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On the stability of medium gap corotating spiral Poiseuille flow
Alvaro Meseguera� and Francisco Marquesb�

Departament de Física Aplicada, Universitat Politécnica de Catalunya, C/ Jordi Girona 1-3, Modul B5,
Barcelona 08034, Spain

�Received 11 April 2005; accepted 14 July 2005; published online 15 September 2005�

New features of the linear stability of the spiral Poiseuille flow for a wide range of inner and outer
independent rotation speeds of the cylinders and imposed axial pressure gradient are investigated.
The analysis is focused on the corotating situation and for a particular radius ratio �=0.5.
Unexpected changes in the angle of the bifurcated spiral regimes are found for moderate values of
the axial speed as the outer rotation is increased. In particular, tricritical points are detected, where
modes associated with azimuthal wave numbers of opposite signs coexist at criticality. The present
study is extended to high values of the axial speed of the flow and, to the authors’ knowledge, the
complete critical surface in the three-dimensional parameter space is obtained for the first time,
providing new results on the behavior of the Tollmien-Schlichting instability. Increasing the rotation
rate of the outer cylinder, the Tollmien-Schlichting instability is no longer dominant, resulting in a
dramatic decrease in the critical axial Reynolds number. The sudden appearance of turning points in
the critical curves recently obtained by other authors is also explained in terms of the geometry of
the critical surface. © 2005 American Institute of Physics. �DOI: 10.1063/1.2046708�
I. INTRODUCTION

The spiral Poiseuille problem deals with the behavior of
an incompressible viscous fluid confined between two co-
axial cylinders independently rotating around their common
axis. In addition, the fluid is enforced to flow downstream by
an imposed pressure gradient in the axial direction. The re-
sulting steady spiral flow is a combination of a rotation due
to the azimuthal Couette flow and an axial parabolic profile,
due to the pressure gradient, also termed spiral Poiseuille
flow.1 Pressure-driven flows are of common usage in industry
for many purposes such as cooling of rotating electrical ma-
chinery, purification of industrial waste water, or optical fiber
fabrication techniques.2,3 Beyond the practical applications
of this kind of flows, there are many theoretical aspects that
are of interest for the fluid dynamicist regarding the stability
of the basic regime.

The stability of this flow has been studied numerically
and experimentally by many authors.4–9 A first comprehen-
sive linear stability analysis was provided by the present
authors8 for medium gap, where the study covered a wide
range of independent angular speeds of the cylinders as well
as axial flow velocities. A recent work9 has extended the
analysis to much higher axial velocities, for four values of
the ratio of the cylinders’ angular velocities; they have estab-
lished the connection between the Tollmien-Schlichting in-
stability typical of Poiseuille flow with the centrifugal insta-
bility due to the rotation of the cylinders. In this study some
of the results provided in our earlier studies8 were shown to
be inaccurate due to a lack of spectral resolution in the azi-
muthal direction when the outer rotation or the axial speeds
are moderately high. Although our previous results were cor-
rect for all axial speeds and low or moderate outer rotation
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velocities, more accurate computations are required when
centrifugal mechanisms become more important. The present
work corrects our previous analysis8 and presents a much
wider exploration in parameter space, extending previous
results,8,9 revealing new interesting phenomena, and provid-
ing some insights regarding the competition between cen-
trifugal and shear instability mechanisms.

The paper is structured as follows. The mathematical and
numerical formulations of the stability of the problem are
presented in Sec. II. A comprehensive study regarding the
particular difficulties that arise when computing the critical
values from the linearized Navier-Stokes equations is pre-
sented in Sec. III. The stability of the problem for low or
moderate axial Reynolds numbers is revisited in Sec. IV. The
main new result in this section is the existence of a curve on
the critical surface where the axial speed and angle of the
bifurcated spirals change sign, resulting in a drastic and un-
expected change in the bifurcated solution features. The ac-
curacy and reliability of the results have been carefully ana-
lyzed, making comparisons with earlier works8 where the
azimuthal resolution was insufficient and tricritical azimuthal
modes of opposite signs were overlooked. Finally, Sec. V is
focused on the stability of the flow for high values of the
axial Reynolds number, where the Tollmien-Schlichting in-
stability is found. The main new result in this section is the
computation of the critical surface in the corotating regime
for a wide range of outer rotation Reynolds numbers. In Sec.
V A a comparison with previous results9 is presented, with
very good agreement; the geometry of the computed linear
stability surface offers a nice explanation of the sudden ap-
pearance of turning points in the critical curves recently ob-
tained by other authors9 for fixed values of the ratio of the

cylinders’ angular velocities.
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II. STABILITY FORMULATION AND NUMERICAL
METHODS

We consider an incompressible fluid of kinematic viscos-
ity � and density � which is contained between two concen-
tric rotating cylinders whose inner and outer radii and angu-
lar velocities are ri

* ,ro
* and �i ,�o, respectively. In addition,

the fluid is driven by an imposed axial pressure gradient. The
independent dimensionless parameters appearing in this
problem are the radius ratio �=ri

* /ro
*, which fixes the geom-

etry of the annulus, the Couette flow Reynolds numbers Ri
=dri

*�i /� and Ro=dro
*�o /� of the rotating cylinders, where

d=ro
*−ri

* is the gap between the cylinders, and the axial Rey-
nolds number Re= w̄d /�, where w̄ is the mean axial flow in
the annulus and measures the imposed axial pressure gradi-
ent.

