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Abstract. A comprehensive study of the linear stability of the Taylor-Couette prob-
lem with imposed axial effects is examined. The study will be focused on two different
flows: Spiral Couette (SCF) and Spiral Poiseuille (SPF) flows. In SCF flow, the axial
effect is introduced by an inertial axial sliding mechanism between the cylinders. In
the SPF, the axial effect is introduced via an imposed axial pressure gradient. For both
problems, a wide range of parameters has been explored. In both systems, zeroeth
order discontinuities are found in the critical stability surface; they are explained as
a result of the competition between the centrifugal and shear instability mechanisms,
which appears only in the co–rotating case, close to the rigid body rotation region. In
both problems, good agreement with the experimental results has been obtained.

1 Introduction

We consider an incompressible viscous fluid which is contained in the gap be-
tween two concentric cylinders that rotate independently about a common axis
at constant angular velocities. An axial motion is induced by an inertial sliding
of the cylinders relative to one another along the pipe axis in the SCF, and by
an imposed axial pressure gradient in the SPF case. The basic motions whose
linear stability will be studied are, therefore, a superposition of the Couette flow
in the azimuthal direction and the axial velocity field induced by the relative
sliding, in the former case or by the axial pressure gradient in the second, [13].

The SCF problem was first studied in [15] and [14], where an inviscid stability
criteria in the narrow gap case was obtained. The experiments carried out in [14]
are, as far as we know, the only experiments made in this problem until now. The
general problem was studied in [22] and in [12] with special emphasis in energy
methods; an excellent review can be found in [13], chapter VI. In a recent work,
[2], a linear stability analysis of the Spiral Couette flow was carried out, in the
stationary outer cylinder case, in the so called enclosed geometry, which includes
end effects. The more general problem of oscillatory sliding has been recently
considered in [11] and [17], whose numerical simulations are in good agreement
with the experimental results reported in [28].

The first approaches to the study of the stability of the SPF were carried
out in [6] and in [10]. In a more recent study, reported in [25], both numerical
and experimental, it was demonstrated that the axial effects may stabilize or
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instabilize the basic flow depending on the sign of the speed rotation ratio of the
cylinders. Our study provides the first comprehensive numerical exploration of
the linear stability of the SPF flow, covering a wide range of angular velocities,
being focused on the co-rotation situations because of the presence of new phe-
nomena not observed before. The numerical computations reported here were
carried out for the same experimental parameters used in [25].

We have found that SCF and SPF exhibit zeroeth order discontinuities in
their critical surface, a result recently reported by the authors in [20] for the SCF.
In both cases, this pathology is due to a common fact; the competition between
centrifugal and shear instability mechanisms. Mathematically, the spectra of
the linear stability operators exhibit radical changes in the space of physical
parameters. In other words, the spectra may be, in both problems, split up
in two independent subsets, associated to the two instability mechanisms. The
behaviour of both subsets is independent of each other, swapping radically their
dominance in the transition in different parts of the space of physical parameters.

An understanding of the stability of these flows could have applications in
some industrial processes like the purification of industrial waste water, the
production of wire and cables and the optical fibre fabrication techniques, see
[23], [26] and [4]. In all of them, axial sliding and axial pressure gradients in a
cylindrical annulus takes place, and the rotation of one or both cylinders may
change the stability and properties of the flow.

The work is structured as follows. Section 2 is devoted to the SCF. In Sec.
2.1 the linear stability in the standard normal mode analysis is formulated. In
Sec. 2.2 the difficulties encountered when computing the neutral stability curves,
and the algorithms we have used, are described. The linear stability analysis for
η = 0.5 is explained in detail in Sec. 2.3. The mechanism of competition between
centrifugal and shear instability mechanisms is explained mathematically as an
abnormal behaviour of the topological structure of the neutral stability curves.
Comparisons with experimental results for η = 0.8 are reported in Sec. 2.4.
Section 3 is devoted to the linear stability analysis of the SPF. In Sec. 3.1,
the stability analysis for η = 0.5 is reported and comparisons with previous
numerical and experimental works are provided.

