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Abstract. This contribution presents new phenomena regarding the stability of pressure
driven flows within annular pipes. The fluid is advected downstream due to an axial pressure
gradient but also subjected to centrifugal mechanisms due to the independent rotation of the
coaxial cylinders that contain it. Coexistence of upstream and downstream spiral secondary
flows is observed in the co-rotating regime for a medium gap configuration η = 0.5 and the
boundary bicritical curve is provided for a wide range of angular speeds of the cylinders and
axial velocities. A particular computation of the linear stability of the basic flow is carried out
for a small gap case with η = 0.77 in order to detect the unstable modes and recover the also
termed as Double Secondary Spiral Flows observed experimentally in the past by other authors.
The provided linear stability results for this case are, within their limitations, qualitatively
consistent with the experimental observations.

.

1. Introduction
Pressure driven swirling flows are of common usage in industry for many purposes such as
cooling of rotating electrical machinery, purification of industrial waste water or optical fibre
fabrication techniques [11, 2]. Beyond the practical applications of these kind of flows, there are
many theoretical aspects that are of interest for the fluid dynamicist regarding the stability of
the basic regime. The stability analysis of this type of flows has been studied numerically and
experimentally by many authors [9, 3, 4, 12, 6]. A first comprehensive linear stability analysis
was provided by the present authors [8] for medium gap, where the study covered a wide range
of independent angular speeds of the cylinders as well as axial velocities, but the computations
were unresolved in the azimuthal coordinate for moderately high angular speeds of the outer
cylinder.

Experiments carried out in the past revealed complex dynamics of the resulting secondary
flows, consisting of a superposition of two spiral regimes travelling axially in opposite directions
[10, 5], also termed as Double Spiral Secondary Flow. Therefore, the main purpose of this study
is to provide some numerical evidence of the existence of bicritical bifurcating spiral modes in
this type of flows, based on a linear stability analysis of the basic solution with a more accurate
exploration in the azimuthal variable.

The paper is structured as follows. Section §2 is devoted to the mathematical formulation
of the stability problem. A comprehensive exploration of the bicritical regimes is provided in
section §3 for wide gap situations with η = 0.5, focusing on the effects of large variations in
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the dominant critical azimuthal modes. Finally, in section §4 a linear stability analysis is also
carried out for a small gap case for η = 0.77 in order to recover the experimental evidences of
double spiral flows observed by other authors in the past.

2. Formulation of the problem
An incompressible fluid of kinematic viscosity ν and density � is contained between two
concentric rotating cylinders whose inner and outer radii and angular velocities are r∗i , r∗o and
Ωi, Ωo respectively. In addition, the fluid is driven by an imposed axial pressure gradient. The
independent dimensionless parameters appearing in this problem are: the radius ratio η = r∗i /r∗o ,
which fixes the geometry of the annulus; the Couette flow Reynolds numbers Ri = dr∗i Ωi/ν and
Ro = dr∗oΩo/ν of the rotating cylinders, where d = r∗o − r∗i is the cylinders gap, and the axial
Reynolds number, Re = w̄d/ν, where w̄ is the mean axial flow in the annulus, and measures the
imposed axial pressure gradient.

Henceforth, all variables will be rendered dimensionless using d, d2/ν, and ν2/d2 as units for
space, time and the reduced pressure (p = p∗/�), respectively. The Navier–Stokes equation and
the incompressibility condition for this scaling become

∂tv + (v · ∇)v = −∇p + ∆v, ∇ · v = 0 . (1)

Let v = (u, v, w) the physical components of the velocity field in cylindrical coordinates (r, θ, z).
The boundary conditions for v are:

v(ri) = Ri , v(ro) = Ro (2)

where ri = r∗i /d = η/(1 − η), ro = r∗o/d = 1/(1 − η). The steady velocity field vB (spiral
Poiseuille flow), independent on the axial and azimuthal coordinates (θ, z), and satisfying (1)
and (2) is

vB = (uB, vB, wB) = (0, Ar + B/r, C ln(r/ro) + D(r2 − r2
o)), (3)

where A = (Ro − ηRi)/(1 + η), B = η(Ri − ηRo)/(1 − η)(1 − η2), C = 2(1 − η2)Re/(1 − η2 +
(1 + η2) ln η), D = (1 − η)(ln η)C/(1 + η). We are going to use through the paper (Ri ,Ro,Re)
as nondimensional parameters, keeping η = 0.5 fixed.