Henceforth, all variables will be rendered dimensionless
using d , d2 /�, and �2 /d2 as units for space, time, and re-
duced pressure �p= p* /��, respectively. The Navier-Stokes
equation and the incompressibility condition for this scaling
become

�tv + �v · ��v = − �p + �v, � · v = 0. �1�

Let v= �u ,� ,w�, the physical components of the velocity field
in cylindrical coordinates �r ,� ,z�. The boundary conditions
for v are

��ri� = Ri, ��ro� = Ro, �2�

where ri=ri
* /d=� / �1−��, ro=ro

* /d=1/ �1−��. The steady
velocity field vB �spiral Poiseuille flow�, independent of the
axial and azimuthal coordinates �� ,z�, and satisfying �1� and
�2� is

vB = �uB,�B,wB� = �0,Ar + B/r,C ln�r/ro� + D�r2 − ro
2�� ,

�3�

where A= �Ro−�Ri� / �1+��, B=��Ri−�Ro� / ��1−���1
−�2��, C=2�1−�2�Re / ��1−�2�+ �1+�2�ln ��, and D= �1
−���ln ��C / �1+��. We will use throughout the paper
�Ri ,Ro ,Re� as nondimensional parameters, keeping �=0.5
fixed. Other nondimensional groups are used by other au-
thors, such as the Poiseuille number P=−��p* /�z�d3 /��2,
the rotation rate ratio �=�o /�i, and the Taylor number. Dif-
ferent Taylor numbers can be found in literature, and we are
going to use Ta=d2�i /�, as defined in previous studies,6,9

for comparison purposes. The relationship between the dif-
ferent nondimensional numbers is

P =
8Re�1 − ��2ln �

1 − �2 + �1 + �2�ln �
, Ta =

�1 − ��Ri

�
, � =

�Ro

Ri
.

�4�

For �=0.5 we obtain P=11.9063 Re, Ta=Ri, and �
=Ro /2Ri.

The basic flow is perturbed by a small disturbance which
is assumed to be periodic in the azimuthal and axial coordi-
nates:

i�n�+kz�+�t
v�r,�,z,t� = vB + u�r�e , �5�
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p�r,�,z,t� = pB + q�r�ei�n�+kz�+�t, �6�

where vB= �0,�B ,wB� is given by �3�; the azimuthal wave
number must be integer �n�Z�, k�R, and ��C. The per-
turbation of the velocity field is solenoidal and also satisfies
homogeneous boundary conditions:

u�ri� = u�ro� = 0 . �7�

A formal substitution of the perturbed fields �5� and �6� in the
Navier-Stokes equations �1� leads to the eigenvalue problem

�u = − �q + �u − �vB · ��u − �u · ��vB, �8�

where nonlinear terms have been neglected. The boundary
value problem �7� and �8� is numerically discretized, making
use of a solenoidal Petrov-Galerkin10 spectral method al-
ready formulated and tested in the study of other spiral
flows,11 where the perturbation velocity is approximated via
expansions of solenoidal fields built up from suitably modu-
lated Chebyshev polynomials in the radial direction. Explicit
expressions of the velocity fields used in the expansion are
given in Meseguer and Marques.11 For each �n ,k� azimuthal-
axial mode, the radial discretization over a Gauss-Lobatto
mesh leads to a generalized eigenvalue problem,

�G��,n,k�X = H�Ri,Ro,Re,�,n,k�X , �9�

where X contains the coefficients of the spectral approxima-
tion of the velocity field u. Due to the solenoidal constraint,
identically satisfied by X, the �n ,k� Fourier subspace is two
dimensional. Therefore, the matrices G and H resulting from
the projection of the linearized Navier-Stokes operator are of
size �2M +1�	 �2M +1�, where M is the number of trial
spectral functions used in the radial discretization. The prob-
lem is then reduced to the computation of the spectrum of
eigenvalues of �9� via any standard numerical linear algebra
package such as LAPACK. The condition of criticality is
obtained when the rightmost eigenvalue of the spectrum of
�9� crosses the imaginary axis �R�=0�. This condition must
be imposed for each set of values of the parameters, resulting
in an implicit dependence between the parameters of the per-
turbation �n ,k ,I�� and the set of Reynolds numbers
�Ri ,Ro ,Re�. The symmetries allow us to restrict the explora-
tion to the cases Re
0 and Ri
0. Furthermore, since the
Navier-Stokes equations are real, the complex conjugate of a
perturbation �5� and �6� is also a solution, and we can change
simultaneously the sign of n and k and the imaginary part of
�. Therefore, the exploration in the normal-mode analysis
can be reduced to the case k�0 and n=0, ±1, ±2,… . When
axisymmetric modes n=0 are dominant in the transition, the
bifurcated pattern is the Taylor vortex flow, provided that k
�0. In addition, if the imaginary part of the rightmost eigen-
value, �=I�, is not zero, these Taylor vortices will travel in
the axial direction with a constant speed c=� /k. When n and
k are nonzero, the eigenvector of the linear problem has the
form of a spiral pattern. The wave numbers n and k, together
with �, fix the shape and speed of the spiral. The angle 
 of
the spiral with a z-constant plane is given by tan