2 Spiral-Couette Flow

Spiral-Couette flow is the term used to describe fluid motion between two con-
centric rotating cylinders, whose radius and angular velocities are r∗i , r∗o and Ωi,
Ωo respectively. The annular gap between the cylinders is d = ro − ri. In addi-
tion, the inner cylinder is moving parallel to the common axis with a constant
velocity Uc (see Fig. 1). The independent nondimensional parameters appearing
in this problem are: the radius ratio η = r∗i /r∗o , which fixes the geometry of the
annulus; the Couette flow Reynolds numbers Ri = driΩi/ν and Ro = droΩo/ν
of the rotating cylinders and the axial Reynolds number Rz = dUc/ν measuring
the translational velocity of the inner cylinder. Henceforth, all variables will be
rendered dimensionless using d, d2/ν, ν2/d2 as units for space, time and the
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Fig. 1. Physical description of the Spiral-Couette problem. The basic axial-azimuthal
flow has also been depicted

reduced pressure (p∗/%∗). The Navier–Stokes equation and the incompressibility
condition for this scaling become

∂tv + (v · ∇)v = −∇p + ∆v, ∇ · v = 0 . (1)

Let (u, v, w) the physical components of the velocity v in cylindrical coordinates
(r, θ, z). The boundary conditions for the flow described above are:

u(ri) = u(ro) = 0 , (2)

v(ri) = Ri, v(ro) = Ro , (3)

w(ri, t) = Rz, w(ro) = 0 , (4)

where ri = η/(1 − η) , ro = 1/(1 − η) .
In order to compare with experiments and also with previous works, we are

going to consider the usually termed open flow case. The only experiments of
the Taylor–Couette flow with axial sliding of the inner cylinder known to us are
those of [14] which were carried out in an annulus with open endwalls. The steady
velocity field vB , independent on the axial and azimuthal variables, satisfying
(1), (2), (3) and , (4) is

uB = 0, vB = Ar + B/r , wB = C ln(r/ro) , (5)

as can be seen in [13]. The constants A, B, C are given by

A =
Ro − ηRi

1 + η
, B =

η(Ri − ηRo)

(1 − η)(1 − η2)
, C =

Rz

ln η
. (6)
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2.1 Linear Stability of the SCF.

In the preceding section the basic flow was obtained. We now perturb this ba-
sic state by a small disturbance which is assumed to vary periodically in the
azimuthal and axial directions:

v(r, θ, z, t) = vB(r) + u(r)ei(nθ+kz)+λt , (7)

p(r, θ, z, t) = pB(r, z) + p′(r)ei(nθ+kz)+λt , (8)

where vB = (0, vB , wB) is given by (5), n ∈ N, k ∈ R, λ ∈ C and the boundary
conditions for u are homogeneous, u(ri) = u(ro) = 0. Linearizing the Navier–
Stokes equations about the basic solution, we obtain the eigenvalue problem

λu = −∇p′ + ∆u − vB · ∇u − u · ∇vB . (9)

In order to solve (9) numerically, a spatial discretization of the problem is accom-
plished by a solenoidal Petrov-Galerkin scheme [19]. A comprehensive analysis
of the method can be found in [21] or [3]. The discretization scheme leads to a
generalized eigenvalue problem of the form

λGx = Hx , (10)

where matrices G and H explicitly depend on the physical parameters of the
problem (see [20], for details).

Let us consider the symmetries of our problem. The Navier–Stokes equations
are invariant with respect to the specular reflections {z → −z, w → −w} and
{θ → −θ, v → −v}. They are also invariant with respect to rotations around the
axis, axial translations and time translations. The boundary conditions break
some of these symmetries. Ri or Ro different from zero breaks the specular
reflection θ → −θ, and Rz 6= 0 breaks the specular reflection z → −z. In order
to keep the invariance we must change the sign of these Reynolds numbers, and
of the corresponding wavenumbers n and k in the solutions of the linearized
system (10). Therefore the symmetries allow us to restrict the computations to
the cases Rz > 0 and Ri > 0. Furthermore, since the Navier–Stokes equations
are real, the complex conjugate of a perturbation (7, 8) is also a solution, and
we can change simultaneously the sign of n, k and the imaginary part of λ. Then
we can restrict the computations to the case k ≥ 0.

When n and k are nonzero, the eigenvector of the linear problem has the
form of a spiral pattern (see Fig. 9, showing an experimentally observed spiral
flow). The wavenumbers n and k fix the shape of the spiral. The angle α of the
spiral with a z–constant plane is given by tan α = −n/(rok) = −(1 − η)n/k.

