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Double Hopf bifurcation in corotating spiral Poiseuille flow
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Nonlinear dynamics of the spiral Poiseuille problem for moderate axial through flow is investigated
numerically within the corotating regime for medium gap geometry. The neighborhood of a double
Hopf bifurcation point of the linear stability boundary, where spiral waves of opposite axial phase
propagation compete, is explored by accurately solving time-dependent Navier-Stokes equations
with a solenoidal spectral method. The mode interaction generates a quasiperiodic stable regime of
interpenetrating spirals, which coexists with stable limit cycles associated with the aforementioned
spiral waves of opposite helicoidal orientation. The spatiotemporal properties of the computed
solutions are explained and discussed in terms of equivariant bifurcation and normal form theories.
Similar flows have also been observed experimentally in the past within the corotating region.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2204967�
I. INTRODUCTION

The spiral Poiseuille problem deals with the behavior of
an incompressible viscous fluid confined between two co-
axial cylinders independently rotating around their common
axis. In addition, the fluid is enforced to flow downstream by
an imposed pressure gradient in the axial direction. The re-
sulting steady spiral flow is a combination of a rotation due
to the azimuthal Couette flow and an axial parabolic profile,
due to the pressure gradient, also termed spiral Poiseuille
flow1 �SPF�. The SPF is subject to shear and centrifugal
instability mechanisms, which can destabilize the flow for
sufficiently high values of the axial pressure gradient and
angular speeds of the cylinders. The nonlinear study of the
complex secondary flows arising in terms of symmetry
breaking bifurcations constitutes a major challenge.

The stability of this flow was studied experimentally by
Snyder2 for narrow gap geometry and a fixed outer cylinder,
showing that the primary transition leads to axially propagat-
ing structures. For low values of the through flow, the tran-
sition is observed to toroidal vortices, which are superseded
by spiral vortices for higher values of the through flow.2,3 A
most interesting feature of this flow was reported by Nagib,4

who observed secondary flows where two spiral structures
coexist simultaneously in space and time in the corotating
regime. The systematic exploration of secondary flows for
this problem has also been studied more recently for a fixed
outer cylinder,5,6 who observed several flow regimes of tor-
oidal and spiral vortices. The velocity fields of some of these
regimes were carefully studied7 and compared to their coun-
terparts in the case of no axial flow, i.e ,Taylor–Couette.

A saddle-point analysis8 of the counter-rotating SPF has
recently provided the boundaries between convective and ab-
solute instabilities for low through flow, the results being
confirmed experimentally.9 Recent numerical computations10
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based on a hybrid finite-differences-Galerkin method have
also studied nonlinear dynamics of the SPF for moderate
axial flow, also focusing on the counter-rotating regime.

Former numerical linear stability analyses of the SPF
were carried out in the axisymmetric case11,12 or for specific
angular rotation speed ratio values of the cylinders.3,13 A first
comprehensive linear stability analysis14,15 for medium gap
geometry covered a wide range of independent corotating
angular speeds of the cylinders as well as axial flow veloci-
ties, where a bicritical curve of the coexistence of spiral
waves of opposite helical orientation was provided. Over that
curve, two, or even three, independent modes bifurcate si-
multaneously. Linear stability analysis cannot predict which
of these secondary regimes will be dominant beyond transi-
tion, and a nonlinear analysis is required.

In this work we study the nonlinear dynamics of the SPF
within the corotating regime and for moderate axial flow
speed. In particular, we focus on the competition between
spiral waves of opposite axial phase velocity and azimuthal
wavenumbers, n= ±1, in the neighborhood of a double Hopf
point. Our approach combines the general theory of double
Hopf bifurcations with nonlinear spectrally resolved compu-
tations, allowing the identification of the scenario corre-
sponding to the present case. Assuming axial periodicity, the
incompressible Navier-Stokes equations, along with the axi-
symmetric nonslip boundary conditions on the inner and
outer cylinders, are invariant to rotations around the common
axis of the cylinders and also to axial translations, endowing
the system with the SO�2��SO�2� symmetry group. These
symmetries play a key role in the spatiotemporal properties
of the secondary regimes and also their stability, as predicted
by equivariant bifurcation and normal form theories.

Experimental explorations of the corotating SPF carried
out by Nagib in the 1970s for a small gap revealed the pres-
ence of secondary stable regimes consisting of a superposi-
tion of traveling spiral waves of opposite helicoidal
orientation.4 As noted by Joseph, these flows are character-

ized by traveling spirals with very high axial and azimuthal
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wavenumbers, thus being unfeasible to reproduce them nu-
merically, due to the current computational limitations.1 The
results obtained in the present study provide numerical evi-
dence of the existence of these secondary regimes for much
lower angular and streamwise speeds of the flow, where the
spatial resolution required is less demanding.

The paper is structured as follows. The mathematical and
numerical formulation of the problem are presented in Sec.
II. Section III is devoted to a general description of the
double Hopf bifurcation scenario corresponding to the case
of study. The main results are presented in Sec. IV, where
different secondary regimes are studied in a neighborhood of
the bicritical point. In Appendix A we address specific tech-
nical details regarding the numerical method. Finally, the
normal form associated with the double Hopf bifurcation
with the SO�2��SO�2� symmetry group is obtained in
Appendix B, where the spatiotemporal properties of the
bifurcated solutions are discussed within the framework of
the dynamical systems theory.

II. FORMULATION AND NUMERICAL METHOD

We consider an incompressible fluid of kinematic viscos-
ity � and density � that is contained between two concentric
rotating cylinders whose inner and outer radii and angular
velocities are ri

*, ro
*, and �i, �o, respectively. In addition, the

fluid is driven by an imposed axial pressure gradient. The
independent dimensionless parameters appearing in this
problem are the radius ratio �=ri

* /ro
*, which fixes the geom-

etry of the annulus; the Couette flow Reynolds numbers,
Ri=dri

* �i /� and Ro=dro
* �o /� of the rotating cylinders,

where d=ro
*−ri

* is the gap between the cylinders, and the
axial Reynolds number, Re= w̄d /�, where w̄ is the mean
axial flow velocity in the annulus, and measures the imposed
axial pressure gradient.