=−n / �rok�=−�1−��n /k; the speed of the spiral in the axial
direction �on a �-constant line� is c=−� /k, and the preces-

sion frequency in the azimuthal direction is �pr=−� /n.
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Let � be the real part of the rightmost eigenvalue � of
the spectrum of �9�. � depends on the physical parameters
and the axial and azimuthal wave numbers of the perturba-
tion: ��Ri ,Ro ,Re ,� ,n ,k�. For fixed values of � , Ro , Re,
and �n ,k�-azimuthal-axial normal mode given, the inner
Reynolds number Ric�n ,k� such that �=0 is computed. The
critical inner Reynolds number is given by Ric

=minn,kRic�n ,k�, and the corresponding values of n and k are
the critical azimuthal and axial wave numbers nc and kc

which will dictate the geometrical shape of the critical eigen-
function. Furthermore, the imaginary part of the critical ei-
genvalue �c gives the angular frequency of the critical eigen-
function. The critical values Ric , nc , kc, and �c are implicit
functions of the parameters � , Ro, and Re.

In order to visualize the flow corresponding to the criti-
cal modes, a helical streamfunction8 will be used. Due to the
periodicity �5� in �� ,z�, the eigenvectors are functions of two
coordinates only, r and �=n�+kz. This allows the introduc-
tion of a helical streamfunction ��r ,�� such that

u = −
1

r

��

��
, w =

1

kr
� ��

�r
− n�� . �10�

The fluid particles move on �=constant surfaces.

III. ON THE COMPUTATION OF CRITICAL VALUES

This section is focused on the multiple difficulties that
may appear when computing the critical values Ric as a func-
tion of Re and Ro, or those of Rec as a function of Ri and Ro.
The neutral stability curves �NSCs� may exhibit multiple
minima and disconnected regions of instability of arbitrary
sizes and shapes.8,9 This phenomenon is better understood
when looking at the neutral stability surfaces on a three-
dimensional projection. For example, Fig. 1�a� shows the
��Re ,Ri ,k�=0 isosurface for Ro=450 and n=−5 within the
range �Re ,Ri ,k�� �80,110�	 �100,900�	 �0,6�. The keel
shape of this surface is responsible for the multiplicity of
critical points and islands of instability. Figure 1�b� shows
the NSC cross sections of the neutral stability surface ap-
pearing in Fig. 1�a� for different values of Re. For Re
�78.72, the NSC has a unique minimum, but when Re
=78.72 a point of instability �black dot in Fig. 1�b�� appears
at �kc ,Ric�= �0.619,310.0�, in coexistence with the no longer
dominant critical value �kc ,Ric�= �3.673,748.8� of the upper
branch �white dot at the thick curve Re=78.72 in Fig. 1�b��.
From that value of Re on, a dominant island of instability
grows �the keel in Fig. 1�a�� and merges with the upper
branch �curves Re=80, 90, 100, and 110 of Fig. 1�a��. This is
just an example of how difficult it can be to detect the insta-
bility region and to compute the minimum value of the NSC,
even for a single azimuthal mode. This fact affects the ex-
ploration when varying Re since nothing is known in ad-
vance about the topological features of the NSC.

Another pathology that can be present in the structure of
the NSC is the coexistence of two minima with clearly dif-
ferent axial and/or azimuthal wave numbers. This is ob-
served in Fig. 2�a�, where the NSC corresponding to the n
=−4 and n=−2 modes for Ri=0 and Ro=198.485 have been

plotted in a semilogarithmic scale. At the top right of Fig.
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2�a� the NSC associated with the n=−2 mode consists of a
parabolic boundary with a minimum at �kc ,Rec�
= �1.47,1.013	104�. On the left, the NSC corresponding to
the n=−4 mode has also been included, whose minimum lies
close to the point �kc ,Rec�= �2.073	10−2 ,1.010	103�, thus
being the critical one. The corresponding values of kc differ
in two orders of magnitude, and the width of the instability
region for the n=−2 mode is of order O��k��1, whereas the
NSC curve of the dominant mode n=−4 has a very narrow
width of order O��k��10−3. In addition, very small varia-

c c

FIG. 1. �a� Neutral stability surface corresponding to the n=−5 azimuthal
mode for Ro=450. �b� Neutral stability curves for Re=80, 90, 100, and 110
corresponding to sections of �a�.
tions of Ro may lead to large increments in �k ,Ri �. Figure
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2�b� illustrates the rapid change of the topological structure
of the NSC for n=−4. For Ro=198.51, the critical point
�black dot in Fig. 2�b�� is located at �kc ,Ric�
= �0.029,7307.1�, whereas for Ro=199.02 the critical value
has decreased drastically �white dot in Fig. 2�b�� to the point
�kc ,Ric�= �0.092,2267.7�; a change of 0.26% in Ro changes
Ric by a factor of 3.2. Consequently, a fine grid in Ro needs
to be used in the exploration, increasing the computational
cost. Overall, the unexpected large variations of azimuthal
and axial wave numbers, in combination with the strong gra-
dients of the critical Reynolds numbers resulted in some er-
rors in our previous study.8

A comprehensive exploration in the �k ,Re� plane within
the interval �k ,Re�� �0,10�	 �0,1.5	104� on a regular
equispaced grid would require a huge amount of evaluations
of the spectrum of eigenvalues of �9� in order to detect the
instability tongue shown in Fig. 2�b� or the instability island
for Re=80 shown in Fig. 1�b�. For this reason, it is necessary
to work with a self-adaptive grid width, at least in the k
variable. The present computations have been carried out
using an evaluation method in a nonuniform grid kj with
increments �k=kj+1−kj which are suitably adapted at every

