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The phenomenon of subcritical transition in Hagen-Poiseuille or pipe flow is explored for a wide
range of Reynolds numbers within the interval Re e[2.5X10°,1.26X10*] by means of a
computational method that numerically resolves the transitional dynamics with nearly 3.5 10*
degrees of freedom on a medium aspect-ratio domain of length 3277/5. The aim of this exploration
is to provide a theoretical characterization of the basin of attraction of the basic regime by
measuring the minimal amplitude of an initial global perturbation leading to transition. The analysis
is based on a particular theoretical scenario that considers streamwise-independent finite amplitude
initial vortical perturbations that trigger global transition via optimal inflectional instabilities of
streamwise-dependent modes with selected axial wave numbers. Disturbances consisting of 1, 2,
and 3 pairs of vortices are investigated. Special attention is given to relaminarization phenomena
that is frequently observed for low Reynolds numbers. Long lasting turbulent regimes and
relaminarized flows are distinguished by means of time integrations of suitable length between
Tin=600 and T,,,,=1000 advective time units. Some transitional runs are specifically analyzed to
exemplify the transition scenario under investigation and its independence of pipe length is verified
with a few computations on a longer pipe of length 327 (1.4 X 10° degrees of freedom). For large
values of the Reynolds number, a theoretical scaling law for the threshold amplitude of a
perturbation required to trigger transition is provided. Different types of perturbations seem to
respond to different scaling laws. © 2006 American Institute of Physics. [DOL: 10.1063/1.2222376]

I. INTRODUCTION

Transition to turbulence in shear flows still remains an
open problem of hydrodynamic stability theory. For instance,
plane Couette flow (fluid contained between inertially sliding
infinite parallel plates) is always linearly stable, i.e., any in-
finitesimal perturbation of the flow decays for long times, yet
it exhibits transition to turbulence in the laboratory and in
numerical simulations for moderate flow speeds.lf4 Hagen-
Poiseuille or pipe flow (pressure driven flow through an in-
finite circular pipe) is believed to be linearly stable as well
but also becomes turbulent in practice.y9 Plane Couette and
pipe flow, because of their apparent simplicity, are the most
fundamental examples of subcritical transition to turbulence
in fluid dynamics, i.e., transition to turbulence bypassing lin-
ear stability.

Since the seminal work of Osborne Reynolds'O pub-
lished in 1883, many physicists and applied mathematicians
have devoted enormous efforts to provide a theoretical ex-
planation of the phenomenon of subcritical transition to tur-
bulence in plane Couette or pipe flows. During the last de-
cade, the pursuit of an answer has followed two independent
research approaches. The first one has been mainly focused
on the study of nonmodal transient growth exhibited by
streamwise vortical finite amplitude perturbations, due to the
strong non-normality of the linearized Navier-Stokes opera-
tor, i.e., nonorthogonality of its eigenvect01rs.7’”44 This tran-
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sient growth eventually stagnates, leaving an almost steady
modulated streamwise flow that contains two-dimensional
streaks, characterized by the presence of saddle points, po-
tentially unstable with respect to three-dimensional infini-
tesimal perturbations in the inviscid stage, i.e., before the
viscous effects take over the dynamics. Almost exponential
growth of streamwise-dependent waves is therefore expected
under the presence of streaks, eventually inducing transition
via a mechanism commonly termed streak breakdown, by
which the three-dimensional waves break the streamwise
structure of the streaks, leading to turbulence. The described
instability process has been proven to be a universal mecha-
nism of subcritical transition in other shear flows such as
Blasius boundary layer or plane Poiseuille flow, although
other scenarios may also be at work in the transition
process.ls’16

The second approach to the problem of subcritical tran-
sition has been based on the direct exploration of the phase
map of the corresponding dynamical system representing the
fluid problem. Subcritical transition in linearly stable open
shear flows is directly related to the existence of secondary
solutions of the Navier-Stokes equations. Since these flows
are linearly stable for all Reynolds numbers, these other so-
lutions must be necessarily disconnected from the basic flow.
For example, in plane Couette flow, secondary solutions
were found'™'® by means of homotopy transformations.
More recent numerical studies™'® have also reported new
solutions for this particular problem. In pipe flow, recent nu-
merical studies have revealed the existence of travelling
wave solutions of selected azimuthal symmetry, supposedly
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constituting the essential topological feature of the chaotic
dynamics.zo’21 The limit cycles associated with these travel-
ling waves have been proved to be linearly unstable.”? The
computation of the friction factor associated to these time-
dependent solutions ostensibly matches the empirical laws
describing turbulent flows in smooth pipes,20 which in itself
constitutes a clear signature of the relevance of these solu-
tions in the turbulent regime.

