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We present the complete unfolding of streamwise localisation in a paradigm of
extended shear flows, namely two-dimensional plane Poiseuille flow. Exact solutions
of the Navier–Stokes equations are computed numerically and tracked in the
streamwise wavenumber–Reynolds number parameter space to identify and describe
the fundamental mechanism behind streamwise localisation, a ubiquitous feature of
shear flow turbulence. Unlike shear flow spanwise localisation, streamwise localisation
does not follow the snaking mechanism demonstrated for plane Couette flow.
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1. Introduction

Turbulent flows pervade both nature and engineering applications, with far-reaching
implications. Mixing of physical properties, flow homogeneity, friction and flow
separation crucially rely on the laminar or turbulent nature of fluid flow. In the case
of wall-bounded shear flows, such as those in pipes, channels and boundary layers,
turbulence often sets in, for large enough flow rates, despite the linear stability
of the laminar state (Reynolds 1883; Eckhardt et al. 2007), and does so in the
form of localised patches of turbulent flow (Wygnanski & Champagne 1973) which
only delocalise to take up larger and larger portions of the domain once the flow
rate is further increased beyond a critical value (Avila et al. 2011). The mechanism
underlying localisation is of paramount importance not only to fluid flows, but also to
the comprehension of the physics of nonlinear extended systems (Cross & Hohenberg
1993).

The coexistence of the laminar and a turbulent state in shear flows has recently
been ascribed to the appearance, above a certain value of the flow rate, of pairs of
simple solutions of the Navier–Stokes equations in saddle–node bifurcations (Nagata
1990; Faisst & Eckhardt 2003; Wedin & Kerswell 2004). Short periodic pipes and
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channels shown to properly reproduce developed turbulence local dynamics (the
minimal flow unit, see e.g. Jimenez 1990; Hamilton, Kim & Waleffe 1995) have
been extensively used as a proof-of-concept. The saddle solution, together with its
stable manifold, has been shown to reside in the laminar–turbulent separatrix and
to govern the transitional dynamics (Itano & Toh 2000; Duguet, Willis & Kerswell
2008; Schneider et al. 2008; Kreilos et al. 2013). Meanwhile, the nodal solution,
initially presenting little or no time complexity, undergoes a bifurcation cascade that
eventually results in a chaotic saddle that is capable of sustaining turbulent dynamics
of transient nature (Mellibovsky & Eckhardt 2012). Fully developed turbulent flow has
indeed been shown to rely on the existence of these so-called upper-branch solutions
both numerically (Kerswell & Tutty 2007) and experimentally (Hof et al. 2004). This
scenario has been confirmed for extended domains allowing for localisation, albeit
with modifications regarding the spatial structure of the underlying solution, which is
no longer periodic but localised (Duguet, Schlatter & Henningson 2009; Mellibovsky
et al. 2009). Fully localised invariant solutions of the Navier–Stokes equations have
since been found by restricting the dynamics to appropriate symmetry subspaces in
long pipes (Avila et al. 2013), and in extended domains (spanwise and/or streamwise)
in plane Couette (Brand & Gibson 2014; Gibson & Brand 2014) and plane Poiseuille
flows (Zammert & Eckhardt 2014).

The mechanism behind localisation, a salient feature of transitional dynamics, has
only recently been confronted for shear flows. Although other mechanisms might
be possible, the only known path to spanwise localisation of channel flow has
been proven to result from subharmonic instability of spanwise-periodic waves that
become localised in a wavepacket (Schneider, Gibson & Burke 2010; Melnikov,
Kreilos & Eckhardt 2014; Chantry & Kerswell 2015) via a snaking mechanism
(Burke & Knobloch 2007a,b; Bergeon et al. 2008; Mercader et al. 2009). Streamwise
localisation appears to be fundamentally different from spanwise localisation. It has
been found to also emerge from subharmonic instability of streamwise-periodic
solutions through domain length continuation of a branch of modulated travelling
waves (Chantry, Willis & Kerswell 2014), but whether snaking still plays a part still
remains to be addressed.