Henceforth, all variables will be rendered dimensionless
using d, d2 /�, and �2 /d2 as units for space, time, and the
reduced pressure �p= p* /��, respectively. The Navier-Stokes
equation and the incompressibility condition for this scaling
become

�tv + �v · ��v = − �p + �v, � · v = 0. �1�

Let v= �u ,v ,w� be the physical components of the velocity
field in cylindrical coordinates �r ,� ,z�. The boundary condi-
tions for v are

v�ri� = Ri, v�ro� = Ro , �2�

where ri=ri
* /d=� / �1−��, ro=ro

* /d=1/ �1−�� are the nondi-
mensional radii of the cylinders. The steady velocity field vB

�spiral Poiseuille flow�, independent of the axial and azi-
muthal coordinates �� ,z�, and satisfying �1� and �2� is

vB = �uB,vB,wB�

= �0,C1r + C2/r,C3 ln�r/ro� + C4�r2 − ro
2�� , �3�

where

C1 = �Ro − �Ri�/�1 + �� , �4�

2
C2 = ��Ri − �Ro�/��1 − ���1 − � �� , �5�
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C3 = − 2�1 − �2�Re/�1 − �2 + �1 + �2�ln �� , �6�

C4 = �1 − ���ln ��C3/�1 + �� . �7�

Throughout the paper we will use �Ri ,Ro� as nondimen-
sional parameters, keeping �=0.5 and Re=33 fixed. In addi-
tion, we assume that the flow is L* periodic in the axial
direction. In cylindrical nondimensional coordinates �r ,� ,z�,
the spatial domain of the problem is D= �ri ,ro�� �0,2��
� �0,��, where �=L* /d is the aspect ratio.

The governing equations are invariant to rotations R	

about the cylinder axis and to axial translations Ta:

R	�v��r,�,z� = v�r,� + 	,z� , �8�

Ta�v��r,�,z� = v�r,�,z + a� . �9�

Rotations generate the symmetry group SO�2�, and due to
the imposed axial periodicity, axial translations generate an-
other SO�2� symmetry group. As rotations and translations
commute, the complete symmetry group of the problem is
G=SO�2��SO�2�. The steady basic flow �3� is invariant to
G.

The velocity field consists of the basic velocity field vB

and pressure pB, and perturbations u, q:

v�r,�,z,t� = vB�r� + u�r,�,z,t� , �10�

� · u = 0, u�r = ri� = u�r = ro� = 0 , �11�

p�r,�,z,t� = pB�z� + q�r,�,z,t� . �12�

u is a solenoidal velocity field vanishing at the cylinder
walls. This decomposition simplifies the numerical scheme.
On introducing the perturbed fields in the Navier-Stokes
equations, we obtain a nonlinear initial-boundary problem
for the perturbations u and q:

�tu = − �q + �u − �vB · ��u − �u · ��vB − �u · ��u , �13�

� · u = 0, �14�

u�ri,�,z,t� = u�ro,�,z,t� = 0, �15�

u�r,� + 2�,z,t� = u�r,�,z,t� , �16�

u�r,�,z + �,t� = u�r,�,z,t� , �17�

u�r,�,z,0� = u0, � · u0 = 0, �18�

for �r ,� ,z��D and t
0. Equation �13� describes the non-
linear space-time evolution of the perturbation of the veloc-
ity field. Equation �14� is the solenoidal condition for the
perturbation, and Eqs. �15�–�17� describe the homogeneous
boundary conditions for the radial coordinate and the peri-
odic boundary conditions for the azimuthal and axial coordi-
nates, respectively. Finally, Eq. �18� is the initial solenoidal
condition for the perturbation field at t=0.

We discretize the perturbation u by a solenoidal spectral
approximation uS of order L in z, order N in �, and order M

in r,
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uS�r,�,z,t� = �
l=−L

L

�
n=−N

N

�
m=0

M

alnm�t��lnm�r,�,z� , �19�

where �lnm are trial bases of solenoidal vector fields of the
form

�lnm�r,�,z� = ei�lk0z+n��vlnm�r� , �20�

with k0=2� /�, satisfying

� · �lnm = 0 �21�

for �l ,n ,m�� �−L ,L�� �−N ,N�� �0,M�. The trial bases �20�
are therefore �� ,2��periodic in the axial and azimuthal di-
rections, respectively. The radial functions vlnm appearing in
�20� must satisfy homogeneous boundary conditions at the
inner and outer radii of the cylinders,

vlnm�ri,�,z� = vlnm�ro,�,z� = 0 . �22�

The spectral scheme is accomplished when introducing ex-
pansion �19� in �13� and projecting over a suitable set of test
solenoidal fields,

�lnm = ei�lk0z+n��ṽlnm. �23�

Both sets vlnm and ṽlnm can be found in the Appendix A. The
projection is carried out via the standard volume integral
over the domain D,

��lnm,�tuS�D = ��lnm,�uS − �vB · ��uS − �uS · ��vB

− �uS · ��uS�D, �24�

for �l ,n ,m�� �−L ,L�� �−N ,N�� �0,M�, where

�a,b�D = �
D

a* · b dD , �25�

and where * stands for the complex conjugate. The pressure
term is canceled in the projection,16 i.e., ��lnm ,�q�D=0,
leading to a dynamical system only involving the amplitudes
almn�t� of the velocity approximation �19�, i.e,

Apqr
lnmdapqr = Bpqr

lnmapqr − Nlnm�a,a� , �26�

FIG. 1. Parametric portrait for a simple type IV double Hopf bifurcation.
The curves H1 and H2 �coinciding with the axes �1=0 and �2=0, respec-
tively�, are the two Hopf bifurcation curves at which the limit cycles, P1 and
P2, bifurcate supercritically from the basic state P0. The curves N1 and N2

are Neimark-Sacker bifurcation curves at which the quasiperiodic mixed
mode P3 bifurcates. Phase portraits in each of the six regions indicated are
shown in Fig. 2.
dt
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where we have used the convention of summation with re-
spect to repeated subscripts. In �26�, the matrices A and B
stand for the projection of the time differentiation and linear
Laplacian-advection operators, whereas N is the projected
nonlinear advective term. The system of ODE’s �26� is inte-
grated in time by means of a linearly implicit method, where
backward differences are used for the linear part and poly-
nomial extrapolation is used for the nonlinear one. Overall,
the solenoidal scheme used here is mainly based on previous
spectral schemes recently formulated and extensively tested
for cylindrical geometries.17,18 Nevertheless, the spectral ac-
curacy of the scheme and the convergence of the time step-
per have been tested and compared with linear and nonlinear
former spectral Galerkin computations of flows in annular
geometries.15,19