In Hagen-Poiseuille flow, a fluid of kinematic viscosity v
is axially driven through a circular pipe of radius a by means
of a uniform axial pressure gradient. The basic solution of
the Navier-Stokes equations is a parabolic, streamwise inde-
pendent, axisymmetric, and steady purely axial flow. The
Reynolds number is defined as Re=Uga/v, where U is the
maximum axial speed of the flow at the centerline of the
pipe. Experimental evidence shows that pipe flow becomes
more sensitive to perturbations when increasing the Rey-
nolds number. Since the flow is linearly stable, finite (yet
small) amplitude perturbations must be responsible for the
transition to turbulence.

One of the main goals of the two previously described
approaches to subcritical turbulence has been to provide a
characterization of the basin of attraction of the basic lami-
nar flow. We must think of it as a subset in an infinite dimen-
sional space that contains the basic flow, driving towards this
solution any initial perturbation contained in this subset. Nu-
merical simulations confirm that pipe flow is even stable for
all axisymmetric finite-amplitude disturbances.”® Therefore,
the basin of attraction is not a bounded domain and its size is
a meaningless measure because it is actually infinite. Instead,
we must think of the boundary of that basin of attraction that
approaches a minimum amplitude A, from the steady solu-
tion. A question still unsolved is the dependence of this am-
plitude with the Reynolds number, A,=A_.(Re), that must
necessarily decrease when Re is increased, being plausible to
assume that its asymptotic behavior scales with Re according
to

A~ Re?, (1)

with vy necessarily negative. In other words, A, represents the
minimum amplitude of a perturbation capable of destabiliz-
ing the basic profile, leading to a turbulent regime. Theoret-
ical exponents for plane channel flows have been obtained by
means of asymptotic methods within the framework of some
particular transition scenarios.'®  For pipe flow, recent
renormalizations®* have been suggested in order to cast dif-
ferent experimental results in terms of a single definition of
the amplitude appearing in (1), providing lower and upper
bounds for the value of this critical exponent that presumably
lies within the interval ye[-9/5,-6/5].

The most comprehensive experimental explorations of
the threshold amplitude problem (1) for pipe flow were pro-
vided by Darbyshire and Mullin® and more recently by Hof,
Juel, and Mullin,9 henceforth referred as HIJM, where
the fluid was perturbed by means of localized injections of
selected azimuthal symmetry. The experimental results of
HIM clearly concluded that the minimum amplitude of a
perturbation required to trigger transition scaled as the in-
verse of the Reynolds number, i.e., A,=O(Re™!). Postpro-
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cessed experimental results have recently confirmed the pres-
ence of the aforementioned travelling waves obtained
Computationallyzo’21 as inherent components of the turbulent
flow.”

To the authors’ knowledge, the first computational esti-
mation of the threshold exponent problem (1) in pipe flow
was provided by Meseguer,12 employing a numerical model
for time integrations that were too short in time, thus being
impossible to distinguish between relaminarized and turbu-
lent flows, particularly for low Re. The resolution was ex-
tremely poor, especially in the axial direction, for which a
singe mode was considered, not allowing for nonlinear inter-
action. By contrast, the present study provides a highly re-
solved comprehensive numerical exploration of the threshold
amplitude for 2.5X 103<Re<1.26X 10*, based on the
streak breakdown scenario, for medium length pipe aspect
ratio and for extended time horizons that allow us to distin-
guish between long-lasting turbulence and relaminarization.
Streamwise perturbations consisting of a varying number of
pairs of vortices are used as initial disturbances, optimal
streamwise-dependent waves and random noise are alterna-
tively added as the 3D component of the perturbation, the
development of the flow is carefully analyzed for some test
cases and the independence of the considered transition sce-
nario with respect to pipe length suitably verified.