A complete unfolding of the mechanism underlying streamwise localisation requires
an extensive exploration in parameter space including extremely costly continuation of
time-dependent nonlinear solutions. Although continuation of fully three-dimensional
localised solutions has been shown to be possible (Chantry et al. 2014), the refined
multiparametric study required here is unaffordable for three-dimensional systems such
as pipe or channel flows, where the initial steps towards explaining the phenomenon
have been undertaken, but becomes feasible for the simplest flow exhibiting archetypal
streamwise localisation, i.e. 2D plane Poiseuille flow (PPF). This problem gathers
all the required ingredients: subcritical bifurcation of upper- and lower-branch
streamwise-periodic solutions (Tollmien–Schlichting waves, Chen & Joseph 1973;
Zahn et al. 1974), subharmonic bifurcation of localised wavepacket solutions (Jimenez
1990; Drissi, Net & Mercader 1999) and the advantage of two-dimensionality. In this
paper we exploit this fact to resolve the problem of streamwise localisation in shear
flows.

The outline of the paper is as follows. In § 2, we present plane Poiseuille flow
and describe the formulation we adopt. In § 3, we sketch the numerical methods
we employ to tackle its resolution. Results are given and discussed in § 4. Some
concluding remarks are finally provided in § 5.
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2. Problem formulation

We consider the pressure-driven incompressible two-dimensional (in the (x, y)-plane)
flow of a Newtonian fluid (density ρ and kinematic viscosity ν) between two infinite
parallel plates at y = ±h (h is half of the gapwidth). The flow is governed by the
Navier–Stokes equations:

∂tu+ (u · ∇)u=− 1
ρ
∇p+ ν∇2u− Π

ρ
x̂, ∇ · u= 0, (2.1)

where u = (u, v) and p are the velocity and pressure fields respectively, and Π is
the driving streamwise pressure gradient. The no-slip boundary condition imposes
u(x,±h, t)= (0, 0), and streamwise periodicity is assumed for both u and p.

Plane Poiseuille flow (and pipe Poiseuille flow) may be driven by a constant
pressure drop along the domain (usual method of choice in experiments: constant Π )
or, alternatively, by an instantly adjusting pressure drop that enforces a constant mass
flux (implemented in experiments by sucking from the outlet with a constant velocity
piston: adjustable Π ) (Pugh & Saffman 1988). Both driving mechanisms are nearly
equivalent for long experimental channels that are predominantly laminar, but differ
notably whenever the non-laminar (usually turbulent) fraction departs from close to
zero. The mass flow and the average pressure gradient over long distances remain
constant in time, but the latter may fluctuate considerably over short distances as
non-laminar fluid flows along. Numerically, only relatively short periodic domains
can be simulated, so that a constant mass flow must be enforced in order to properly
capture the evolution of time-dependent solutions if these are to represent localised
dynamics in very long, ideally infinite, domains (Mellibovsky & Meseguer 2007).
Merely travelling solutions have an exact representation in both constant pressure and
constant mass flow PPF, while their stability and any time-dependent solution depend
critically on the driving mechanism (Soibelman 1989; Barkley 1990; Soibelman &
Meiron 1991).

We define the Reynolds number for PPF as Re = 3hU/2ν, where U is the
mean streamwise velocity of the flow, which is held constant by adjusting Π and
corresponds to 2/3 of the maximum velocity of the parabolic base flow. Taking h
and 3U/2 as length and velocity scales respectively, the basic laminar solution is a
parabolic profile of purely streamwise velocity that only depends on the wall-normal
coordinate y (figure 1aL): u0 = (1− y2)x̂.

We adopt the streamfunction formulation of Drissi et al. (1999), which naturally
satisfies mass conservation and the no-slip boundary condition at the walls, and at
the same time preserves a constant mass flow. The non-dimensional streamfunction
Ψ (x, y; t) is related to the non-dimensional velocity field through u = ∂yΨ and v =
−∂xΨ . The Navier–Stokes equations transform into

∂t∇2Ψ + (∂yΨ )∂x(∇2Ψ )− (∂xΨ )∂y(∇2Ψ )= 1
Re
∇4Ψ, (2.2)

with streamwise-periodic boundary conditions and ∂yΨ (x, ±1; t) = ∂xΨ (x, ±1; t) = 0.
The additional condition Ψ (x, 1; t) − Ψ (x, −1; t) = 4/3 enforces the constant non-
dimensional mean axial velocity of 2/3, while Ψ (x,−1; t)=−2/3 is chosen arbitrarily.
The basic laminar flow reads Ψ0(y) = y(1 − y2/3). In what follows, we consider the
effect of finite perturbations Ψ̃ (x, y; t) to the basic solution,