FIG. 2. �a� Neutral stability curves corresponding to n=−4 �bottom left� and
n=−2 �top right� for Ri=0 and Ro=198.485. �b� Close-up of the curve
corresponding to n=−4 in �a�.
point of the geometry of the function �. For this purpose, a
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local evaluation of the first derivative �k� provides some
insight on the behavior of the real part of the rightmost ei-
genvalue of �9�. It is clear, from Fig. 2�b�, that such a narrow
region of instability is directly related to strong variations of
��k�, for Re fixed. Wherever the algorithm detected high
values of �k�, the �k increments were automatically de-
creased to the required resolution. Once the algorithm de-
tected a change of sign, a secant method was applied to
converge to the desired critical minimum.

The reliability of the computed critical values lies on the
radial resolution used to approximate the spectrum of eigen-
values of �9�. It is a common practice to increase the number
of radial modes M or collocation points as long as any of the
Reynolds numbers is increased. The accuracy of the eigen-
values obtained might also be affected when increasing the
axial or azimuthal wave numbers if there is no automatic

FIG. 3. Minimum number of radial spectral modes M required for accuracy
as a function of the axial Reynolds number Re within the range Re� �1
	103 ,1.1	104�, and the axial wave number k, for Ri=0, Ro=0, and n=5.

FIG. 4. Critical surface Ric�Re ,Ro�. The shaded region corresponds to posi-

tive or zero azimuthal wave numbers.
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control of the radial order of approximation. As an example,
Fig. 3 plots the required minimum of radial modes in order
to compute the rightmost eigenvalue of �9� with a relative
error �r= ���max

M −�max
M0 � /�max

M0 � less than 10−3, where �max
M0 is

an “exact” or reference value obtained with M0=64. The
analysis in Fig. 3 corresponds to the particular case Ri=Ro
=0 �cylinders at rest� and azimuthal wave number n=5. In-
creasing n , Ri, or Ro requires more radial modes. The com-
putations presented in this work have been done monitoring
the value of M so that the rightmost eigenvalues computed at
any point of the parameter space are converged to four sig-
nificant digits.

IV. LINEAR STABILITY RESULTS FOR MODERATE Re

In this section, the exploration covers the corotation re-
gion �RiRo
0� within the range �Re ,Ro ,n ,k�� �0,125�
	 �0,450�	 �−10,10�	 �0,25�, for �=0.5. For each pair of
values �Re ,Ro�, the critical values Ric , nc , kc, and �c have

FIG. 5. �a� Projection of the critical surface boundary curves �Fig. 4� on the
�Re ,Ro� plane. �b� Ro-constant cross sections of the critical surface.
been computed.
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The critical surface Ric=Ric�Re ,Ro� has been plotted in
Fig. 4. This critical surface was previously computed,8 but
part of the results were incorrect, as was pointed out in a
recent similar study.9 The curves on the critical surface in
Fig. 4 correspond to changes in the azimuthal wave number
n. In these bicritical curves, two eigenvalues with different n
become simultaneously unstable. A projection of these
curves on the �Re ,Ro� plane, including the values of n, is
plotted in Fig. 5�a�. On many of these curves the change in n
is �n= ±1, but there is a curve �the thick line in Fig. 5�a��
where n changes sign, resulting in variations of n as large as
�n=12 units. These large increments in the azimuthal wave
number were overlooked by the exploring algorithm used in
the past in our earlier work.8 Only the region on the critical
surface where n�0 was correctly computed, and it has been
represented by a shaded region in Fig. 4. This large change in
n is one of the several difficulties mentioned in Sec. III that
make the computation of the critical surfaces in multiparam-
eter problems so difficult. Although the qualitative shape of
the stability surface is the same as the one that appeared in
our studies in the past,8 the critical parameters, such as the
angle of the spirals 
 or their propagation speed c, are con-
siderably different above and below the thick curve repre-
sented in Fig. 5�a� due to the change of sign of the azimuthal
wave number n.

In Fig. 5�b�, six cross sections of the critical surface have
been plotted for quantitative analysis. The transition points
between different azimuthal wave numbers have been in-
cluded in the Ro=450 curve in order to compare with other
studies;9 a very good agreement is observed between both
computations. The only difference is the location of the tran-
sition point between the n=0 and n=−1 modes,9 where this
transition seems to occur for Re�38.2, although in the
present computation this transition takes place for Re
=31.45 �a 20% change�, as can be observed from the neutral
stability curves plotted in Fig. 6. The authors believe that
there could be just a graphical, but not numerical, mistake in
Fig. 6 of Ref. 9 when marking the transition with a transver-

FIG. 6. Neutral stability curves of azimuthal modes n=0 and n=−1 for
Re=31.5.
sal slash at the incorrect location.
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When the outer cylinder is at rest �Ro=0�, axisymmetric
perturbations are dominant for Re�24.2. As long as Ro is
increased, the threshold value for dominance of axisymmet-
ric disturbances stagnates at nearly Re�31.5. Nevertheless,
the transition from axisymmetric to nonaxisymmetric azi-
muthal modes depends on the value of Ro. For instance, if
Ro�189, the transition is from nc=0 to nc=1. For Ro