III. SO„2…ÃSO„2…-DOUBLE HOPF BIFURCATION:
TRANSITION SCENARIOS

In the double Hopf bifurcation, the presence of SO�2�
�SO�2� symmetry alters the generic normal form only in the
presence of resonances. In Appendix B, we present a deriva-
tion of the normal form for the double Hopf bifurcation with
SO�2��SO�2� symmetry. We show that the symmetries in-
hibit resonances, as in the double Hopf bifurcation with
SO�2� symmetry20 and with SO�2��Z2 symmetry.21 The
resonance condition is, in this instance, �2

0 /�1
0=n2 /n1

=k2 /k1; �i
0 are the Hopf frequencies at the bifurcation, ni are

the critical azimuthal wavenumbers, and ki are the critical
axial wavenumbers. Resonance is only possible if the fre-
quencies and the azimuthal and axial wavenumbers are in the
same ratio. We shall show below that our double Hopf bifur-
cation is not resonant, so its corresponding normal form is
that for the generic double Hopf bifurcation. In terms of the
moduli and phases of the complex amplitudes of the eigen-
vectors, the normal form can be written, up to fourth order,

FIG. 2. Generic phase portraits corresponding to the six different regions of
the double Hopf bifurcation of type IV simple in Fig. 1. Solid �open� circles
are stable �unstable� states. 
1, 
2 are proportional to the amplitudes squared:

1=−p11r1

2, 
2=−p22r2
2; see Appendix B for details.
as �B19�,
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ṙ1 = r1��1 + p11r1
2 + p12r2

2 + q1r2
4� ,

ṙ2 = r2��2 + p21r1
2 + p22r2

2 + q2r1
4� ,

�27�
�̇1 = �1

0 + �1�r1,r2,�1,�2� ,

�̇2 = �2
0 + �2�r1,r2,�1,�2� ,

where �1 and �2 are the normalized bifurcation parameters
and �1=�2=0 at the bifurcation point. An expression for
�1,2 is given in Sec. IV as a function of the physical param-
eters for the actual problem. The pij, and qi depend on the
parameters �1 and �2, and satisfy a nondegeneracy condition
in the neighborhood of the bifurcation, pij�0.

The normal form �27� admits a multitude of distinct dy-
namical behaviors, depending on the values of pij and qi.
These are divided into so-called simple �p11p22
0� and dif-
ficult �p11p22�0� cases. In the simple cases, the topology of
the bifurcation diagram is independent of the qi terms. Even
in the simple case, several different bifurcation diagrams ex-
ist. A comprehensive description of all the simple and diffi-
cult scenarios is given in Ref. 22. In our problem, the double
Hopf bifurcation is of simple type IV, as rendered by com-
putations presented in Sec. IV. The remainder of this section
is devoted to a qualitative description of this scenario.

Figure 1 shows the parametric portrait in a neighborhood
of the double Hopf bifurcation point, for the case corre-
sponding to our problem. Parameter space is divided into six
regions, delimited by bifurcation curves. The number of so-
lutions and their stability is different in each region. Figure 2
shows typical phase portraits in these six different regions.
P1 and P2 are spiral waves with negative and positive azi-
muthal wavenumbers emerging from the basic state P0 when
the Hopf bifurcation curves H1 and H2 are crossed. There is
a region �3, 4, and 5 in Fig. 1� where a stable two-torus
solution P3 �interpenetrating spirals of opposite azimuthal
wavenumber� exists. In this scenario, there is precisely one

FIG. 3. Projection of the critical surface Ric�Re, Ro� on the �Re,Ro� plane,
following Meseguer and Marques �Ref. 15.� Boundary curves separate re-
gions where modes of different azimuthal wavenumber n �included in the
plot� bifurcate at the lowest Ri. The bold line represents the bicritical bound-
ary crossed by the dashed line at Re=33.
stable solution in each of the six regions in parameter space.
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IV. RESULTS

A comprehensive linear stability analysis of the steady
SPF has recently been carried out for medium gap
geometry,14,15 covering a wide range of independent corotat-
ing angular speeds Ri, Ro of the cylinders and axial flow
velocities Re, providing a bicritical curve where spiral pat-
terns featuring opposite axial propagation compete. Figure 3
shows a projection of the critical surface Ri=Ric�Re,Ro�, as
computed in former linear stability analyses,15 where the
aforementioned bicritical curve �bold line� is shown. In the
gray region, above the bicritical curve, upstream propagating
spiral waves are dominant, whereas below that curve the
spiral waves propagate downstream, i.e., with the imposed
axial flow. Downstream �upstream� propagation of the spiral
patterns corresponds to positive �negative� azimuthal wave-
numbers of the bifurcating modes.

In this work we present a study of the nonlinear dynam-
ics arising in the neighborhood of a double Hopf point of the
aforementioned bicritical curve. For computational reasons,
the bicritical point at Re=33 �the dashed line in Fig. 3� has
been chosen, since the bifurcated spirals feature the lowest
nonzero azimuthal wavenumbers n= ±1.

Figure 4�a� shows the neutral stability curves �k ,Ric�

FIG. 4. �a� Neutral stability curves for n= ±1 azimuthal modes at the bi-
critical point �Re, Ro�= �33, 200.48�, for k varying continuously; the white
circles are located at the minima k�,−1

c and k�,1
c of n=−1 and n=1, respec-

tively. �b� The same as �a�, evaluated at the bicritical point �Re, Ro�
= �33, 206�, for the particular discretization k= lk0,, l� �−66, 66�.
provided by the linear stability analysis for Re=33 and
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Ro=200.48. The curves associated with the azimuthal modes
n=1 and n=−1 attain a common minimum Reynolds number
Ri=413.02 at k�,1

c =4.56 and k�,−1
c =3.343, respectively; the �

subindex refers to critical values computed assuming a con-
tinuous range of axial wavenumbers k. The location of the
corresponding bicritical point is

�Re, Ro, Ri��
dH = �33, 200.48, 413.02� . �28�

When considering nonlinear computations, the spectrum of
axial wavenumbers becomes discrete �20�, and it has to be
suitably fixed so that the discretization resolves those modes
responsible for the instability, as well as their harmonics. At
this point, a fundamental axial wavenumber has to be fixed
so that the aforementioned discretization covers the unstable
dynamics. Therefore, a good choice for k0 appearing in �20�
is crucial to reproduce the critical axial wavenumbers found
in the infinite cylinder case where the axial wavenumber k is
continuous.