If Rz = 0, the symmetry z → −z is not broken, and at the bifurcation point,
in the n 6= 0 case, we get two pairs of purely imaginary eigenvalues bifurcating
at the same time, representing spirals with opposite slope –or angle– [5]. These
spirals have opposite values of n. For Rz 6= 0, the corresponding eigenvalues split
apart, and one of the two spirals ±n becomes dominant. Therefore we expect
mode competition and switching between +n and −n for Rz close to zero.
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2.2 Computation of the Neutral Stability Curves.

It has long been known that whenever two or more control parameters repre-
senting different physical mechanisms for instability compete, one can observe
stability turning points, islands of stability, multiple minima, and large changes
in the critical azimuthal wavenumber. Examples include the competition between
buoyancy–induced shear and rotation in radially Couette–flow [1], between ro-
tation and axial sliding in modulated Taylor–Couette flow [17]. In the present
problem, the competition between wall–driven shear and centrifugal instability
mechanisms will lead to possible hysteresis experimental phenomena.

Let σ be the real part of the first eigenvalue of the linear system (10) which
crosses the imaginary axis. The stability of the basic flow is determined by the
sign of σ. For negative values of σ, the basic flow is stable under infinitesimal
perturbations. When σ is zero or slightly positive, the steady flow becomes un-
stable and bifurcated secondary flows may appear. It should be remarked that
σ(n, k, η,Ri,Ro,Rz) is a function of the physical parameters which play an es-
sential role in the dynamics of the system. For fixed η, Ro, Rz, and given n, k the
inner Reynolds number Ric(n, k) such that σ = 0 is computed. The critical inner
Reynolds number is given by Ricrit = minn,k Ric(n, k), and the corresponding
values of n, k are the critical azimuthal and axial wavenumbers ncrit, kcrit which
will dictate the geometrical shape of the critical eigenfunction, which may be a
spiral flow or travelling Taylor vortices.

The curves in the (k,Ri) plane given by σ(k,Ri) = 0 are commonly termed
Neutral Stability Curves (NSC). The main goal at this stage is to compute the ab-
solute minimum of the NSC, which will give the critical parameters (kcrit, Ricrit)
– in fact, the absolute minimum of the set of the NSC corresponding to integer
values of n will be found. As it will be seen later, the NSC curves for this problem
may have multiple extrema (maxima and minima), exhibit disconnected parts
and sharp geometrical forms. Furthermore, these curves may exhibit multival-
ued branches as functions of k, and these features can change abruptly in some
parameter ranges (see Fig. 2). Standard methods applied to a regular grid in the
plane (k,Ri) require exorbitantly high accuracy computations. Consequently, an
alternative 2-dimensional Newton-Raphson method has been used; see [19] for
details.

2.3 Stability analysis for η = 0.5

The computation of Ric(Rz,Ro) for the wide gap η = 0.5, gives as a first striking
result the presence of a zeroth–order discontinuity in Ric, in the co–rotating case
(Ro > 0). Although this behavior has been considered possible by some authors,
[7], specific examples showing this kind of discontinuity are very unusual in the
fluid mechanics literature.

For Ro = 200 the discontinuity appears for Rz = 82.63. We have shown in
Fig. 2a the critical Ri as a function of k. For Rz = 80 the dominant mode is
n = −1, giving Ric = 373.43 and kc = 1.68; but for Rz = 82.63 the marginal
stability curve of the n = −4 mode develops an island of instability for a much
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lower Ric = 119.13, introducing a discontinuity in Ric. Notice too that the
change in ncrit is not ±1 as usual, but it changes in three units. The island of
instability is very small (Fig. 2a, Rz = 84), becoming larger when we move away
of the discontinuity. All these features make the numerical computation of the
critical parameters very difficult from the algorithmic point of view. For these
reasons we have developed specific numerical methods, outlined in [20], in order
to detect the islands as soon as they appear. Similar islands of instability have
been found in [17]. Before crossing the Ric discontinuity, the marginal stability
curve for n = −4 has a single extrema, a minimum (Fig. 2a, Rz = 80), giving the
critical parameter values (Ric, kc). After crossing, and due to the appearance of
the island, we have three extrema, two minima and a maximum, and the marginal
stability curve has two disconnected branches. If we move to higher Rz values,
the island grows until it merges with the other branch (Fig. 2a, Rz = 120, 122);
the marginal curve has now a single minimum. Plotting the position of all the
extrema as a function of Rz, we get an S-shaped curve, displayed in Fig. 2b; the
solid curve gives the absolute minimum, and the dashed curve corresponds to the
other extrema. The critical Reynolds number Ric becomes discontinuous (zeroth
order discontinuity) as soon as the island of instability appears for Rz = 82.64;
experiments made by increasing Ri and Rz held fixed would report the solid
curve in Fig. 2b. The whole critical surface is multivalued and continuous, but
is folded in such a way that a cusp develops; Fig. 3a shows a perspective view
of the critical surface. Fig. 3b shows the same critical surface with the curves
corresponding to a change in the critical azimuthal wavenumber n, where the
surface is not smooth (the tangent plane is discontinuous along these curves). The
projection of the curves corresponding to a change in the azimuthal wavenumber
n are plotted in Fig. 4. The edges of the cusp region are plotted as thick lines in
both Figs. 3b and 4. These discontinuities and fold structure may have important
consequences which could be detected experimentally, like hysteresis phenomena,
as well as the discontinuity in Ric.