Ψ (x, y; t)=Ψ0(y)+ Ψ̃ (x, y; t), (2.3)

779 R1-3



F. Mellibovsky and A. Meseguer

A

A

B

B

C
L

E

C

D

D

E

x

s

(a) (b) (c) (d)

FIGURE 1. (a) Isovorticity contours of laminar flow (L), Tollmien–Schlichting waves
TSWs (A) and modulated Tollmien–Schlicting waves MTSWs for different values of the
wavenumber (k) and Reynolds number (Re) parameters k and Re (B–E). Only perturbation
on the laminar flow is represented except for L. Space–arclength parameter (ds ≡√

d‖a‖2 + (dk)2, where a is the state vector defining the solution) diagram showing the
evolution along (b) an MTSW branch taking R5 upper branch (UB) TSWs to localisation
at Re= 2800, (c) an R5–R5 branch at Re= 2800 and (d) a branch connecting R4 UB and
R5 lower branch (LB) TSWs at Re= 3000. The colouring represents the spanwise vorticity
along a straight line at y=−0.9 and at the time set by the crossing of the Poincaré section
used in the solver.

where Ψ̃ is streamwise periodic and verifies homogeneous Neumann–Dirichlet
boundary conditions at the walls: Ψ̃ (x, ±1; t) = ∂xΨ̃ (x, ±1; t) = ∂yΨ̃ (x, ±1; t) = 0.
Substituting (2.3) into (2.2) yields an equation for Ψ̃ :

∂t∇2Ψ̃ = LRe(Ψ̃ )+ N(Ψ̃ ), (2.4)

with linear and nonlinear operators

LRe(Ψ̃ )= 1
Re
∇4Ψ̃ − (1− y2)∂x∇2Ψ̃ − 2∂xΨ̃ ,

N(Ψ̃ )= (∂xΨ̃ )∂y∇2Ψ̃ − (∂yΨ̃ )∂x∇2Ψ̃ .

 (2.5)

3. Numerical approach

We use a Fourier–Legendre spectral expansion to approximate solutions of (2.4) in
a domain Ω = {(x, y) ∈ [0, Λ] × [−1, 1]}:

Ψ̃LM(x, y, t)=
L∑

`=−L

M∑
m=0

a`m(t)Ψ`m(x, y), (3.1)

where Ψ`m(x, y) = ei`kxΦm(y), a = {a`m} is the state vector with a−`m = a∗`m (∗
denotes complex conjugation), k = 2π/Λ is the minimum streamwise wavenumber
and Φm(y) = (1 − y2)2 Lm(y), with Lm(y) the mth Legendre polynomial. Here,
Φm(±1)=Φ ′m(±1)= 0 by construction, so that (3.1) identically satisfies homogeneous
Dirichlet–Neumann boundary conditions at the walls.

Introducing the inner Hermitian product of two arbitrary streamwise-periodic fields
ζ (x, y) and η(x, y) in the domain Ω = [0, Λ] × [−1, 1] as

(ζ , η)Ω =
∫ Λ

0

∫ 1

−1
ζ ∗η dy dx, (3.2)
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application of the spectral Galerkin scheme to (2.4) using (3.1) yields a system of
ordinary differential equations for the expansion coefficients a`m(t):

A`m
pq ȧ`m =B`mpq a`m +Npq(a), (3.3)

with
A`m

pq =
(
Ψpq,∇2Ψ`m

)
Ω
,

B`mpq =
(
Ψpq, LRe(Ψ`m)

)
Ω
,

Npq(a) =
(
Ψpq, N(Ψ̃LM)

)
Ω
.

 (3.4)

Summation over repeated indices is assumed, and (p, q) ∈ [0, L] × [0, M]. The
nonlinear term Npq(a) is evaluated pseudospectrally using Orszag’s 3/2 rule for
dealiasing.

System (3.3) is advanced in time using a fourth-order linearly implicit backward
differences scheme with fourth-order extrapolation for the nonlinear term,

(25A− 121tB)a(i+1) = A(48a(i) − 36a(i−1) + 16a(i−2) − 3a(i−3))

+1t(48N(i) − 72N(i−1) + 48N(i−2) − 12N(i−3)), (3.5)

where the superscript indicates the time instant (ti= i1t, with 1t the time step). The
time integration is started with an explicit fourth-order Runge–Kutta method.