In the present work we use a spectral resolution consist-
ing of �L ,M ,N�= �66,24,8� modes along with k0=0.35,
leading to an aspect ratio ��18. The value of k0 has been
suitably chosen in order to capture the two values k�,1

c and
k�,−1

c . This is accomplished by the axial discretization used,
where the modes �l ,n�= �13,1� and �l ,n�= �10,−1� consis-
tently reproduce the nearby critical k1

c =13k0=4.55 and
c

FIG. 5. Loci of the solution type in �Ro , Ri� space; � are steady SPF, � are
L-SW, • are R-SW, and � are IPS. The double Hopf point �29� is located at �.
k−1=10k0=3.5 values of the continuum case, respectively. In
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addition, up to four harmonics of the two previous modes are
also included in the dynamical system of amplitudes. Never-
theless, the resulting equispaced set of discretized axial
wavenumbers lk0 leads to minor discrepancies when trying
to reproduce the instability mechanisms. This is mainly
due to the fact that the critical Reynolds number Ro at
which these modes bifurcate simultaneously is slightly dif-
ferent from the ideal value Ro�=200.48. This small discrep-
ancy can be spotted from Fig. 4�b�, where the neutral
stability points �lk0 ,Ric�n=±1attain a common critical value
Ric=417.15 for Ro=202.6. As a result, the coordinates of the
double Hopf bifurcation point based on our discretization are

�Re, Ro, Ri�discrete
dH = �33, 202.6, 417.15� . �29�

Overall, the critical values of the spectral approximation dif-
fer nearly by 1% from the values obtained by linear stability
computations using a continuous range of k.

The linear stability of the basic flow �3� has been studied
in region

R = �Re = 33,�Ro, Ri� � �190, 210� � �390, 435�	 ,

�30�

for the spectral discretization above. The Hopf bifurcation
curves Ri−1

c =H1�Ro� and Ri1
c =H2�Ro� in R were computed,

rendering the double Hopf point H1�H2 �29�. In this par-
ticular case, the expressions for the normalized bifurcation
parameters �1,2 appearing in �27�, are

�1 = Ri − �1.949Ro + 22.05� , �31�

�2 = Ri − �1.952Ro + 21.75� , �32�

where Hi= ��i=0	, for i=1,2. The Neimark-Sacker bifurca-
tion curves N1 and N2 in Fig. 1 have been computed by time
evolution, using the three dimensional �3D� Navier-Stokes
solver. Figure 5 shows the bifurcation curves and the com-
puted solutions indicating their nature. The four bifurcation
curves H1, H2, N1, and N2 in Fig. 5 are very close together.
For clarity, in Fig. 6 these curves are represented in �Ro , ��

FIG. 6. Loci of the solution type in �Ro , �� space ��=Ri−Ri2
c�; � are L-SW,

• are R-SW, and � are IPS. The double Hopf point �29� is located at �.
space, where �=Ri−H2�Ro�, allowing us to distinguish the
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six regions of the corresponding theoretical scenario in
Fig. 1.

The steady spiral Poiseuille flow SPF is stable below H1

and H2 curves. The stability of any solution is monitored in
time through the measurement of the kinetic energy density
associated with each azimuthal Fourier mode

E�n,t� =
1

2V
�

0

�

dz�
0

2�

d��
ri

ro

un
* · unr dr , �33�

where V is the volume of the cylinder and un is the n azi-
muthal component of the perturbation field.

un�r,z,t� = �
l=−L

L

�
m=0

M

almn�t�ei�lk0z+n��vlmn�r� . �34�

When crossing H2 from below, the basic flow becomes
unstable, as shown in the energy-time plot of Fig. 7. The
instability leads to a secondary regime consisting of a stable
limit cycle corresponding to spiral vortices of azimuthal
wavenumber n=1 rotating and propagating in the axial di-
rection, henceforth termed as Left spiral waves �L-SW�.

In order to detect the Neimark-Sacker boundary N2, the
L-SW was continued by increasing Ri until the limit cycle
eventually became unstable, as shown in its energy-time evo-
lution; see Fig. 8. In this case, the instability leads to a stable
quasiperiodic mixed mode consisting of Interpenetrating spi-
rals �IPS�.

FIG. 7. Time evolution of the energy of the azimuthal Fourier modes, mea-
sured according to �33�, during the transition from SPF to L-SW at
�Ro , Ri�= �190, 392.85�. The solid upper line corresponds to the n=1 mode
generating L-SW whereas the stagnated curves below E�1, t� correspond to
harmonics of the leading unstable mode.

FIG. 8. The same as Fig. 7 during the transition from L-SW to IPS at
�Ro , Ri�= �190, 393.5�. The solid �dashed� upper line corresponds to the

n=1 �n=−1� mode.
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The same scenario was observed when crossing H1 from
below, leading to a stable limit cycle between H1 and N1 that
corresponds to propagating spiral vortices of opposite azi-
muthal wavenumber n=−1, i.e., Right spiral waves �R-SW�.
As shown in Fig. 5, the regions where L-SW or R-SW are
stable are very narrow, whereas the mixed mode solution is
stable in a much wider region of parameter space. Note that
the stability region for the L-SW is slightly wider than the
R-SW, Figure 6. In addition, all the bifurcations observed
were found to be supercritical.

A. Characterization of L-SW and R-SW solutions

The spiral patterns arising from Hopf bifurcations H1

�R-SW� and H2 �L-SW� break the rotational and translational
symmetries of the problem. However, these solutions are
time-periodic and, essentially, one-dimensional, since their
dependence on t, z and � occurs through the phase variable10

� = �t + lk0z + n� . �35�

Therefore, these patterns rotate with angular speed
wp=−� /n and propagate axially with phase speed
c=−� / �lk0�, so that the symmetries have become spatiotem-
poral, see Appendix B Eqs. �B26� and �B27�. These solutions
retain a purely spatial symmetry, a combination of an axial
translation Ta and a rotation R	 such that

TABLE I. Angular and axial speeds of L-SW and R-SW measured at points
located within the boundaries H1-N1 and H2-N2 of Fig. 5. The axial speed c
of the patterns has been normalized with respect to the Reynolds number Re.