Fig. 2.3 shows Ric and α as a function of Ro for different values of Rz. The
critical Reynolds number Ric (Fig. 2.3a) is almost independent of Rz in the
counter–rotating region Ro < 0. But in the co–rotating region, where the cusp
develops, we have two well–separated kinds of behavior. This figure is a front
view of the cusp structure (Fig. 3) along the Rz axis. For small axial sliding Rz,
before the discontinuity, Ric is very close to the values without sliding (Taylor–
Couette flow). For higher axial sliding, after the discontinuity, Ric falls to much
lower values. The axial sliding is destabilizing, except in the small region where
the axisymmetric mode (n = 0) is dominant. The destabilizing effect becomes
significant only in the co–rotating case, after the discontinuity. The centrifugal
instability seems to be the dominant mechanism (as in Taylor–Couette, Rz = 0)
except after the discontinuity, where a shear instability due to the axial sliding
becomes dominant; the cuspidal zone can be thought as the transition region
between both mechanisms. This qualitative change can also be noticed in the
angle of the spiral pattern α (Fig. 2.3c), which jumps from values less than 0.2
radians (10o) to values close to 1.2 radians (70o). We also notice that the shear–
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Fig. 2. (a) Formation and evolution of an island of instability for η = 0.5 and the
dashed one to n = −1. (b) The corresponding critical inner Reynolds number Ric as a
function of Rz (solid line); the dashed line is a section (Ro = 200) of the critical surface
(Fig. 5). The labels refer to the dominant azimuthal mode number n; the hollow circles
are the transitions between different n. Ric is discontinuous for Rz = 82.64
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Fig. 3. (a) Perspective view of the critical surface Ric(Ro, Rz) for η = 0.5 (b) Same
view, explicitly showing the changes in the dominant azimuthal mode n at criticality.
The edges of the cusp region are also plotted as thick lines
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Fig. 4. Dominant azimuthal mode n at criticality, as a function of Ro, Rz; η = 0.5.
The shaded region corresponds to the fold, whose edges are plotted as thick dashed
lines

instability dominated branch is very close to the solid body rotation line (see
Fig. 2.3a), where the centrifugal instability does not play a significant role; see
[16]. Figure 6 shows Ric and α as a function of Rz for different values of Ro
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Fig. 5. Critical parameters for η = 0.5, as functions of the outer Reynolds number Ro.
(a) Critical inner Reynolds number Ric; the solid straight line is the rigid rotation line
Ri = ηRo. (b) Angle of the spiral pattern α in radians

in the co–rotating case. In Fig. 6a sections of the cusp region are displayed; the
critical Ric is in fact the minimum of the values in the multivalued region, so
we have a discontinuity which grows when increasing Ro. The discontinuity has
been displayed in Fig. 6b.

The bicritical points where the azimuthal wavenumber n changes and two
eigenvalues bifurcates simultaneously are distinguished with a vertical bar. The
effect of the sliding on these axisymmetric modes is slightly stabilizing, in con-
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trast to their destabilizing effect on the non-axisymmetric modes, mainly in the
co–rotating region, an effect also reported by [2].