The paper is structured as follows: Sec. II is devoted to
the mathematical formulation of the initial value problem for
the perturbation fields, and the axial and azimuthal structure
of disturbances is presented. The criteria that allow us to
classify laminar, relaminarized and turbulent flows are ex-
plained in Sec. III, where the time horizons required to dis-
tinguish among those regimes are provided. Section IV
yields the main results of the exploration for different types
of streamwise disturbances and also investigates the effects
of pipe length in this particular transition scenario. Finally,
many questions regarding the difficulties of comparing nu-
merics with recent experimental results are addressed. The
main conclusions are gathered and presented in Sec. V.

Il. THE INITIAL VALUE PROBLEM

In cylindrical nondimensional coordinates (r,6,z), the
basic Hagen-Poiseuille flow reads ub=ubf+vbb+ WyZ
=(1-r})2=(0,0,1-r%), where we have used a and U, as
units for space and velocity, respectively. The computational
domain considered is (r,0,z) € ©=[0,1]X[0,27] X[0,A],
where the dimensionless pipe length in radii units is fixed to
A=6.47~20 (except for a subset of runs on a much longer
pipe, with A=327~ 100, carried out for verification pur-
poses). The total flow is decomposed into the basic flow u,,
plus a time-dependent solenoidal disturbance u(r,6,z,1),

satisfying radial homogeneous boundary conditions,
u(l,0,z,t)=0, and axial-azimuthal periodicity,
u(r, 0+2mz,1) =u(r, 6,2+ A1) =u(r, 6,z,1). )

Formal substitution of the perturbed field v=u,+u in the
Navier-Stokes equations, leads to a nonlinear partial differ-
ential equation for the perturbation of the form
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u= éAu— (up-Vu=(u-V)u,—(u-Vu, (3)
with
V.-u=0. (4)

Equation (3) is discretized by means of a solenoidal spectral
Petrov-Galerkin scheme in primitive variables, where the
pressure terms, deliberately omitted in Eq. (3), cancel out in
the weak projection and the spectral approximation identi-
cally satisfies (4). The resulting dynamical system of ampli-
tudes is numerically integrated in time by means of a fourth
order linearly implicit backward differences scheme com-
bined with standard fourth order Adams-Bashforth extrapo-
lation of the nonlinear term. The spatio-temporal conver-
gence and reliability of the numerical method have been
extensively tested in previous works.*'*?%?7 For a vast ex-
ploration, the spatial resolution used in the domain ® is
M, X NyXL,=25X33X33 radial X azimuthal X axial ~ grid
points, and M, X NyXL,=33X33X33 for further refine-
ments, resulting in a dynamical system of nearly 3.5X 10*
degrees of freedom. No substantial differences have been
observed when increasing the spatial resolution or decreasing
the time step. The spatial convergence has been checked by
repeating some test computations on a finer mesh of
M, X NyX L =41 X49X49. Also the energy contents of the
highest axial/azimuthal Fourier modes has been monitored
for every single run to ensure the adequacy of the spatial
truncation. For subcritical runs, an energy decay of 6 to 7
orders of magnitude below that of the basic flow has been
considered enough. Transitional runs are clearly under-
resolved when turbulent motion begins. The computational
costs of the resolution that would be required are unafford-
able, but one must bear in mind that it is not the aim of this
study to simulate turbulence, but to bound the basin of at-
traction of the basic flow. Computations for a longer pipe
have been carried out in order to check the length effects in
the transition mechanisms studied. In particular, computa-
tions with A=327~ 100 have been done by increasing the
grid size to M, X NyX L =33 X33X129.

The normalized energy of a perturbation u is measured
by means of the volume integral or Hermitian product

e(u) =

1 .
f u' -ud?, (5)
2Emp ) o

HP

with respect to the energy of the basic Hagen-Poiseuille flow,
Eyp=1A/6, so that the amplitude of the perturbation is de-
fined as the square root of its normalized energy,

A(u) = Ve(u). (6)

To better understand how the energy is distributed within
the flow, it is very convenient to express the perturbed ve-
locity v as a sum of the basic flow u, and the Fourier com-
ponents of the perturbation field u, satisfying (3), (4), and

),
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u,p(r,6,1)

v(r,0,2,1) = up(r) + ugy(r.) + E emeu()n(”,f)

n#0
u3p(r,6,z.1)
+ 2 E ei(n0+2ﬂ'/Alz)uln(r’t)’
1#0 n (7)

where u, contains the azimuthal-axial-averaged perturbation
velocity profile, u,p represents the nonaxisymmetric stream-
wise component of the velocity field and u;p the remaining
streamwise-dependent components. For the particular com-
putations presented throughout this study, u,p must be inter-
preted as the streaks modulation of the flow.