L-SW Ro Ri �p c /Re R-SW Ro Ri �p c /Re

195 402.5 397.7 2.65 205 421.8 27.53 −0.24

196 404.4 398.9 2.66 206 423.7 28.24 −0.24

197 406.3 400.0 2.66 207 425.65 28.99 −0.25

198 408.25 401.2 2.67 208 427.6 29.72 −0.26

199 410.2 402.4 2.68 209 429.55 30.45 −0.26

200 412.1 403.5 2.69 210 431.5 31.19 −0.27

FIG. 9. Isosurfaces of the azimuthal vorticity of the perturbation: �a� L-SW at
�Ro , Ri�= �190, 392.85�, ��= ±23. �b� R-SW at �Ro , Ri�= �210, 431.5�,
��= ±9.5.
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lk0z + n� = 0, �36�

corresponding to helical motion. Therefore the symmetry
H	=R	T−n	/�lk0� generates a subgroup SO�2�H of G, see Ap-
pendix B for details. These spiral patterns are simultaneously
rotating and traveling waves, resembling a barber pole, and
for this reason we use the term spiral waves for them. The
geometrical shape of these solutions can be seen in Fig. 9,
showing isosurfaces of azimuthal vorticity. Each spiral wave

FIG. 10. Contours of the azimuthal vorticity of the perturbation ��Ãu��

evaluated over a �-constant cross section for �r , z�� �ri , ro�� �0,hL,R�. �a�
L-SW at �Ro , Ri�= �190, 392.85�; �b� R-SW at �Ro , Ri�= �210, 431.5�. For
clarity, the original aspect ratio has been preserved in the plots.

FIG. 11. Perturbation vector field components �ur , uz� evaluated over a
�-constant cross section for �r , z�� �ri , ro�� �0, hL,R�. �a� L-SW at
�Ro , Ri�= �190, 392.85�, �b� R-SW at �Ro , Ri�= �210, 431.5�. For clarity,

the original aspect ratio has been preserved in the plots.
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is composed of two spiral vortices with opposite vorticity
�light and dark in the figure�, within an axial wavelength.

Within the explored regions between H1-N1 and H2-N2,
the R-SW and L-SW are found to corotate with the cylinders,
precessing with angular speeds of order �p

L�400 and
�p

R�30, respectively. However, the L-SW pattern exhibits a
downstream phase speed c faster than the base flow axial
mean velocity �measured by Re�, whereas the R-SW slowly
propagate upstream. It is shown in the Appendix B that op-
posite axial propagation is a sufficient condition to inhibit
resonances, thus the case of study is nonresonant. Accurate
angular and axial speeds of these described patterns within
their domains of stability are reported in Table I.

The L-SW have an axial wavelength of hL=1.38 and are
mainly concentrated on the inner cylinder wall, where strong
azimuthal vorticity spots are generated, as shown in Fig.
10�a�. On the other hand, the R-SW have an axial wavelength
of hR=1.8 but are mainly concentrated on the outer cylinder
wall, where similar azimuthal vorticity spots are produced,
as shown in Fig. 10�b�. However, for the L-SW the azimuthal
vorticity is confined within a region close to the inner cylin-
der, whereas the R-SW feature high values of the azimuthal
vorticity along all the radial domain. Figure 11 shows the
perturbation velocity field u on a �-constant cross section,
for both solutions in Fig. 10. The center of the vortices is
slightly displaced toward the inner �outer� cylinder for the
L-SW �R-SW�. Figure 12 shows contours of the components of
the perturbation velocity u for both solutions. Their maxima
and minima are also located near the inner �L-SW� or outer

FIG. 12. Contours of the perturbation field u evaluated over a �-constant
cross section for �r , z�� �ri , ro�� �0, hL,R�. Top, L-SW at �Ro , Ri�
= �190, 392.85� and bottom, �R-SW� at �Ro , Ri�= �210, 431.5�. From left to
right: �a� ur, �b� u�; and �c� uz components. Gray and white regions stand for
negative and positive or zero values, respectively.
�R-SW� cylinders, as occurs with the azimuthal vorticity.
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B. Characterization of IPS solutions

The interpenetrating spirals �IPS� consist of quasiperi-
odic regimes exhibiting the main features of the two limit
cycles corresponding to L-SW and R-SW. Similar interpen-
etrating spirals regimes were found experimentally in the
past by Nagib,4 termed as Double Spiral Secondary Flow
�DSSF�. The experiments were carried out at higher Reynolds
numbers Re, Ro, Ri than our computations, and with a
smaller gap �=0.77. Figure 13 shows a photograph of the
aforementioned DSSF found by Nagib.4 Recent linear stability
results23 suggest that these solutions come from a similar
instability mechanism, although much higher azimuthal
modes �typically within the range 13� 
n 
 �15� are respon-
sible for the transition, rendering nonlinear computations un-
affordable.

The dependence of the IPS on t, z, and � occurs through
the two independent phase variables,

�L = �Lt + kLz + � , �37�

�R = �Rt + kRz − � , �38�

corresponding to the unstable L-SW and R-SW. This fact, pre-
dicted in Appendix B using normal form theory, is confirmed
by the good agreement between the frequencies observed in
the IPS regime and the eigenfunctions of the linear stability
problem that generate L-SW and R-SW �disagreement below a
0.5%�. The power spectral density of the IPS is plotted in
Fig. 14�a�, where the associated L-SW and R-SW frequencies
and their harmonics are clearly observed. The two frequen-
cies differ in more than one order of magnitude, being �R

about 16 times smaller than �L. They can be clearly observed
in the time series of the radial velocity at a convenient point,
shown in Fig. 14�b�.

The IPS regime can be interpreted as a superposition of
two waves, with phases �L and �R, corresponding to L-SW

and R-SW, respectively, but precessing with different angular
speeds while propagating downstream and upstream, respec-
tively. Angular and axial speeds of both waves are also pro-
vided in Table II. Figure 15 shows isosurfaces of the azi-
muthal vorticity and helicity of the perturbation velocity field
u, illustrating that the waves associated with the L-SW and
R-SW are clustered on the inner and outer cylinder, respec-
tively.