2.4 Comparison with experimental results (η = 0.8)

Some previous experimental studies have been reported on the stability of the
spiral Couette flow. In fact, in an excellent study done in [14], both theoretical
and experimental, a stability analysis has been devoted to an specific zone on
the parameter space, inside the cusp region. The experimental apparatus has
a gap η = 0.8, with open ends, corresponding to our open flow case. The ro-
tational speed of the external cylinder is held fixed at Ro ≈ 750. Ludwieg’s
experimental device needed high external rotation speeds in order to avoid pre–
turbulent stages induced by transients. The unique design of the experimental
apparatus enforced a linear dependence between axial velocity and azimuthal
rotation speed of the inner cylinder moving relative to an outer stationary cylin-
der (without axial velocity but rotating). As a result, the experimental paths in
the parameter space (Ri,Rz) were straight lines, as can be seen both in figs. 7,
8. Ludwieg’s experimental results (Fig. 7) are given in terms of two nondimen-
sional parameters c̃φ and c̃z which describe the motion of the fluid. As in [12],
we have used the values of c̃φ, c̃z to compare with Ludwieg’s results. A more
detailed discussion about the parameters used by different authors is given in
[20]. The dependence between c̃φ, c̃z and our variables Ri, Ro, Rz are given by
the following equations (for η = 0.8):

c̃φ =
1 + η

1 − η

Ro − Ri

Ro + Ri
, c̃z =

1 + η

1 − η

Rz

Ro + Ri
. (11)

For the η = 0.8 case the narrow gap approximation is not clearly justified. This
can be a source of error in the experimental values given by [14]. It would be
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Fig. 7. Ludwieg experiments. Experimental results, from [14]; η = 0.8, Ro = 750

necessary to know the original experimental results in terms of the Reynolds
numbers in order to work with the true control parameters Rz and Ri.

The experimental results of Ludwieg are summarized in Fig. 7. The shaded
area is the error bandwidth experimentally obtained. These errors are very large
in the fold region of the critical surface, and the reasons will be analyzed shortly
thereafter. Figure 7 also shows several stability criteria. Three of them, labelled
Ludwieg (nur rot. Stöc), Chandrasekhar and Howard und Gupta, were obtained
assuming axisymmetric perturbations, and using physical considerations as in
the Rayleigh’s criterion (labelled Chandrasekhar in Fig. 7). All of them are in
very poor agreement with the experimental data. Instead, Ludwieg’s stability
criterion, obtained by exactly solving the linearized Euler equations in the narrow
gap limit, is reasonably close to the experimental data.

A linear stability analysis of the Spiral Couette problem was reported by
Hung, Joseph & Munson (1972) (referred from now on as HJM), where only
particular regions in parameter space where considered. Their results are in good
agreement with some of Ludwieg’s results, although there where some unexplored
zones that the present work has studied in detail. We have computed the critical
curve for Ro = 750, which is single–valued considering Rz(Ri), but it is well
within the cusp region. The joint results of the three analyses have been sketched
in Fig. 8, which corresponds to the section Ro = 750 of the critical surface. Our
results are fully coincident with the previous computations of HJM, except for
two points on the left of the minimum of our critical curve in Fig. 8, where
the results of HJM clearly diverge from the experimental results. It is apparent
that the results of HJM are confined to the intermediate branch of the critical
surface fold, where the changes in Rzc are small. The other branches shows
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Fig. 8. Comparison between the experimental and theoretical results of Ludwieg
(1964), Hung, Joseph & Munson (1972) and the present work. Parameters: η = 0.8,
Ro = 750

very high slopes of Rzc(Ri); furthermore, the change in the critical azimuthal
wavenumber n is of more than 15 units in this range. This is an indication of the
difficulties HJM encountered outside the intermediate branch, which explains the
discrepancy of their two computed points in the high slope region of the stability
curve. The experimental results of Ludwieg show remarkable agreement with our

Fig. 9. Ludwieg experiments. Picture of the spirals, from [27]

numerical results. The best experimentally defined bifurcation points correspond
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to the vertical branch (where shear is the dominant instability mechanism), and
on this curve the discrepancies with our results are less than 4%; we must mention
that this is the first time the vertical branch has been computed numerically.
In the region close to the minimum of the critical curve, the onset of instability
is in very good agreement with the experiments, but some points on the right
side of the minimum clearly deviate from the numerical predictions. Notice that
the points A and B, marked with a black and white circle, where Ludwieg could
not decide about their stability, are very close to the hysteresis region, strongly
suggesting that the bifurcation could be subcritical in this region of parameter
space. Ludwieg acknowledged the experimental uncertainties in this parameter
region; Fig. 7b shows the estimated uncertainty as a dashed area. For a detailed
explanation of Ludwieg’s experimental procedure, see [14] or [20].