The basic flow is perturbed by a small disturbance which is assumed to be periodic in the
azimuthal and axial coordinates:

v(r, θ, z, t) = vB + u(r)ei(nθ+kz)+λt, (4)

p(r, θ, z, t) = pB + q(r)ei(nθ+kz)+λt, (5)

where vB = (0, vB, wB) is given by (3), the azimuthal wave number must be integer (n ∈ Z),
k ∈ R and λ ∈ C. The perturbation of the velocity field must be solenoidal and satisfy
homogeneous boundary conditions:

u(ri) = u(ro) = 0. (6)

Formal substitution of the perturbed fields (4) and (5) in the Navier–Stokes equations (1) leads
to the eigenvalue problem

λu = −∇q + ∆u − (vB · ∇)u − (u · ∇)vB, (7)

where nonlinear terms have been neglected. The boundary value problem (7)-(6) is numerically
discretized making use of a solenoidal Petrov-Galerkin[1] spectral method already formulated
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and tested in the study of other spiral flows [7]. The discretization leads to a generalized
eigenvalue problem

λG(η, n, k)X = H(Ri ,Ro,Re, η, n, k)X, (8)

where X contains the coefficients of the spectral approximation of the velocity field u. The
problem is then reduced to the computation of the spectrum of eigenvalues of Equation (8),
and the condition of criticality is obtained when the rightmost eigenvalue of the spectrum of (8)
crosses the imaginary axis (�λ = 0). This condition must be imposed for each set of values of
the parameters, resulting in an implicit dependence between the parameters of the perturbation
(n, k,�λ) and the set of Reynolds numbers (Ri ,Ro,Re).

The symmetries allow us to restrict the exploration to the cases Re > 0 and Ri > 0.
Furthermore, since the Navier–Stokes equations are real, the complex conjugate of a perturbation
(4, 5) is also a solution, and we can change simultaneously the sign of n, k and the imaginary part
of λ. Therefore, the exploration in the normal mode analysis can be reduced to the case k ≥ 0
and n = 0,±1,±2, . . .. When axisymmetric modes, n = 0, are dominant in the transition, the
bifurcated pattern is the Taylor vortex flow, provided that k �= 0. In addition, if the imaginary
part of the rightmost eigenvalue, ω = �λ, is not zero, these Taylor vortices will travel in the axial
direction with constant axial speed c = ω/k. When n and k are nonzero, the eigenvector of the
linear problem has the form of a spiral pattern. The wavenumbers n and k, together with ω, fix
the shape and speed of the spiral. The angle α of the spiral with a z–constant plane is given by
tan α = −n/(rok) = −(1− η)n/k; the speed of the spiral in the axial direction (on a θ–constant
line) is c = −ω/k, and the precession frequency in the azimuthal direction is ωpr = −ω/n.

Let σ be the real part of the rightmost eigenvalue λ of the spectrum of (8). For negative
values of σ, the basic flow is stable under infinitesimal perturbations. When σ is zero or
slightly positive, the steady flow becomes unstable and bifurcated secondary flows may appear.
As commented before, the spectrum depends on the physical parameters and the axial and
azimuthal wavenumbers of the perturbation. As a consequence, σ(Ri ,Ro,Re, η, n, k) is a
function which implicitly depends on these variables. For fixed values of η, Ro, Re, and a
(n, k)−azimuthal-axial normal mode given, the inner Reynolds number Ri c(n, k) such that σ = 0
is computed. The critical inner Reynolds number is given by Ri c = minn,k Ric(n, k), and the
corresponding values of n, k are the critical azimuthal and axial wavenumbers nc, kc which will
dictate the geometrical shape of the critical eigenfunction. Furthermore, the imaginary part of
the critical eigenvalue, ωc, gives the angular frequency of the critical eigenfunction. The critical
values Ri c, nc, kc and ωc are implicit functions of the parameters η, Ro and Re.