189, the dominant mode is no longer nc=1 but nc=−1, and
this unexpected change was not detected in our previous
computations8 due to a lack of azimuthal resolution in that
region. This abrupt change in the angular dependence of the
critical perturbation leads to a transition to secondary spiral
regimes with opposite angle and speed. The thick curve in
Fig. 5�a� separates positive �or zero� from negative nonaxi-
symmetric modes. This curve is continuous, and the discon-
tinuities in slope are due to the fact that n is an integer. Along
this curve, tricritical points of coexistence of different spiral
regimes have been computed accurately. The coordinates of

TABLE I. Critical values at the tricritical points sho

n Re Ro R

P �

0

−1 31.61 188.3 39

1 376.4 0.2414

−1

1 34.29 212.0 43

−2 408.2 0.2438

1

−2 37.15 126.1 27

2 442.4 0.2329

−2

2 39.51 137.0 28

−3 470.4 0.2378

2

−3 45.03 110.7 23

3 536.2 0.2360

−3

3 46.59 115.9 24

−4 554.7 0.2413

3

−4 54.11 106.5 20

4 644.2 0.2563

−4

4 55.13 109.3 20

−5 656.3 0.2620

4

−5 64.29 108.2 17

5 765.5 0.3072

−5

5 66.09 112.2 17

−6 786.8 0.3248

5

−6 83.23 122.3 12

6 990.9 0.4854
these points and their associated transition values have been
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enlisted in Table I; the Poiseuille number P and the rotation
rate ratio � have also been included in the table. For low
values of Re the tricritical points have nearly the same rota-
tion rate �=�o /�i�0.24, but this property disappears when
increasing the axial speed of the basic flow. Above and be-
low the thick line in Fig. 5�a�, the bifurcated patterns are
remarkably different. The spirals appearing below the fron-
tier have a negative angle 
 and travel downstream with an
axial speed c close to the Poiseuille mean speed, whereas
above the bicritical curve both features, angle and axial
speed, change sign.

In order to visualize the flow, we have used the helical
streamfunction � introduced in �10�. The three spiral regimes
corresponding to the n= ±1, 2 tricritical point have been vi-
sualized in Fig. 7. Contours of � have been plotted in the
�r ,z� plane corresponding to �=0 in order to visualize the
inner structure of the eigenmode. Three-dimensional views
of two convenient isosurfaces �= ±constant have also been

Fig. 5�a�.

kc �c cc

3.206 −118.9 37.08

3.383 26.18 −7.740

4.541 −382.0 84.11

3.298 35.43 −10.74

4.575 −425.4 92.97

4.041 159.9 −39.58

4.011 −317.4 79.13

3.494 49.73 −14.23

4.868 −517.5 106.3

3.368 60.04 −17.83

4.807 −550.7 114.5

3.881 136.6 −35.19

4.171 −483.1 115.8

3.381 81.52 −24.11

4.966 −670.7 135.1

3.269 90.02 −27.54

4.872 −687.1 141.0

3.712 149.7 −40.32

3.961 −617.4 155.9

3.062 124.1 −40.51

4.747 −800.0 168.5

2.972 130.9 −44.05

4.641 −803.5 173.1

3.374 181.6 −53.84

3.421 −697.4 203.8

2.553 181.1 −70.93

4.115 −866.4 210.5

2.377 194.9 −82.03

3.847 −851.7 221.4

2.723 241.2 −88.56

2.067 −656.4 317.6

1.578 281.5 −178.4

2.509 −793.2 316.2
wn in

ic

0.1

4.9

0.8

8.1

4.5

0.1

7.7

8.6

6.0

2.7

6.0
included; dark/light isosurfaces correspond to negative/
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positive values, respectively. For each azimuthal mode, two
and a half axial wavelengths have been represented preserv-
ing the radial-axial scale for quantitave comparisons. The
plotted spirals differ not only in their angle, axial speed, or
periodicity, but also in the radial structure of the mode.
Negative modes n=−1,−2 �Figs. 7�a� and 7�c�� tend to be
clustered near the outer wall, whereas the positive mode
n=1 �Fig. 7�b�� is concentrated near the inner cylinder.

V. LINEAR STABILITY ANALYSIS FOR HIGH
Re

The present study has extended the exploration to higher
values of the axial Reynolds number. First of all, we com-
puted the critical axial Reynolds number for the particular
case when both cylinders are at rest, the so-called Tollmien-
Schlichting instability, already obtained by many
authors.9,12,13 In this particular case, for �=0.5 the modes
with n= ±2 are the first modes that become unstable in the
precipitous fall at Rec=10 359.2 for kc=1.478 25, in very
good agreement with �Rec ,kc�= �10 359,1.479�, obtained in a
recent analysis.9 In Table II, the critical values have been
tabulated as a function of the order M of radial approxima-
tion; in order to obtain six significative digits, at least M
=38 radial modes are required. These values confirm the
necessity of increasing the radial resolution when the axial
Reynolds number is particularly high.

The range covered by the present exploration is
�Ro ,Re�� �0,450.0�	 �0,2.0	104�, with −10�n�10 and
0�k�25.0. Figure 8 shows a view of the complete linear
stability surface of the corotating spiral Poiseuille flow,

FIG. 7. Eigenfunctions of Table I corresponding to the tricritical point at the
coordinates �Re ,Ro ,Ri�= �34.29,212.0,434.9�. From left to right, �a�
n=−1, �b� n=1, and �c� n=−2 for z� �−5� /2kc ,−5� /2kc�, where kc is the
associated critical axial wave number with each mode.