In order to illustrate the opposite axial propagation of the

FIG. 13. DSSF experimental flow found by Nagib �Ref. 4 � for Re=120,
Ro=898, Ri=835, and for small gap geometry with �=0.77.
L-SW and R-SW components of the interpenetrating spirals
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IPS, several snapshots of the azimuthal vorticity at different
times are shown in Fig. 16, where the two periods
TL=2� /�L�0.016 and TR=2� /�R�0.25 have been consid-
ered. In the first row, covering one TL period, we observe the
downstream propagation associated with the L-SW, clearly
concentrated on the inner cylinder. In the second row, cover-
ing one TR period, the upstream propagation associated with
the R-SW is observed on the outer cylinder �note that down-
stream propagation corresponds to motion on the positive
axial direction in the plots�. The interaction of the two spiral
waves, R-SW and L-SW, with different periods and axial
wavelengths, makes it difficult to analyze the resultant pat-

FIG. 14. �a� Power spectral density of the IPS solution at �Ro , Ri�
= �201, 414.3�. The two independent frequencies are very close to the fre-
quencies of the unstable R-SW ��R=24.82� and L-SW ��L=−404.6� solutions,
respectively. �b� Time series of ur for the IPS solution in �a�.

TABLE II. Angular and axial speeds of the IPS measured at some points
located over N1 and N2 curves of Fig. 5.

IPS Ro Ri �p
L cL /Re �p

R cR /Re

195 402.65 397.7 2.65 20.42 −0.18

198 408.5 401.2 2.67 22.62 −0.20

201 414.3 404.6 2.69 24.82 −0.21

204 422 408.7 2.72 28.27 −0.24

207 426.5 411.9 2.74 29.53 −0.26

210 432 415.3 2.77 31.73 −0.27
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tern, except where one of the spiral waves is clearly domi-
nant, i.e., close to the inner or the outer cylinder.

The interpenetrating spirals IPS are quasiperiodic both in
space and time. Quasiperiodicity in time is clearly mani-
fested in Fig. 14�b�. Figure 17 shows the vector field u and
contours of its components on a �-constant section for the
IPS regime. The radial-azimuthal velocity field clearly shows
a nonuniform cell height throughout the cross section, as a
result of the incommensurate wavelengths of the R-SW and
L-SW spiral waves. The superposition of the two coexisting
solutions is better seen in the azimuthal velocity contours
�the third column of Fig. 17�, where a � shape is identified
close to the mean radius. The axial wavelengths correspond-
ing to the L-SW �R-SW� can still be identified close to the
inner �outer� cylinder in the contours for ur �compare with
Fig. 12�.

V. CONCLUSIONS

Nonlinear dynamics of the corotating spiral Poiseuille
flow with constant through flow have been investigated nu-
merically by means of an accurate solenoidal spectral
method that solves the time-dependent three-dimensional
Navier-Stokes equations assuming axially periodic boundary
conditions.

The explorations have been focused on a neighborhood
of a double Hopf point where low azimuthal modes compete.
Normal form analysis with the symmetry group G=SO�2�
�SO�2� has been combined with a numerical exploration for
different inner/outer cylinder velocities, allowing the identi-
fication of the bifurcation scenario corresponding to this
problem. It has been shown that the symmetry group G does
not alter the generic normal form but imposes a stronger
constraint for resonance, rendering the present case of study

FIG. 15. Isosurfaces of the IPS solution at �Ro , Ri�= �201, 414.3�,
z� �0,� /3�. �a� Azimuthal vorticity of the perturbation at level ��=−10. �b�
Helicity of the perturbation H=u · ��Ãu� at level H=0.2.
non-resonant.
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Numerical simulations confirm that spiral vortices of op-
posite wavenumber n= ±1 and a mixed mode solution of
interpenetrating spirals are born at the double Hopf bifurca-
tion. All these solutions break both SO�2� symmetries,
though in the case of the spiral waves L-SW and R-SW the
symmetries become spatiotemporal.

In the present study, the dominant solution is the quasi-
periodic state IPS, which is stable in a wide region of param-
eter space, confining the spiral waves periodic solutions L-SW

and R-SW to a very narrow parameter region. L-SW and R-SW

can be viewed as rotating and traveling waves that precess
with independent angular speeds, corotating with the cylin-
ders, but exhibit opposite streamwise phase propagation. The
stability region for the downstream traveling L-SW is slightly
wider than the upstream R-SW, as observed in the counter-
rotating case.10 The stable IPS solution can be regarded as
the superposition of both pure mode solutions, where the
features of the L-SW and R-SW regimes can be observed close
to the inner and outer cylinder, respectively, where one or the
other are dominant. The spatiotemporal properties of the
computed solutions are in very good agreement with bifur-
cation theory predictions provided.

The coexistence of spiral patterns of opposite helical ori-
entation and streamwise propagation had been formerly ob-
served experimentally in this problem for much higher angu-
lar speeds of the cylinders and also for narrow gap
geometries, where the dominant azimuthal modes at transi-
tion are one order of magnitude larger than in the present
study, thus being extremely expensive a well-resolved com-
putation of the resulting patterns with current computational

FIG. 16. Contours of the azimuthal vorticity of the perturbation, ��Ãu��,
for the IPS at �Ro ,Ri�= �201, 414.3� evaluated over a �-constant cross
section for �r , z�� �ri , ro�� �0, 2hR�. The first �second� row illustrates the
upward �downward� propagation associated to the L-SW �R-SW�, indicated
with � ���.
capabilities.
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Above the studied range of inner and outer angular
speeds, additional bifurcations take place, and the dynamics
may exhibit more complex mode interactions. These issues
will be addressed in future works.
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APPENDIX A: SOLENOIDAL SPECTRAL BASES

In what follows, we define

� =
1 + �

1 − �
, x�r� = 2r − � , �A1�

that maps the radial domain r� �ri , ro� to the interval
x� �−1, 1�, and

hm�r� = �1 − x2�Tm�x�, gm�r� = �1 − x2�2Tm�x� , �A2�

where Tm�r� is the Chebyshev polynomial of degree m, and
w�x�=1/�1−x2 is the weight function within the interval
�−1,1�. The functions in �A2� satisfy

hm�ri� = hm�ro� = 0, �A3�

gm�ri� = gm�ro� = Dgm�ri� = Dgm�ro� = 0, �A4�

where D stands for the radial differentiation operator d /dr.
The trial basis for axisymmetric fields �n=0� is given by

vm
�1��r� = 
 0

hm

0
�, vm

�2��r� = 
 − ilk0rgm

0

D�rgm� + gm
� , �A5�

except that the third component of vm
�2� is replaced by hm

when l=0, whereas for the nonaxisymmetric case the basis is

vm
�1��r� = 
 − ingm

D�rgm�
0

�, vm
�2��r� = 
 0

− ilk0rhm

inhm
� , �A6�

except that the third component of vm
�2� is replaced by hm

when l=0. For the projection space, the basis corresponding
to axisymmetric fields is