3. Bicritical regimes of opposite azimuthal sign for η = 0.5
The exploration has been focused on the co-rotation region, where the coexistence of negative
and positive azimuthal wavenumbers has been detected. Figure 1 shows six curves corresponding
to the critical inner rotation Reynolds number Ri c as a function of the axial Reynolds number Re,
and for different values of Ro, ranging from Ro = 0 to Ro = 450. The transition points between
different azimuthal wavenumbers have been represented with white circles, and the dominant
value of nc has also been included for clarity for Ro = 450. The folded structure of the critical
curves appearing in figure 1 was already pointed out in the analysis carried out in [8], although
the negative azimuthal modes were overlooked in that analysis due to a lack of spectral resolution
in the angular variable. To visualize the change of sign of nc, the Ri c curve for Ro = 120 has been
included in figure 2. In that curve it can be observed a first transition from the axisymmetric
mode nc = 0 to nc = 1 at Re = 30.82 and to nc = 2 for Re = 36.96. These gradual increasing
with ∆nc = ±1 is typical in other confined flows such as Taylor-Couette or Rayleigh-Benard
problems. Nevertheless, figure 2 reveals an unexpected change of dominance to negative modes
for Re = 42.75, where ∆nc = −5, thus nc = −3 becoming the critical azimuthal wavenumber.
This change affects not only the geometry of the secondary patterns appearing at transition, but
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Figure 1. Critical inner rotation Reynolds
number Ri c as a function of Re for the
specified values of Ro ∈ [0, 450]. The white
circles of the curves Ro = 0 and Ro = 450
are located at the transition points between
different azimuthal wavenumbers nc, whose
values have also been included along the
curves.
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Figure 2. Same as in figure 1 for Ro = 120,
showing the change of sign of the azimuthal
wavenumber from nc = 2 to nc = −3.
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Figure 3. Axial speed
of the spirals scaled with
the downstream mean
flow for Ro ∈ [0, 400].
The white circles cor-
respond to changes in
the critical azimuthal
wavenumber nc. Note
the large and negative
value of c/Re when
increasing Ro.

also the propagating speed direction of the resulting travelling waves. This is reflected in figure
3 for some selected values of Ro in figures 1 and 2, where the quantity c/Re has been plotted,
representing the axial speed scaled in units of w̄, i.e., the relative speed of the spiral with respect
to the mean axial flow. For Ro = 0 and Ro = 100, the spirals propagate downstream with the
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Figure 4. Angle α
(in degrees) defined in
section §2 corresponding
to the secondary patterns
for the same parameters
as in figure 3. The
white circles correspond
to changes in the critical
azimuthal wavenumber.

mean flow, but slightly faster and with opposite helicoidal orientation to the basic regime. This
behaviour changes when increasing Ro and a first evidence is the curve Ro = 120, where the
axial speed suffers a dramatic change for Re = 42.75, associated with the aforementioned change
of sign of the azimuthal wavenumber of figure 2. Within the folding region (figure 3, Ro = 400),
the curves exhibit larger variations of the axial speed of the travelling waves. As an example,
for Ro = 400 and Re = 80, the spirals move upstream nearly thirty times faster than the mean
flow and with the same helicoidal orientation, dictated by the angle of the eigenfunction defined
in section §2. In figure 4, the angle α of the bifurcating patterns has been plotted for the same
values as in figure 3. We focus our attention in the curve Ro = 120 of figure 4, where there exists
an interval of disconnected bifurcating modes of positive angle bounded by coexisting negative
ones. The coexistence of simultaneous bifurcating modes associated with opposite azimuthal
sign may result in flows consisting of a superposition of two travelling waves in opposite axial
orientations. From a theoretical point of view, it is interesting to study the region in the (Re,Ro)-
plane where one ore more azimuthal modes coexist at criticality. The present exploration has
provided the curve of bicritical regimes between axisymmetric or positive and negative azimuthal
modes. This boundary has been plotted in figure 5, where the gray region corresponds to n = 0
(axisymmetric modes), and the regions below and above the curve corresponds to positive and
negative azimuthal modes, respectively. The boundary is continuous but not differentiable, due
to the fact that the azimuthal wavenumbers are integers. When the outer cylinder is at rest
(Ro = 0), axisymmetric perturbations are dominant for Re � 24.2. As long as Ro is increased,
the threshold value for dominance of axisymmetric disturbances stagnates nearly Re ∼ 31.5.
Nevertheless, the transition from axisymmetric to non-axisymmetric azimuthal modes depends
on the value of Ro. For instance, if Ro < Ro+ = 189, the transition is from nc = 0 to nc > 0,
whereas above that threshold value the transition leads to negative critical modes. The threshold
outer Reynolds number Ro+ is a function of Re and decreases to a minimum value at the point
(Re,Ro) = (54.11, 106.5) and it seems to attain an almost constant value when further increasing
the axial Reynolds number. The computation of the asymptotic value of Ro+(Re) is currently
out of the scope of this study.
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Figure 5. Bicritical
boundaries between ax-
isymmetric or positive
and negative azimuthal
modes for η = 0.5.

