendix A. Basis function for the magnetic potentials

Following Roberts (1964), we first determine the magnetic field for the outer zones
r < ri and r > ro. Within the perfectly insulating walls, the magnetic field must have a
potential ϕ because there is no current:

ã = ϕr, b̃ = r−1ϕθ, c̃ = ϕz. (A 1)

Since the magnetic field is solenoidal, the outer potential must satisfy Laplace’s equation.
Using the expansion

ϕ =
∑
n1,n2

ϕ̂n1n2(r)ei(n1ξ1+n2ξ2), (A 2)

it is easy to find that the solution ϕ̂n1n2(r) can be written down using the modi-
fied Bessel functions of the first and second kind, Iν(x),Kν(x), both of which satisfy
x2f ′′ + xf ′ − (x2 + ν2)f = 0. The requirement that the potential is analytic at r = 0
determines the solution for r < ri as

ϕ̂n1n2
=


I|An1n2

|(|Bn1n2 |r) if |Bn1n2 | 6= 0,

r|An1n2 | if |Bn1n2
| = 0,

(A 3a)

whilst if the amplitude of the potential decays for large r, the solution for r > ro is

ϕ̂n1n2 =


K|An1n2 |(|Bn1n2

|r) if |Bn1n2
| 6= 0,

r−|An1n2
| if |Bn1n2

| = 0.
(A 3b)

Here we have used the shorthand notationAn1n2
= n1m1 + n2m2 andBn1n2

= n1k1 + n2k2.
Note that the mean part ϕ̂00 must be zero, from the boundary conditions.
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Across the cylinder walls, the magnetic field must be continuous. Thus from (A 1) and
the outer potential solutions (A 3), the boundary conditions are found as

b̂n1n2
=

An1n2

riBn1n2

ĉn1n2
ân1n2

+
iQ−n1n2

Bn1n2

ĉn1n2
= 0, at r = ri, (A 4a)

b̂n1n2
=

An1n2

roBn1n2

ĉn1n2
ân1n2

+
iQ+

n1n2

Bn1n2

ĉn1n2
= 0, at r = ro. (A 4b)

Here Q±n1n2
denotes the value of ∂rϕ̂n1n2/ϕ̂n1n2 on the walls:

Q−n1n2
=


|An1n2 |
ri

+
|Bn1n2 |I|An1n2

|+1(|Bn1n2 |ri)
I|An1n2

|(|Bn1n2
|ri)

, if |Bn1n2
| 6= 0,

|An1n2
|

ri
, if |Bn1n2 | = 0,

(A 5a)

Q+
n1n2

=


|An1n2

|
ro

−
|Bn1n2

|K|An1n2
|+1(|Bn1n2

|ro)
K|An1n2 |(|Bn1n2

|ro)
, if |Bn1n2

| 6= 0,

−|An1n2 |
ro

, if |Bn1n2
| = 0.

(A 5b)

After some algebra, we can find the boundary conditions for the poloidal and toroidal
potentials as

f̂ ′n1n2
+M−n1n2

f̂n1n2 = 0, ĝn1n2 − γn1n2(ri)f̂n1n2 = 0 at r = ri (A 6a)

f̂ ′n1n2
+M+

n1n2
f̂n1n2

= 0, ĝn1n2
− γn1n2

(ro)f̂n1n2
= 0 at r = ro, (A 6b)

where

γn1n2
(r) =

2An1n2Bn1n2

B2
n1n2

r2 +A2
n1n2

, (A 7a)

M−n1n2
=
r2iB

2
n1n2

−A2
n1n2

r2iB
2
n1n2

+A2
n1n2

−
r2iB

2
n1n2

+A2
n1n2

r2iQ
−
n1n2

, (A 7b)

M+
n1n2

=
r2oB

2
n1n2

−A2
n1n2

r2oB
2
n1n2

+A2
n1n2

−
r2oB

2
n1n2

+A2
n1n2

r2oQ
+
n1n2

. (A 7c)