The time step has been held constant at 1t = 10−2. A minimum of 50 Legendre
polynomials and 7 × n Fourier modes (n is the number of Tollmien–Schlichting
waves that fit in the domain) in the wall-normal and streamwise spectral expansions
respectively have been used throughout, but higher resolutions have been deployed
for some extreme values of the parameters to ensure convergence.

Travelling (or drifting) waves are characterised by a clear-cut streamwise wavelength
λ0= 2π/k0 (k0 is the fundamental wavenumber) and a travelling (phase) speed c. The
state vector dependence on time simplifies to a`m(t)= aTW

`m e−i`k0ct. Formal substitution
in (3.3) leads to a nonlinear algebraic system of equations for the unknown speed c
and complex state vector aTW = {aTW

`m }:(
B`mpq + ik0`cA`m

pq

)
aTW
`m +Npq(aTW)= 0. (3.6)

System (3.6) is completed with an extra condition on the phase of the solution to
remove streamwise degeneracy and solved by means of a Newton–Krylov method
(Kelley 1995), and solution branches are tracked in the (Re, k0) parameter space using
pseudoarclength continuation (Kuznetsov 2004).

When considered in a periodic domain of their wavelength, upper-branch travelling
waves typically undergo a series of superharmonic bifurcations into increasingly
complex flows. When considered in longer domains, though, travelling wavetrains
may exhibit subharmonic instability.

Here, we will be concerned with subharmonic instability of travelling waves, i.e.
instability to infinitesimal perturbations of wavelengths λ = 2π/k (wavenumber k)
longer than that of the wave. Perturbations of this type introduce a streamwise
modulation to the wavetrain that may develop into localisation. In principle, k
can take any positive real value in the interval [0, 1]. For k/k0 = m/n ∈ Q (n ∈ N,
m=1, . . . ,n), the instability of a travelling wave of wavenumber k0 can be understood
as the superharmonic instability of n replicas of the travelling wave filling a periodic
domain of length Λ= nλ0 to periodic perturbations that fit m times into the domain
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(Prat, Mercader & Knobloch 1998; Melnikov et al. 2014). Floquet theory analysis
shows that modes with m= j and m= n− j are related by conjugation, so that only
half of the possible wavelengths need be explored. Furthermore, an analysis for a
given k/k0 can be performed on the minimal domain nk0, such that n/m expresses
an irreducible fraction. Instability to irrational k/k0 can only be interpreted in an
infinitely long domain.

The representation of aTW
`′m in the n-fold replicated domain Ωn = [−1, 1] ×

[0, nλ0], n ∈N is
a`m(t)= aTWn

`m e−i`knct, (3.7)

where kn = k0/n and aTWn
`m = aTW

`′m for `= n`′ and 0 otherwise. Linear stability is then
analysed by considering infinitesimal disturbances to the travelling wave:

a`m(t)=
(
aTWn
`m + ε`meσ t

)
e−i`knct. (3.8)

Substituting (3.8) into (3.3) and neglecting terms beyond linear results in the
generalised eigenproblem

(σ − ikn` c)A`m
pq ε`m =B`mpq ε`m +DaN`m

pq (a
TWn)ε`m, (3.9)

which can be solved for eigenvalues σi and eigenvectors εi={ε`mi}. Here, DaN`m
pq (aTWn)

is the linearisation of N about aTWn and (p, q)= [0, nL] × [0,M]. For small n, (3.9)
can be solved using direct eigenvalue methods such as QZ (the generalised Schur
decomposition). For large resolutions, Arnoldi iteration is required in combination with
adequate Cayley transformations (Trefethen & Bau 1997).

A comprehensive analysis would incur unaffordable computational time scales, so
that the focus has been mainly set on the subset of k values that can be analysed in
domains of up to 6λ0, which are sufficiently long to initiate a streamwise modulation
that effectively localises when followed to longer domains. As a matter of fact,
previous subharmonic stability analyses of travelling waves in PPF (Drissi et al. 1999)
reveal oscillatory Hopf bifurcations from which emanate branches of streamwise-
modulated wavetrains (Jimenez 1990) that are time-periodic when observed from a
reference frame moving at the average streamwise speed of the waves.