TABLE II. Convergence of critical values Rec and kc as a function of the
spectral order M for the critical Tollmien-Schlichting n= ±2-mode �Ri=Ro
=0�.

M Rec kc

26 10 858.19 1.47 030

30 10 392.89 1.47 916

34 10 359.05 1.47 857

38 10 359.23 1.47 828

42 10 359.25 1.47 825

46 10 359.24 1.47 825
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where a logarithmic scale has been used in the Re axis �from
1 to 2.0	104�. To the authors’ knowledge, this complete
surface within the corotating regime has never been com-
puted before. On this surface the curve corresponding to the
particular case �=0.5 has been plotted, and it will be studied
in detail in Sec. V A. The three-dimensional view makes
clear the presence of a turning point in some �-constant
curves, such as �=0.5 and the singular limit �→�, i.e., the

FIG. 8. Extended computation of the critical surface Ric=Ric�Re ,Ro� for
Ro� �0,450�. The dotted line on the surface corresponds to the particular
case �=0.5.

FIG. 9. Critical curves Ric�Re� for different constant values of Ro; only four

cases are included for clear visualization.
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intersection of the surface with the Ri=0 plane. This phe-
nomenon, directly associated with the effects of the outer
rotation Ro of the cylinder, will be analyzed later in Sec.
V A.

The three-dimensional view in Fig. 8 shows a region of
the �Re ,Ro� plane where the critical inner Reynolds number
is almost uniform. This plateau region is clearly visible for
axial Reynolds numbers within the range Re� �103 ,104� and
for low or moderate outer rotation Reynolds number Ro
� �0,100�. The critical surface exhibits a drastic fall for Re
�104 due to the sudden dominance of the Tollmien-
Schlichting instability. This feature disappears when increas-
ing Ro. For Ro
150, the plateau starts to decrease its height
gradually in the interval Ro� �150,200�, and finally merges
with the Ri=0 plane for an almost constant value Ro
=198.48.

Figure 9 displays the most relevant features at high Re of
the stability surface for different values of the outer rotation
Reynolds number Ro. The curves associated to Ro=0 and
Ro=100 share some qualitative features, although some dif-
ferences must be pointed out. In both curves, the inner criti-
cal Reynolds number Ric stagnates at an asymptotic value
before the Tollmien-Schlichting instability takes place. For
Ro=0, within the interval 400�Re�Re0

*=9915.6, the inner
c

FIG. 10. �a� Details of the critical curve Ro=100 near the Tollmien-
Schlichting instability region. �b� Neutral stability curves corresponding to
the azimuthal modes n=−2 and n=2 for Re=10300 and Ro=100.
rotation Reynolds number attains a critical value of Ri0

Downloaded 21 Sep 2005 to 147.83.27.121. Redistribution subject to 
=86.882, thus revealing a near independence of the stability
of the basic flow with respect to the axial shear �Fig. 9�a��.
The dominant azimuthal mode in this almost asymptotic re-
gime is nc=7, in agreement with previous computations9 for
�=0. At Re=Re0

*, the nc=2 azimuthal mode becomes domi-
nant, leading to a drastic fall of Ric within the range Re0

*

�Re�10 359.2, where the Tollmien-Schlichting instability
appears.

The geometrical features of the critical surface suffer
small, but relevant, changes when Ro is increased. For Ro
=100 and 850�Re�Re100

* =10071, the value of the critical
inner rotation decreases to Ri100

c =70.549, and the dominant
azimuthal wave number decreases as well to nc=6 �Fig.
9�b��. Above Re100

* , nc=2 becomes the dominant azimuthal
mode, starting a drastic fall of Ric. In contrast with the Ro
=0 curve, nc=−2 is the first mode that becomes unstable in
the precipitous fall at �Re ,Ri�= �10 354,20.5�, where the
critical boundary exhibits a turning point, shown in Fig.
10�a�, thus decreasing the axial Reynolds number in the
Tollmien-Schlichting region to Re=10241. This phenomenon
can be understood when looking at the NSC corresponding
to the modes n= ±2 in Fig. 10�b� for Ro=100 and Re
=10 300. According to the location of the maximum and
minimum of the two azimuthal modes shown in Fig. 10�b�,
there is a range of values of inner rotation Reynolds numbers
within which the basic flow remains stable. As a result, the
precipitous fall is multivalued �at least when Ro�0� near
the Tollmien-Schlichting region. The competition between
n=−2 and n=2 for low rotations is expected, since the rota-
tional symmetry is broken by the presence of very small
azimuthal speeds, relative to the axial velocity in that region.

The critical surface shown in Fig. 8 exhibits a flat pla-
teau followed by a precipitous fall for a moderate outer ro-
tation Reynolds number Ro. These features disappear above
a threshold value of Ro=198.48. The stability boundary for

FIG. 11. Stability boundary on the Ri=0 plane.
Ri=0 depicted in Fig. 11 for Ri=0 clearly shows the change
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of behavior taking place at Ro=198.48. The Tollmien-
Schlichting nc=−2 instability is dominant within the interval
Ro� �0,198.48−�. For Ro
198.48, the outer rotation be-
comes the dominant mechanism at the transition point
�Re ,Ro�= �10 128,198.48� with nc=−4. Within the range
Ro� �198.48+ ,263.4�, the axial critical Reynolds number de-
creases nearly by two orders of magnitude. This feature was
already pointed out in Sec. III as one of the unexpected pa-
thologies of the NSC shown in Fig. 2�b�. After this remark-
able fall, the outer rotation seems to stabilize the basic flow,
as reflected in the turning point of the transition boundary,
located at �Re ,Ro�= �242.4,375.1� on the plane Ri=0 in Fig.
8, above which increasing the outer rotation results in a small
increase in the stability of the base flow. Overall, Table III
contains the most relevant critical values of the boundary
plotted in Fig. 11.