4. Experimental evidence for η = 0.77
The coexistence of the two spiral regimes has been already reported in the experiments carried
out by Nagib in 1972. In his work, Nagib termed this regime as the Double Spiral Secondary Flow
(dssf). The comparisons of the present numerical results with the experiments are particularly
difficult due to two main reasons. First, the reported experiments where the dssf was observed
were done for a much smaller radius ratio of η = 0.77, thus activating higher azimuthal modes
that are out of the range of the current η = 0.5 exploration. Second, the numerical results
presented here come from a pure linear stability analysis, and not from nonlinear computations.
Therefore, our results are only valid in a neighbourhood of the critical regime. Nevertheless,
we can overcome the first problem by studying the linear stability analysis for the specified
experimental values provided by Nagib.

A particular stability analysis has been carried out for η = 0.77, with n ∈ [−20, 20] in order to
detect the primary instability for the same values as the ones fixed by the experiments: Ro = 898
and Re = 120, corresponding to the nondimensional values used by Nagib, (NRθ)o = 1795 and
NRZ = 240, respectively. Figure 6 plots the neutral stability curves corresponding to the most
dangerous positive and negative azimuthal modes. The dominant positive and negative critical
modes are nc = 15 and nc = −13, plotted with thicker lines, with minimum values located at
(kc,Ri c) = (0.736, 652.29) and (kc,Ri c) = (0.729, 607.35), respectively, represented with white
circles.

Figure 7 shows a photograph of the observed dssf for the same values of Re and Ro, but for
a higher value of the inner Reynolds number Ri = 835, or (NRθ)i = 1670, according to Nagib’s
nondimensionalization. Therefore, a wide range of azimuthal modes have been destabilized by
the time the secondary regime has already been established, according to linear computations.
An interesting common feature of the two modes nc = −13 and nc = 15 is their almost equal
axial periodicity, ranging from kc = 0.729 to kc = 0.736, with less than a 1% deviation, that
makes the coexistence of the two regimes possible in a real experiment with finite cylinders,
where both critical values of k must be (small) multipliers of 2π/L (being L the length of the
pipes) and their quotient is then rational. In this sense, the case 1 : 1 has been found to be
optimal.

Figure 8 shows the two stream functions associated with the rightmost bifurcating eigenvalues
corresponding to the modes n = −13 and n = 15, evaluated at their respective linear critical
values. Some differences must be pointed out when comparing figures 7 and 8. First, the
computations plotted in figure 8 correspond to the eigenvectors associated to the rightmost
eigenvalues for the previously computed critical values Ri c

−13 = 607.35 and Ri c
15 = 652.29, and

not for Riexp = 835, as shown in figure 7. Second, the represented flow in figure 8 does not
include the basic flow, whereas in figure 7 the observed flow must necessarily contain an axial
and azimuthal component not present in our computations. Nevertheless, there is a very good
agreement between both patterns. More information, such as the propagating axial speeds of
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Figure 6. Neutral stability curves
σ(k,Ri) = 0 corresponding to the az-
imuthal modes for η = 0.77, Ro = 898
and Re = 120. The bolded curves corre-
spond to the dominant modes n = −13
and n = 15. The neighboring modes n =
−14,−12, 15 and 16 have been included for
clarity.

Figure 7. Experimental dssf observed by
Nagib for η = 0.77.

Figure 8. Computed streamfunctions
associated to the azimuthal modes n = −13
and n = 15 at their critical values for η =
0.77.

the patterns, would be required to confirm the identity of the modes shown in figure 7. Nagib
carried out a comprehensive study of the geometrical features of the secondary flows appearing
in this problem but, unfortunately, the axial speeds of the dssf spirals are not reported in his
work. Of course, the neighboring modes n = −12,−14 and n = 14, 16 may be at work as well
and nonlinear direct numerical simulations would be necessary to clarify their role. We have
considered the modes n = −13 and n = 15 as the most representative and plausible ones because
of their almost coincident axial periodicity and linear dominance within the studied range of
parameters.

5. Conclusions
Pressure driven helicoidal flows through annuli may exhibit secondary flows consisting of double
spiral flows that are characterized by the coexistence of spiral waves travelling in opposite
directions. A linear stability analysis reveals that this phenomenon might be observed for wide
gap cases in the co-rotating regime and for a continuous set of points that prescribes a boundary
in the parameter space. Experimental observations carried out for small gap configurations
confirm the existence of this kind of patterns and a linear stability analysis carried out for the
same values of the experimental parameters predicts the existence of these coexisting solutions,
but for much higher azimuthal modes, compared with the wide gap case. The agreement between
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linear computations and experiments is, within its limitations, excellent, although nonlinear
computations should be carried out in order to clarify the nature of the secondary solutions and
their stability. Nonlinear studies are currently in progress.
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