To compute and track modulated waves beyond their region of stability, we have
applied Newton–Krylov and pseudoarclength continuation to the nonlinear system of
equations resulting from root finding for the map defined by consecutive crossings of
a Poincaré section P:

a 7→ ã= P(a)=T(1z)ΦT(a), (3.10)

where Φ t is the flow generated by (3.3) and [T(1z)a]`m= exp(−i`k1z)a`m is the shift
operator. Here, T (the modulation period) and 1z (the streamwise drift) satisfy

(ã− a) · T̂(a) = 0,
(ã− a) · ȧ = 0,

}
(3.11)

where [T̂(a)]`m =−i`ka`m is the group orbit tangent and ȧ= A−1 [Ba+N(a)] is the
rate of change of the state vector. The orthogonality conditions (3.11) simultaneously
define the Poincaré section and remove the drift degeneracy along the group orbit.
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FIGURE 2. Amplitude of TSWs and MTSWs as a function of k. The number of Fourier
modes was adapted during k-continuation to ensure sufficient streamwise resolution. The
Reynolds number is colour coded. Thick lines represent MTSWs. Continuous, dashed and
dotted thin lines labelled Rn denote subharmonically stable UB, unstable UB and LB trains
of n TSW solutions. Open squares are saddle–node and open circles Hopf bifurcation
points. The diamond indicates the subcritical bifurcation of TSWs from the base flow.

4. Results and discussion

Although linearly stable for Reynolds numbers up to Rec= 5772.22 (Orszag 1971),
the basic flow is subcritically unstable to well-known streamwise-periodic drifting
waves that go by the name of Tollmien–Schlichting waves (TSW, figure 1aA; an
online supplementary movie is available at http://dx.doi.org/10.1017/jfm.2015.440).
The critical wavenumber is kc = 1.02056.

When considered at constant Re<Rec (figure 2, R1), TSWs appear as disconnected
closed loops with a limited range of existence k0 ∈ [k0min(Re), k0max(Re)], such that
within these limits two solutions exist for any given k that may be classified as either
upper (UB, continuous and dashed lines) or lower (LB, dotted) branch. We have
followed the steps of Pugh & Saffman (1988) and Jimenez (1990) in computing the
superharmonic stability of TSWs to validate our numerics. Lower-branch TSWs are
mere saddles, while upper-branch TSWs, which are initially stable, undergo a series
of transitions into increasingly complex flows that result in chaotic dynamics well
before Rec is reached (Jimenez 1990) (see the unstable regions – dashed lines – of
R1 in figure 2). When considered in longer domains, though, TSW trains exhibit
subharmonic instability.

For the subharmonic stability we have systematised the analysis of Drissi et al.
(1999) to explore up to Re = 3000 in domains of length Λ = (2π/k0)n with n 6
6 ∈ N. Figure 2 represents a normalised measure of the amplitude of the solution
(‖a‖ = [∑`m |a`m|2

]1/2) against the extent of the periodic domain as measured by
the smallest wavenumber (k= 2π/Λ) it can accommodate. Thus, the TSW family R1
appears replicated in figure 2 at k= k0/n for n∈N, each replica representing a train of
n TSWs that fits exactly once into the domain under consideration (Rn TSW solution,
standing for n replicas).

At large enough Re and low enough k, the TSW iso-Re curves start to intersect
(see the fading Rn families in figure 2), indicating that the same periodic domain can
take various TSW trains including different numbers of replicas of the appropriate
wavelength. The subharmonic bifurcation analysis results in a set of curves in
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Re–k parameter space that reduce to bifurcation points when considered at constant
Re (open circles). These points, together with the saddle–node points, divide each
iso-Re loop of TSWs into segments with a different count of unstable eigenmodes.
A distinction has been made between the unstable LB (dotted), the stable part of the
UB (solid) and, if present, the subharmonically unstable portions of the UB (dashed).

All subharmonic instabilities happen to be of the Hopf type, such that emanating
solutions incorporate a modulational frequency in addition to the degenerate frequency
associated with the streamwise solid-body motion of the TSW. We have continued the
modulated Tollmien–Schlichting waves (MTSWs) to analyse the nonlinear evolution
of the streamwise modulation resulting from the subharmonic instability. The family
of MTSWs has a convoluted dependence on the parameters that hinders a simple
interpretation, which is resolved by analysing one parameter at a time.