Figure 12 shows the critical axial wave number kc as a
function of Re for the same values of Ro as in Fig. 9. An
interesting feature is that the axial periodicity of the second-
ary regimes is always bounded within the explored domain,
with a maximum value of k close to 5.0. For low or moderate
rotations, the axial wave number suffers a remarkable change
when approaching the Tollmien-Schlichting instability. For
Ro=0, the critical axial wave number decreases down to k−

=0.042 when increasing Re �the plateau with n=7 in Fig.
9�a� just before experiencing an increase by a factor of 35 up
to k+=1.4820, when the n=2 becomes dominant, reflected in
the isolated dots on the right of Fig. 12�a�. The same quali-
tative behavior is observed for Ro�198.48 �Fig. 9�b��, just
before the dominance of the outer rotation instability mecha-
nism over the axial shear. The decrease in k can be seen in
Fig. 12�c� and 12�d� for Ro=200 and Ro=400, where the
huge jump in k for large Re is absent.

Figure 13 shows the normalized axial speed c /Re as a
function of Re for the same values of Ro as in Fig. 9. The
dimensional axial speed is c*=c� /d= �c /Re�w̄, where w̄ is
the mean axial flow of the basic flow introduced at the be-
ginning of Sec. II. Therefore c /Re measures the axial speed
of the critical modes in units of w̄. If we had used d / w̄ as the

2

TABLE III. Critical values corresponding to the tran

Ro Rec nc

0 10 359 ±2

50.0 10 300 −2

100.0 10 241 −2

150.0 10 183 −2

198.48− 10 128 −2

198.48+ 10 128 −4

200.0 1 379.3 −4

250.0 310.31 −4

300.0 256.58 −3

350.0 243.44 −3

375.1 242.40 −3

400.0 242.86 −3

450.0 247.38 −3
time scale instead of the viscous time d /� �as in Refs. 6 and

Downloaded 21 Sep 2005 to 147.83.27.121. Redistribution subject to 
9, we would have obtained c directly in w̄ units. Therefore,
the relationship between the ccrit axial speed appearing in
Ref. 9 and our c is ccrit=c /Re. When the outer cylinder is at
rest or rotating with low speed �curves Ro=0 and 100 in Fig.
13�, the spirals have negative angles �
�0� and move
downstream with the basic axial flow with speeds slightly
higher than the Poiseuille profile. This behavior no longer

boundary of Fig. 11 for Ri=0.

kc �c cc

1.478 −6190.6 4188.5

1.476 −6118.8 4145.5

1.473 −6045.8 4104.4

1.469 −5971.8 4065.2

1.466 −5893.6 4020.2

0.021 144.8 −6896.7

0.152 136.0 −894.8

0.659 232.9 −353.4

0.605 240.8 −398.0

0.637 305.7 −479.9

0.643 339.6 −528.2

0.645 369.7 −573.0

0.646 432.8 −670.0

FIG. 12. Critical axial wave number kc as a function of Re for the same
sition
values of Ro shown in Fig. 9.
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persists for higher outer rotations �curves Ro=200 to 450 in
13�, and the spirals have the same helical orientation as the
basic flow �

0� but move upstream with speeds much
higher than in the low Ro case.

Three different eigenmodes have been plotted in Fig. 14,
showing the essential features of the secondary regimes for
high values of Re. Figure 14�a� shows an n=6 mode corre-
sponding to the plateau in Fig. 9�b� for Re=1066, Ro=100,
and Ric=70.78. The angle of the spirals is 
=−86° and 

→−90° when Re increases up to the Tollmien-Schlichting
instability boundary shown in Fig. 10�a�. Figure 14�b� shows
an n=−4 mode corresponding to the stability boundary in
Fig. 11 for Re=1000, Ro=201.44, and Ri=0. The angle of
the spirals is 
=84° and 
→90° when Re approaches the
precipitous fall at Re=10 128. Figures 10�a� and 10�b� are
examples of the change of sign of n that has been described
in Sec. IV. In fact, the thick line in Fig. 5�a� extends to high
Re keeping Ro almost constant up to the Tollmien-
Schlichting instability boundary. Figure 14�c� shows the
n=−2 Tollmien-Schlichting mode at criticality for
Re=10359 and Ri=Ro=0, corresponding to the last point in
Fig. 11. In fact, for Ri=Ro=0 both modes n= ±2 bifurcates
simultaneously, and the eigenfunctions for the n=2 mode is
the same as for n=−2 but reflected on the plane �=0. In all
three cases shown in Fig. 14, the axial-radial scale has been
preserved. Nevertheless, Figs. 14�a� and 14�b� only show
half a period of the eigenmodes, due to their streamwise
extent determined by their axial wavelength ��6=2� /kc

c

FIG. 13. Normalized axial speed c /Re of the secondary patterns for the
same values shown in Fig. 9 and 12.
�30 and �−4=2� /k �30�.
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A. Comparisons with previous computations „�=0.5…