The second boundary conditions in (A 6) suggest that the functions ĝn1n2
− γn1n2

f̂n1n2

must vanish on the walls, and thus we can use (1−y2)Tl(y) to expand them. The function

f̂n1n2
satisfies Robin’s conditions on the walls as seen in the first boundary conditions in

(A 6). As shown in Deguchi (2019b), we can use the following modified basis functions

(1− y2)Tl(y) + αln1n2
+ βln1n2

y, (A 8)

where

αln1n2 = 2
(−1)l(1 +M+

n1n2
) + (1−M−n1n2

)

(1−M−n1n2)M+
n1n2 − (1 +M+

n1n2)M−n1n2

, (A 9a)

βln1n2
= −2

(−1)lM+
n1n2

+M−n1n2

(1−M−n1n2)M+
n1n2 − (1 +M+

n1n2)M−n1n2

. (A 9b)
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Figure 11. The narrow-gap computation for Pm = 1, R = 400, and the axial wavenumber
k = 3.117. Dashed curve: Taylor vortex flow. Solid curves: the wavy vortex flow branches.
The streamwise wavenumber (i. e. m/rm at the narrow-gap limit) is 2.2. The values of B0 are
indicated by the arrows. Horizontal axis is the rotation number ω. In the vertical coordinate,
the shear on the wall is normalized by its laminar value (i.e. τ at the narrow-gap limit).

Appendix B. Drag reduction of the wavy vortex flow

Here we show that the significant drag reduction observed in section 4 occurs even for
the Rayleigh unstable sub-rotation regime (see figure 1). Moreover, the Prandtl number
is not necessarily small to observe this phenomena; here we choose Pm = 1. The base
magnetic field (4.1) is used.

We employ the narrow-gap limit η → 1 in order to use the full mhd Cartesian code
developed in Deguchi (2019a). Now we write x = rmθ, y = (r − rm) using the mid gap
rm. When η is close to unity, noting y/rm � 1, we have approximations

vb(r)−Ωr = −Ry + · · · , HBb(r) = −B0Ry + · · · , (B 1)

while keeping Ω = r−1m vb(rm), R = 2r−2m Rp and B0 = H/Rp as O((1 − η)0) constants.
(Note that the definition of R differs by factor of 4 from that used in Deguchi (2019a),
because in this paper the gap is 2.) The limiting system is the rotating plane Couette
flow in the cartesian coordinate (x, y, z) with the rotation rate ω = 2Ω/R. The Rayleigh
unstable region is ω ∈ [0, 1]. For B0 6= 0, the flow is subjected to a linear magnetic field
pointing in the streamwise direction.

The first few bifurcation sequence of hydrodynamic rotating plane Couette flow is
widely acknowledged (see Nagata 1986; Daly et al. 2014, for example). Near the Rayleigh
line ω = 1, the Taylor-vortex flow bifurcates with the well-known axial critical wavenum-
ber k =3.117 as depicted by the dashed curve in Fig. 11. Further bifurcation of the green
solid curve is due to the three-dimensional secondary instability of the Taylor-vortex and
called the wavy-vortex flow.

The other solid curves in Fig. 11 (blue for B0 = 0.5, red for B0 = 1) show that
with increasing B0 the shear associated with the wavy vortex flow is eventually reduced
even below the laminar value. Here note that this reduction only occurs when the
flow is dependent on x (i.e. azimuthal direction). For example Taylor-vortex flow is x-
independent, and thus the shear is unchanged whatever the value of B0 is. This is because
the cross-streamwise components of the magnetic field needed to modify the mean flow
remains zero under the influence of the streamwise magnetic field.
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Rüdiger, G. & Hollerbach, R. 2007 Comment on helical magnetorotational instability in
magnetized Taylor-Couette flow. Phys. Rev. E 76, 068301.
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