Some of the constant-Re branches go from a train of a certain number n of TSWs
to another train with the same number of TSWs with an interim of a mild temporal
modulation that introduces a group velocity on top of the phase velocity of the TSW.
Figure 1(c) recreates one such continuation, for an Re = 2800 branch of MTSWs
connecting with R5 at both ends (short orange line in figure 2), by picturing the
evolution of vorticity on a streamwise section at y=−0.9 as progress is made along
the continuation curve. The maximum departure from steadiness is labelled D and
vorticity contours are shown in figure 1(a)D.

Other branches evolve into localisation. Figure 1(b) shows the branch issued, also at
Re= 2800, from the instability of a slightly longer TSW (figure 1aA) to perturbations
of a shorter wavelength that modulates trains of four replicas (R4). The localised
solution of figure 1(a)C (online movie) shares key features with puffs and spots in
other shear flows: while the leading edge modifies the laminar flow in the midplane,
the trailing edge has a tendency to attach to the walls. The process that leads to the
localised solution is nevertheless non-monotonic, as weak TSWs try to grow within
the quasilaminar space left in between separating replicas. Traces of these weak
TSWs appear as fading coloured bands in figure 1(b) and are manifested in figure 2
(long orange line) as failed attempts of the branch to loop back to reconnect with a
longer train of TSWs. The first attempt at reconnection is labelled B and shown in
figure 1(a)B (online movie). The MTSWs labelled B and D in figure 1 correspond to
turns of the continuation branches facing each other in figure 2 (orange lines). The
snapshots, shown in figure 1(a), indeed bear some resemblance to one another, which
indicates proximity. As a matter of fact, the two branches approach at these points as
Re is increased, collide and separate into two new branches at Re = 3000, one that
localises from R5 and another that connects R4 to R5 (blue lines). This latter branch
shows a tendency to localise, as evidenced in figure 1(d) by the widening grey region
half-way along the continuation, but rectifies in a loop to end up incorporating a new
replica of TSWs. The snapshot labelled E and depicted in figure 1(a)E is in fact
related to B and D through a codimension-two bifurcation point somewhere around
(k,Re)∼ (0.3, 2900). This trend is corroborated at Re= 3500 (green lines), where the
branch localising from R5 at Re = 3000 has already evolved into a loop connecting
R5 to R6.

It might be argued that, unlike the localised MTSWs studied here, streamwise-
localised solutions in other shear flows are not patterned (Duguet et al. 2009;
Mellibovsky et al. 2009), so that the localisation mechanism might be fundamentally
different from the one we describe. However, there is evidence that pipe Poiseuille
localised solutions (Avila et al. 2013; Chantry et al. 2014) are indeed patterned,
except that the wavy structure is in fact masked by the rather short modulational
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FIGURE 3. (a) The Re-continuation of MTSWs (solid lines; at k values as indicated in
figure 2) compatible with subharmonic modulation of the k= 1.2 TSW (dotted) and their
connections with LB TSWs. The circles, triangles, squares and diamonds represent n=3–6
subharmonic Hopf bifurcations respectively. Irrelevant MTSWs have not been plotted for
clarity. The cross marks the first superharmonic Hopf bifurcations. The scale and labels
for the x-axis are shared with those of (b). (b) The MTSWs at neighbouring values of k
and (c) corresponding space–arclength diagrams. Here, R4 and R5 denote connections to
TSWs, while Q indicates solutions closely related by a codimension-2 point.

envelope. Chaotic sets developed from extended versions of these solutions clearly
exhibit wavetrains with a varying count of wave periods embedded (authors’
unpublished observations). This will most probably be the case for localised plane
Couette and plane Poiseuille solutions too (Brand & Gibson 2014; Zammert &
Eckhardt 2014). The non-snaking localisation mechanism (Burke & Knobloch 2006)
found in double-diffusive convection (Beaume, Knobloch & Bergeon 2013b) cannot
apply to plane Couette, plane Poiseuille or pipe flows, as the required condition that
a non-trivial streamwise-independent state exists is not fulfilled by any of these flows.