3 Spiral-Poiseuille Flow

The first study of the stability of the spiral Poiseuille problem against three-
dimensional perturbations, was carried out in [6] and in [10]. In [6], a monotonical
dependence between the critical parameters was assumed for axisymmetric and
non-axisymmetric perturbations. In a more recent study, reported by Takeuchi &
Jankowski in 1981, [25], both numerical and experimental, it was demonstrated
that the axial effects may stabilize or instabilize the basic flow depending on
the sign of the speed rotation ratio of the cylinders. Takeuchi & Jankowski (TJ)
experiments, are, as far as we know, the most recent ones and they were carried
out for the wide gap η = 0.5 case and for three different azimuthal angular speed
ratios of the cylinders (µ = Ωo/Ωi = 0, 0.2,−0.5).

A comprehensive numerical exploration of the linear stability of the spiral
Poiseuille flow is presented, covering a wide range of angular velocities, and being
focused on the co-rotation situations because of the presence of new phenomena
not observed before experimentally. The numerical computations were carried
out for the same wide gap case (η = 0.5) studied in [25] in order to compare our
numerical results with the experimental ones.

The independent nondimensional parameters appearing in this problem are
the same described SCF, where the axial sliding effect Rz is no longer present,
but replaced by the Poiseuille number, P = (∂zP

∗)(ro − ri)
3/%ν2, measuring

the imposed axial pressure gradient. A physical description of the problem can
be found in Fig. 10. As in the SCF, the azimuthal component of the basic
vector field is dictated by the Couette flow. The axial basic flow, represented
in Fig. 10, is now a superposition of logarithmic and parabolic profiles. The
explicit expressions for the basic flow can be obtained under the same symmetry
assumptions that in SCF; see [13]:

uB = 0, vB = Ar +
B

r
, wB = C ln(

r

ro
) +

P

4
(r2 − r2

o), (12)

where the constants A, B and C are

A =
Ro − ηRi

1 + η
, B =

η(Ri − ηRo)

(1 − η)(1 − η2)
, C =

1

ln η

P (1 + η)

4(1 − η)
. (13)
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Fig. 10. Physical description of the Spiral-Poiseuille problem. The basic axial-
azimuthal flow has also been depicted

3.1 Linear stability results (η = 0.5)

As before, the basic spiral Poiseuille flow vB = (0, vB , wB) is perturbed by a
small disturbance which is assumed to be periodic in the azimuthal and ax-
ial variables. The linear stability analysis is carried out by the same solenoidal
Petrov-Galerkin scheme, [19], already used in the analysis of the sliding case,
SCF, Sec. 2. The linear stability of the SPF has been explored in the range of
values Ro ∈ [0, 450], P ∈ [0, 1500] and Ri ∈ [0, 900]. The numerical algorithm
used to compute the neutral stability curves and their minima is the same that
was used in [20]. For each pair of values (P,Ro), the critical inner Reynolds
number Ric and the critical axial wavenumber kc are computed for different
values of the azimuthal wave-number n. The selection of the minimum Ri value
leads to a functional dependence Ric = f(P,Ro). Geometrically, the function
f defines a surface in the parameter space which is usually termed marginal
or critical surface. This surface is not regular, being not differentiable in the
points were the change of azimuthal dominance take place. This is a common
feature in hydrodynamic stability. In Fig. 11, Ro-constant sections of the criti-
cal surface have been depicted for low outer rotations. It can be observed that
the axial pressure gradient has a stabilization effect over the axisymmetric and
non-axisymmetric perturbations with low azimuthal wave number (|n| ≤ 3).
Nevertheless, for higher values of Ro, the transition curves exhibit multiplicity
with respect to the variable P and zeroeth-discontinuities due to the competi-
tion between centrifugal and shear instability mechanisms. Mathematically, this
phenomenon has the same explanation as in the SCF.