ṽm
�1��r� = w�x�
 0

rhm

0
� , �A7�

ṽm
�2��r� =

w�x�
r2 


ilk0gm

0

D+gm +
2

r
�1 − x2 + rx�hm

� , �A8�

where D+=D+1/r, and the third component of ṽm
�2� is re-

placed by rhm if l=0. The basis for the nonaxisymmetric case
is

ṽm
�1��r� = w�x�
 inrgm

rD+�rgm� + 2xr2hm

0
� , �A9�

ṽm
�2��r� = w�x�
 0

ilk0r2hm� . �A10�

− inrhm
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APPENDIX B: NORMAL FORM OF THE DOUBLE
HOPF BIFURCATION WITH SO„2…ÃSO„2… SYMMETRY

The technique of Iooss and Adelmeyer,24 which provides
a clear and simple method to obtain normal forms, incorpo-
rating symmetry considerations, is now used for the double
Hopf bifurcation with the G=SO�2��SO�2� symmetry
group. In the codimension-1 Hopf bifurcation, the presence
of SO�2��SO�2� symmetry does not alter the generic nor-
mal form, and the same is true for the double Hopf bifurca-
tion without resonance. However, it is important to specify
what the resonance conditions are, because as we shall see,
SO�2��SO�2� inhibits resonance. Resonance is only pos-
sible if both the temporal frequencies �imaginary parts of the
eigenvalues at the bifurcation point, �1

0 and �2
0� and the spa-

tial frequencies �azimuthal wavenumbers, n1 and n2, and
axial wavenumbers, k1 and k2, at the bifurcation point� sat-
isfy the resonance condition �2

0 /�1
0=n2 /n1=k2 /k1= p /q,

where p and q are positive irreducible integers. We will fol-
low closely the analysis of the double Hopf bifurcation with
SO�2�and with SO�2��Z2 symmetries provided in former
related works.20,21

The normal form theorem says that the dynamical sys-
tem in a neighborhood of the fixed point �steady, axisymmet-
ric basic state� in the center manifold can be cast in the form

żi = i�i
0zi + Si�z1,z2,z1,z2,�� , �B1�

plus a complex conjugate, for i=1,2. zi are the amplitudes of
the eigenvectors that bifurcate simultaneously, and � are pa-
rameters. The functions Si are second order in z for �=0 and
satisfy

S�etLo
*
z� = etLo

*
S�z� , �B2�

S�R	z� = R	S�z� , �B3�

S�Taz� = TaS�z� , �B4�

where Lo is the linear part of the dynamical system at
criticality and Lo

* is the corresponding adjoint operator.
We have used vector notation z= �z1 , z2 , z1 , z2� and
S= �S1 , S2 , S1 , S2� in order to keep the expressions compact.

In this notation the matrices etLo
*
, R	 and Ta are diagonal:

etLo
*

= diag�e−i�1
0t, e−i�2

0t, ei�1
0t, ei�2

0t� , �B5�

R	 = diag�ein1	, ein2	, e−in1	, e−in2	� , �B6�

Ta = diag�eik1a,eik2a,e−ik1a,e−ik2a� , �B7�

Equation �B2� gives the simplest form of S attainable using
the structure of the linear part Lo, and Eqs. �B3� and �B4�
give the additional constraints on S imposed by the symme-
try group SO�2��SO�2�.

Let z1
j1z2

j2z1
l1z2

l2 be an admissible monomial in S1; it must
satisfy Eqs. �B2�–�B4�, i.e.,

�j1 − l1 − 1��1
0 + �j2 − l2��2

0 = 0, �B8�
�j1 − l1 − 1�n1 + �j2 − l2�n2 = 0, �B9�
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�j1 − l1 − 1�k1 + �j2 − l2�k2 = 0. �B10�

This system always admits the trivial solution j1− l1−1= j2

− l2=0. If there are no other solutions, we are in the nonreso-
nant case; the normal form is not modified by the presence of
the symmetry group SO�2��SO�2�. The nonresonant normal
form is

S1 = z1Q1, S2 = z2Q2, �B11�

where Qi�
z1
2 , 
z2
2�, which coincides with the generic case
analyzed in 22.

In order that Eqs. �B8�–�B10� have nonzero solutions,
the resonant case, the condition

�2
0

�1
0 =

n2

n1
=

k2

k1
�B12�

must be satisfied. The extra solutions are of the form

j1 − l1 − 1 = jp, j2 − l2 = − jq, j � Z , �B13�

where p /q is the irreducible form of the fraction n2 /n1. Ad-
ditional monomials z1�z1

pz2
q� j 
z1
2l1 
z2
2l2, j�Z, appear in the

normal form. As k1 and k2 are positive, p and q are also
positive, and we obtain

S1 = z1Q11 + z1
p−1z2

qQ12, �B14�

S2 = z2Q21 + z1
pz2

q−1Q22, �B15�

where Qii�
z1
2 , 
z2
2 , z1
pz2

q� and Qij�
z1
2 , 
z2
2 , z1
pz2

q�, i� j.
This is in accordance with Theorem 4.2 in Ref. 25.

Resonance in the presence of the SO�2��SO�2� symme-
try group is only possible if the resonance condition �B12� is
satisfied. The spatial �both azimuthal and axial� and temporal
modes must satisfy the same resonance condition. Notice
that this condition can never be satisfied if the two rotating
waves do not precess in the same direction, or do not propa-
gate in the same axial direction. When these simultaneous
resonance conditions are satisfied, the normal form is given
by �B14� and �B15�.

Substituting �B11� into �B1�, we obtain the normal form
in the nonresonant case:

żi = zi�i�i
0 + Qi�
z1
2, 
z2
2�� . �B16�

In terms of the moduli and phases of zi, zi=rie
i�i, we have

ṙi = riQi
R�r1

2, r2
2� , �B17�

�̇i = �i
0 + Qi

I�r1
2, r2

2� , �B18�

where Qi
R and Qi

I are the real and imaginary parts of Qi,
respectively. Up to fourth order in r1 and r2, and assuming
that the coefficients of second order in Qi

R are nonzero, the
22
normal form can be written as

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



064101-12 Avila, Meseguer, and Marques Phys. Fluids 18, 064101 �2006�
ṙ1 = r1��1 + p11r1
2 + p12r2

2 + q1r2
4� ,

ṙ2 = r2��2 + p21r1
2 + p22r2

2 + q2r1
4� ,

�B19�
�̇1 = �1

0 + �1�r1, r2, �1, �2� ,

�̇2 = �2
0 + �2�r1, r2, �1, �2� ,

where we have introduced explicitly the normalized bifurca-
tion parameters �1 and �2. The dynamics of the moduli r1

and r2 decouple from the phase dynamics, and we end up
with an effective two-dimensional normal form for r1 and r2.