It is clear from k-continuation that MTSWs connect with both upper- and lower-
branch TSWs, and how this comes about when smoothly varying Re at constant k
is vital to putting the snaking hypothesis to test. The simplest approach to the issue
is to select a TSW with fixed k0 as a reference and restrict the Re-continuation of
MTSW branches to domains with k= k0/n, n∈ 3, 4, 5, 6 . . . . We have chosen k0= 1.2
to have some of the continuation branches cut right through the loops (see figure 2).
Figure 3(a) shows Re-continuation branches for k = k0/4, k0/5 and k0/6. The k =
k0/4 branch (continuous black line) connects seemingly uneventfully an LB R3 with a
UB R4. The k0/5 branch (dark grey), which cuts right through a k-continuation loop,
seems to hint at a snaking-like process by incorporating a back-and-forth detour in
the otherwise uneventful connection of an LB R4 and a UB R5. The k0/6 branch
(light grey), however, while still connecting with an LB R5, challenges the pattern by
neither connecting with a UB nor even hinting at an approach to connect at higher Re.
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Although for some particular moderate values of k, Re-continued branches of
MTSWs bend back and forth in a snaking-like fashion connecting different trains
of TSWs that fit in the same domain, the accumulation process that is typical of
spanwise localisation is not robust. Figure 3(b,c) shows how small variations in
k disrupt the continuous single branch (continuous blue line), which breaks into
two separate branches (dashed orange) that reach high Re values, possibly infinity.
While both continuations evolve parallely away from LB R4 TSWs, one manages
to incorporate a new replica (k = 0.24075) and connect to R5, while the other
keeps the modulation and a certain localisation for increasing Re (k = 0.24100). For
large enough domains, it appears utterly improbable that a localised MTSW will
robustly accumulate the number of bends that are required before connection to
a full train of UB TSWs is effective. Instead, most, if not all, of the bends will
have broken up producing disconnected families of localised MTSWs of different
lengths. The k= 0.2 upper lobe in figure 3(a) (light grey) is a clear example of how
disconnected families of solutions with different modulated wavenumber counts can
arise in the same domain. In longer domains this will result in disconnected localised
solutions of different lengths. Even when one of these bends exists, there also exists
a disconnected branch of MTSWs that appears in a saddle–node at a higher Re
and faces the saddle–node of the bend. It is precisely the collision of these two
saddle–nodes upon smoothly varying k that disrupts the snaking mechanism. This is
reminiscent of the blending of separate regions of regular and semi-infinite snaking
into a unique region of semi-infinite snaking observed for some parameter values of
the Swift–Hohenberg equation (Burke & Knobloch 2006). Furthermore, the existence
of a conserved quantity, which in our case is mass flux, accounts for the slanted
arrangement of the leftmost saddle–nodes (Dawes 2008; Beaume et al. 2013a), thus
allowing for localised solutions to exist at lower and higher values of the parameter
than are possible in regular snaking. Physically, this means that while the multiplicity
of spanwise-localised solutions of different lengths is restricted to a finite Re range
(where the bends exist, within the broadened Maxwell point), a surging number of
streamwise-localised solutions of varying length extending to high Re appears as
longer domains are considered.

Figure 4(a) illustrates the accumulation process of loops at Re= 4500 and k around
1.2 (R10). The leftmost loop in figure 2 (green line) at Re= 3500 has stretched and,
as TSWs get cluttered in longer domains at higher Re, continuation loops of MTSWs
start overlapping in k. Each loop implies a disconnection of MTSW branches when
continued in Re, such that three lobes are expected for k= k0/10= 0.12 in figure 4(b).
As a matter of fact, the domain size chosen cuts right through the rightmost end of
the loop, which indicates that the upper lobe is just forming. For k slightly lower,
the three lobes are perfectly established. This completes the picture of the intricate
accumulation process. As the domain size is increased, an upper branch forms from
a longer train of shorter TSWs that combines with the uppermost existing lobe as the
rightmost part of the iso-Re loop is encountered. Meanwhile, the pre-existing lobes
get compressed and the lowest two connect and merge as the leftmost side of the
loop is crossed (as shown in figure 3b). All in all, as loops accumulate, the creation
of new lobes at the top is faster than the merging of lobes at the bottom and an
increasing number of disconnected branches coexist as longer domains are considered.
The snapshots in figure 4 correspond to the saddle–nodes of the various lobes. It is
clear that longer localised MTSWs, embedding a higher count of TSW replicas, are
encountered as higher lobes are considered. All of these solutions coexist beyond large
enough Re in sufficiently long domains.
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FIGURE 4. (a) The k-continuation of MTSWs at Re = 4500 issued from subharmonic
instability of R8–R10 TSWs. (b) The Re-continuation of MTSWs at k= k0/10= 0.12. The
cross marks the first superharmonic Hopf bifurcation. The snapshots correspond to the
saddle–nodes of the three disconnected branches of MTSWs. The dash-dotted lines in (a)
and (b) indicate the cross-sections depicted in (b) and (a) respectively.