Cotrell and Pearlstein9 provided the complete stability
boundary for a particular set of rotation-rate ratios �=−0.5,
0, 0.2, 0.5, where the parametrization was based on varia-
tions of the Taylor number Ta. The �� ,Ta� parametrization is
related to our variables �Ri ,Ro� according to relations �4�:
Ta=Ri, �=�Ro /Ri=Ro /2Ri. Therefore, the critical curves
appearing in Ref. 9 correspond to different intersections of
the critical surfaces shown in Figs. 4 or 8 with the planes
Ri=�Ro /�. As stated before, the �� ,Ta� parametrization
may lead to complications when exploring the stability. In
particular, this parametrization is singular when the inner
cylinder is at rest Ri=0 and the outer is not, i.e., �→�. A
clear example of the complexity of the �� ,Ta� parametriza-
tion is reflected in Fig. 5 of Ref. 9, where the critical bound-
aries for �=0 and �=0.2 are qualitatively similar but the
�=0.5 case exhibits a turning point absent in the other cases.
This behavior can be clearly understood looking at the ge-
ometry of the critical surface in Fig. 8. For Re�50 and for
Ro
50 the critical surface becomes asymptotic to the plane
�=�2=0.25, corresponding to the Rayleigh stability crite-
rion for the Taylor-Couette flow.14 For ���2 the �-constant
planes cut the asymptotic plane, while for ���2 they do not
cut the asymptotic plane, resulting in the latter case in a
critical curve with a turning point, as shown in Fig. 8 for
�=0.5. For ���2, the �-constant planes are almost tangent
to the asymptotic plane, and very small variations of � result
in extremely large changes in the critical parameters.

By using relations �4�, the numerical algorithm used in
this study can be suitably modified in order to recover
Cotrell and Pearlstein’s results for the particular case �
=0.5. This computation has also been particularly useful in
order to validate the azimuthal resolution of the spectral
method. In Fig. 15, the critical Taylor number Tac has been
plotted as a function of the axial Reynolds number Re, fol-

FIG. 14. Spiral eigenmodes for high values of Re.
lowing Fig. 2�a� of Ref. 9. The three-dimensional projection
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of this curve has been represented also in Fig. 8 for clarity.
The most relevant critical values corresponding to Fig. 15
have been included in Table IV. For Ta=0, the critical
Reynolds number corresponds to the Tollmien-Schlichting
instability mentioned before attained at Rec=10 359.2, which
is in a very good agreement with the computations provided
in Ref. 9. The critical Reynolds number Re does not suffer a
remarkable change for Ta�70.0. Within the range 70.0
�Ta�77.30 the critical Reynolds number exhibits a fall
nearly by two orders of magnitude. For higher values of Ta,
the centrifugal mechanism has a stabilizing effect over the
basic flow. This fact is clearly reflected in the turning point
that the axial Reynolds number presents at the coordinates
�Tac ,Rec�= �200.0,70.2� after which the critical axial
Reynolds number grows monotonically when increasing Ta
from that value.

VI. CONCLUSIONS

A comprehensive linear stability analysis of a spiral Poi-
seuille flow has been provided for a medium gap geometry
��=0.5� and with independently corotating cylinders. The
detailed exploration for low axial speeds and the increased
resolution in the azimuthal direction with respect to previous
studies have revealed new and unexpected bifurcation phe-
nomena. The presence of a curve on the critical surface sepa-
rating positive and negative azimuthal wave numbers results
in a drastic and unexpected change in the axial speed and

FIG. 15. Critical Taylor number Tac as a function of the axial Reynolds
number Rec for �=0.5.

TABLE IV. Critical values for �=0.5.

Tac Rec kc nc

0.00 10 359.2 1.478 2

70.00 10 056.8 1.486 2

71.74 9 706.2 0.056 6

77.30 200.0 1.135 6

180.00 70.8 1.680 −6

200.00 70.2 1.692 −6

220.00 70.3 1.696 −6
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angle of the bifurcated spirals. On this curve, tricritical
points where three different spiral modes bifurcate simulta-
neously have been accurately computed. Complex nonlinear
dynamics due to mode interaction is likely to be expected
near this curve, deserving further numerical and experimen-
tal studies.

The exploration has been enhanced to high axial Rey-
nolds numbers, computing the critical surface for the first
time and providing new results on the behavior of the
Tollmien-Schlichting instability. In particular, close to an
outer rotation Reynolds number of Ro�198.48, a drastic
change takes place in the instability mechanism: the
Tollmien-Schlichting instability is no longer dominant and
the large plateau characteristic of small Ro values disappears,
resulting in a dramatic decrease in the critical axial Reynolds
number Re. This phenomenon is explained by studying the
critical values when the inner cylinder is at rest.

Finally, the geometry of the computed linear stability
surface offers a nice explanation of the presence of turning
points in the critical curves recently obtained by other
authors9 for fixed values of the ratio of the cylinder’s angular
velocities �. The sudden appearance of these turning points
is due to a tangency with the critical surface when a param-
etrization based on �Ta ,�� is used. The critical surface be-
comes asymptotic to the plane �=�2=0.25, corresponding to
the Rayleigh stability criterion for the Taylor-Couette flow,
and very small variations of ���2 result in extremely large
changes in the critical parameters, including the sudden ap-
pearance of turning points.
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