This effective normal form has four fixed points that
after introducing the phase dependence, become one fixed
point, two periodic solutions, and a quasiperiodic solution.
The stability and regions of the existence of these solutions
depend on the values of pij and qi. There are 11 different
scenarios classified in 2 categories: simple �p11p22
0� and
difficult �p11p22�0�. For a specific problem, in order to de-
termine the corresponding scenario, there are two options.
One option is to compute the normal form coefficients pij

and qi using the eigenvectors at the bifurcation point, which
is very complicated in the present case. The other option is to
numerically compute a regime diagram in parameter space,
delineating the regions of existence of the solutions, and de-
termine their stability in a neighborhood of the double Hopf
bifurcation point, and use this information to determine the
corresponding scenario; this is the approach we have em-
ployed here. Figure 6 is the regime diagram we have ob-
tained, by computing several solutions for different param-
eter values close to the double Hopf bifurcation point, and
computing the Hopf curves using linear stability analysis.
There is only one double Hopf scenario compatible with our
results, and it is the type IV of the simple case.22 We describe
this scenario in detail in Sec. III.

For the simple cases �p11p22
0�, the fourth order terms
in �B19� can be neglected. Introducing new variables,

1=−p11r1

2 and 
2=−p22r2
2, we obtain


̇1 = 2
1��1 − 
1 − �
2� ,

�B20�

̇2 = 2
2��2 − �
1 − 
2� ,

where �= p12/ p22 and �= p21/ p11. In our problem, ��0,
��0, and ���1. This normal form admits up to four fixed
points:

P0 = �0, 0�, P1 = ��1, 0�, P2 = �0, �2� , �B21�

P3 = ��1 − ��2

1 − ��
,
�2 − ��1

1 − ��
� . �B22�

P0 exists for all values of �1 and �2, and is stable for
�1 ,�2�0. This corresponds to our basic state. P1 exists for
�1
0 and is stable for �2���1 �below the N1 curve in Fig.
1, region 6�; P2 exists for �2
0 and is stable for �2

��−1�1 �below the N2 curve in Fig. 1, region 2�. By includ-
ing the phase information, P1 and P2 are limit cycles corre-
sponding to spiral waves. P3 exists and is stable between N1
and N2 �regions 3, 4, and 5 in Fig. 1�. As both moduli are
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nonzero for P3, by including the phase information, it is
recognized as a quasiperiodic solution on a two-torus, and in
our case it corresponds to interpenetrating spirals. For P1, P2,
and P3, r1 and r2 are constant, and so they have constant
angular frequencies:

�1 = �̇1 = �1
0 + �1�r1, r2, �1, �2� ,

�B23�
�2 = �̇2 = �2

0 + �2�r1, r2, �1, �2� .

In the nonresonant case, we have seen that the normal
form is unaltered by the symmetry group G. Nevertheless,
the symmetries act on the bifurcating solutions in a well-
determined fashion. From �B6� and �B7�, we see that the
action of G leaves the moduli �r1, r2� invariant, and G acts
only on the phases ��1, �2�. The action of G on the phases is

R	��1

�2
� = ��1 + n1	

�2 + n2	
� , �B24�

Ta��1

�2
� = ��1 + k1a

�2 + k2a
� . �B25�

The basic state P0 is a steady solution, r1=r2=0, there are no
phases, and hence it is G invariant. The solution P1 has
r2=0, and so we only need to consider �1; as k1 and n1 are
different from zero, both symmetries are broken. The actions
of R	 and Ta are equivalent to appropriate time translations
�	 and �a:

R	:�1�	 = n1	 Þ �	 = n1	/�1, �B26�

Ta:�1�a = k1a Þ �a = k1a/�1: �B27�

R	 and Ta become spatiotemporal symmetries; time evolu-
tion is equivalent to a rotation around the axis and also to a
translation along the axis. The limit cycle can be viewed
simultaneously as a rotating wave �with precession fre-
quency �p=−�1 /n1� and also as a traveling wave in the axial
direction �with axial speed c=−�1 /k1�. In fact, P1 retains a
helical symmetry: H	=R	T−n1	/k1

leaves P1 invariant; these
helical symmetries generate a SO�2�H symmetry group,
which is a subgroup of G. The periodic solution P1 is point-
wise SO�2�H invariant, and as a set it is G invariant. For this
reason we call this solution a spiral wave.

The solution P2 has r1=0, and so we only need to con-
sider �2; exactly the same considerations as for P1 show that
P2 is a rotating wave/traveling wave with helical symmetry
SO�2�, i.e., a spiral wave; but the helical symmetries that
keep P2 invariant are different from the ones that leave P1

invariant. P2 is invariant to H	� =R	T−n2	/k2
. The helical sym-

metries for P1 and P2 are the same only when there is spatial
resonance: n2 /n1=k2 /k1.

The time evolution of a P3 solution is given by

�t��1

�2
� = ��1 + �1t

�2 + �2t
� , �B28�
where �t is the time evolution operator acting on the phases
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�1 and �2. If �2 /�1 is rational, P3 is a periodic solution; it is
the temporal resonance case. If not, it is a quasiperiodic
solution. From P3, the action of G generates a two-torus �in
the nonresonant case, where �B12� is not satisfied�. The two-
torus as a set is G invariant, but the individual P3 solutions
do not retain any pointwise spatial symmetry �except in the
case of spatial resonance�. Although P3 is quasiperiodic, in
an appropriate rotating �or traveling axially� frame of refer-
ence, it becomes a periodic solution; using �B24�, in an ar-
bitrary reference frame rotating with angular velocity �r, the
time evolution of P3 is given by

R−�rt
�t��1

�2
� = ��1 + ��1 − n1�r�t

�2 + ��2 − n2�r�t
� . �B29�

When �r is such that ��1−n1�r� / ��2−n2�r� is rational, P3 is
periodic in the rotating reference frame. The two simplest
choices are �r=�i /ni, for i=1 and 2. These choices are pre-
cisely the precession frequencies of the pure modes P1 and
P2.
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