Figures 12a-d show the formation of an island of instability as long as the
Poiseuille number is increased, for a fixed outer rotation Reynolds number (Ro =
450). Initially, for P = 1000, the dominant azimuthal mode is n = −3, see Fig.
12a. For P = 1100, an island of instability appears. This island is associated
to another azimuthal mode (n = −6), being dominant and lowering radically
the critical Ri value in a factor of four approximately, see Fig. 12b. As long as
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Fig. 11. Ro–constant sections of the critical surface for low outer rotations. The curves
correspond to the values Ro = 5, 10, . . . , 50. The circles have been plotted in the tran-
sitions of azimuthal dominance n = 0,−1,−2, . . .. The first curve Ro = 0 agrees with
[25] (case µ = 0)

P is increased, the island grows in size, and eventually merges with the upper
branch of the n = −6 mode, as shown in Fig. 12c and Fig. 12d. Altogether,
this mechanism leads to the presence of a folding in the critical surface, in the
same way as it appeared in the SCF. As it can be observed in Fig. 13, the
critical curves exhibits a folding as long as the outer rotation Ro parameter is
increased. Figure 13 is a cross section of the critical surface plotted in Fig. 14 for
different values of Ro. For Ro > 250, the critical curves exhibit a multivalued
branch which can not be computed as a function of P . Therefore, Ri is the
fixed parameter in those branches, being Pcrit. the sought value for instability.
The whole phenomena can be observed globally in Fig. 14. This anomalous
behaviour has been already reported numerically in [20] and experimentally in
[14] for the spiral Couette flow.. Apparently, this anomaly was not detected in
TJ experiments because they worked in restricted planes Ro = µηRi. In Fig.
14, we have indicated two curves, named TJ1 and TJ2, which correspond to
the numerical and experimental exploration made by Takeuchi & Jankowski for
their cases µ = 0 and µ = 0.2, respectively. As depicted in Fig. 14, TJ numerical
and experimental exploration range is far away from the cuspidal zone where
the folding appears. The projection of the transition curves between different
azimuthal wavenumbers n has been plotted in Fig. 15. The projection of the
curves of maxima (M) and minima (m) of Fig. 14, which are the boundary
of the cuspidal zone, and where hysteresis phenomena may appear, are also
included in Fig. 15. Similar computations, not reported here, were done in the
counter-rotation (RiRo < 0) situations. Due to the dominance of the centrifugal
instability mechanism in this region, the critical surface exhibits a quite regular
behaviour, as in the SCF.



Axial Effects in the Taylor-Couette Problem 133

(a) (b)

0 2 4 6 8 10
0

200

400

600

800

k

R
i

P=1000

n=−3

0 2 4 6 8 10
0

200

400

600

800

k

R
i

P=1100

n=−3

n=−6

(c) (d)

0 2 4 6 8 10
0

200

400

600

800

k

R
i

n=−6 P=1200

n=−3

n=−6 

0 2 4 6 8 10
0

200

400

600

800

P=1300

n=−6

k

R
i

n=−6 

Fig. 12. Formation of an island of instability in the SPF for Ro = 450

4 Conclusions.

A comprehensive exploration of the linear stability of the Taylor-Couette flow
with imposed axial effects has been done. The study has been focused in two
particular problems, the Spiral Couette and Spiral Poiseuille flows. In both prob-
lems, complex critical behaviour has been detected for co-rotation situations.
The critical surfaces Ric = f(Rz,Ro) and Ric = f(P,Ro) exhibit zeroeth order
discontinuities which can only be detected making use of a specifically tailored,
efficient and robust numerical scheme for the computation of the neutral sta-
bility curves. This unusual phenomena in hydrodynamical stability problems
has been explained in terms of competition between two independent instability
mechanisms: in the current problems the centrifugal instability, dominant in the
counter–rotating regime and also for small axial effect, competes with the shear
instability induced by the axial motion. For the Spiral Couette flow, experimen-
tal evidences confirm this anomalous behaviour. For this problem, our numerical
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Fig. 14. Critical surface for the co-rotating Spiral-Poiseuille Flow. The label TC stands
for the Taylor-Couette curve (P = 0) which asymptotically tends to the Rayleigh’s
inviscid criterion of instability. TJ1 and TJ2 stand for numerical and experimental
explorations carried out in [25] for µ = 0 and µ = 0.2, respectively. M and m stand
for the curves of maxima and minima over the folding which form the boundary of the
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Fig. 15. Projection of the transition curves between different dominant azimuthal
modes n. The dashed lines correspond to the projection of the curves M and m from
Fig. 14

computations are in complete agreement with the experimental results and with
previous numerical approaches. For the Spiral Poiseuille flow, additional exper-
iments would be required to confirm the presented computations. Overall, both
problems would require suitable experimental procedures (i.e. independence be-
tween axial and azimuthal speeds) in order to properly detect the first instability
of the basic spiral flow, and explore the competition between the different insta-
bility mechanisms in the fold region.
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