Symmetries and the nature of the existing non-trivial extended solutions play
a key role in homoclinic snaking. Regular snaking results from stationary front
pinning to the wavetrain underlying the localised solution (Burke & Knobloch 2006).
Homogeneous extended solutions give rise to non-snaking behaviour as the fronts can
pin to the underlying solution regardless of its spatial extent, but only so for values of
the governing parameter corresponding to Maxwell points (Burke & Knobloch 2006;
Beaume et al. 2013b). No such behaviour can be expected in the streamwise direction
of any of the usual shear flows, as all secondary solutions are patterned. Regarding
symmetries, the absence of space reversibility due to the fore–aft broken symmetry
of Poiseuille flow introduces significant modifications to the snaking scenario, as
demonstrated for simple models such as the Swift–Hohenberg equation (Burke,
Houghton & Knobloch 2009). Among the predicted changes, we have observed the
obvious drift of the localised solutions, but no such thing as the disconnection of
snakes and ladders into isolas has been detected. Although snaking was originally
discovered and studied in variational systems, it is a well-known fact that the problem
needs not be variational in time to produce this type of behaviour, as demonstrated for
dissipative systems such as plane Couette flow (Schneider et al. 2010). Finally, the
introduction of a large-scale neutral mode (Dawes 2008), associated with the existence
of a conservation law, results in a substantial enlargement of the region of existence
of localised states, and the snaking branches become slanted. Two-dimensional PPF
conserves mass flux (or, alternatively, the mean pressure gradient), which justifies the
slanted arrangement of the leftmost saddle–nodes even if snaking has been disrupted
and isolated branches of localised solutions have emerged.

5. Concluding remarks

We have adopted a streamfunction formulation for two-dimensional flows and
introduced a set of purposely developed numerical methods to solve and track in
parameter space both travelling and modulated travelling wave solutions, as well as
to compute their linear stability.

We have used these methods to dissect the mechanism for shear flow streamwise
localisation through its analysis in the paradigmatic case of two-dimensional PPF
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in order to unveil its resemblance yet at the same time essential differences with
spanwise localisation. While its emergence follows subharmonic instability of a
periodic wave, the snaking mechanism whereby a long spatial modulation develops
into a localising envelope that confines a shrinking wavepacket via the successive
loss of wave replicas decisively breaks down. As a result, while the multiplicity of
spanwise-localised solutions of different lengths is restricted to a limited Re range, in
very long domains branches of arbitrarily long streamwise-localised solutions – their
length necessarily quantised – extend to high Re, thus potentially contributing to the
formation and growth of a chaotic saddle that may sustain turbulent transients. We
have found evidence, in a much longer domain with k= 0.08, of phenomena such as
quasiperiodicity and chaos, a precursor to turbulence, as well as splitting of localised
spots. A thorough analysis of the mechanisms behind these observations is underway
but beyond the scope of the present study.

In simple models featuring snaking, localised solutions can be understood as
homoclinic orbits of the spatial ordinary differential equation that results from
dropping the time derivative (Kirchgässner 1982; Budd & Kuske 2005). These
homoclinic orbits go from the base flow (a spatial fixed point) back to the base flow,
with a natural number of intervening quasiorbits around the non-trivial patterned flow
(a spatial periodic orbit), hence the qualifier homoclinic with which the word snaking
is commonly prefixed. In the limit, a front can be interpreted as a heteroclinic orbit
joining the base state and the patterned state. This simple interpretation does not
apply to localised solutions in shear flows such as plane Poiseuille or pipe Poiseuille
(at least not straightforwardly), as the modulational nature of solutions precludes
stationary front pinning, such that time dependence cannot be eliminated from the
partial differential equation. Recent studies in our same set-up of two-dimensional
PPF suggest that at high Reynolds numbers where turbulence expands, the analysis
of laminar–turbulent interfaces may require a specific treatment (Teramura & Toh
2015).
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