Using (5) on the decomposed velocity field, the energies
corresponding to the bulk flow, to the streamwise component
and to the 3D perturbation can be computed independently as
ggo=e(ug), e’P=¢(u,p) and &’P=g(u;p), respectively.

Subcritical instability in shear flows is efficiently trig-
gered by adding streamwise vortical perturbations to the ba-
sic flow."""*71° Of all possible initial disturbances, stream-
wise vortices with azimuthal wave number n,=1 are the best
candidates to trigger transition, as several linear nonmodal
stability analyses of pipe flow®"® have repeatedly shown that
this sort of disturbances exhibit optimal transient growth.
This energy growth leads to the generation of strong nonlin-
ear streaks, in the presence of which streamwise-dependent
modes of selected axial periodicity are destabilized. Time-
dependent linear stability analysis of the streamwise
streaks®® confirms  that only a subset of streamwise-
dependent modes are potentially destabilized by the inflec-
tional transitional streaks. Therefore, the perturbation intro-
duced at r=0 must satisfy three requirements to be optimal.
First, it must have a strong streamwise component to gener-
ate inflectional profiles or streaks. Second, it must also con-
tain small streamwise-dependent components of suitable
axial periodicity within the range that exhibits optimal in-
flectional instability.28 Third, since the streaks are transient
modulations of the basic flow, the destabilized streamwise-
dependent components have a limited period of time to grow
and nonlinearly interact with the modulated flow while it
lasts. As a result, although the streamwise-dependent initial
amplitudes can be of much smaller magnitude than that of
the streamwise component, they still need to be large enough
to be able to break the streaks before the onset of their vis-
cous decay.

Even though a single pair of streamwise vortices (n,=1,
from here on referred to as N,) experiences the largest tran-
sient growth,é’13 perturbations consisting of a greater number
of pairs of streamwise vortices (n,=2, 3, ..., which we will
call N,, N3, ..., respectively), although exhibiting smaller
transient growth, might develop into streaks with a higher
potential of destabilizing streamwise-dependent waves.

The initial disturbance uy=u(r, #,z,0) used in a first ex-
ploration of the critical threshold consists of a suitable super-
position of a single pair of two-dimensional streamwise vor-
tices (N;), ugD, and a set of three-dimensional waves, uSD, of
selected axial periodicities,
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2D 3D
b Yo

uy = CPe'% (r) + > C;’,Pei(”9+k<)[Z)vn(r) +c.c.,
Ln

(8)

where c.c. stands for complex conjugated terms. The radial
structure of uSD takes the simplest polynomial form compat-
ible with solenoidality and nonslip boundary conditions at
the wall, closely resembling a nearly optimal (in its capabil-
ity of generating strong streaks) pair of streamwise
vortices.'>?® As for ugD in (8), the sum only excites stream-
wise dependent modes with n={-1,0,1} and [={l,,l,,15}
(i.e., 9 streamwise modes overall) and whose radial structure
is also of the lowest polynomial order. The radial fields just
described are:

r(l—rz)Aﬂ Jj=0

—ijr (1 =%+ D[r’(1 -0 j#0,
9)

Vj(”) =

where o=1 (2) for j odd (even) and D denotes a radial de-
rivative. The subscript j alternatively equals 1 for the 2D
component or represents n for the 3D component of the per-
turbation given in (8).

The fundamental axial wave number k,=2/A appear-
ing in (8) is determined by the aspect ratio of the computa-
tional pipe domain. The triad i=1, 2, 3, must then be cho-
sen so that the excited axial wave numbers (k;=k,l;) lie
within the range exhibiting optimal exponential growth of
u’P in the presence of the streaks developing from u(z)D . Ac-
cording to former studies'**® and a few preliminary runs
within the frame of the present work, the optimal axial wave
number appears to be somewhere in the interval Ky
e[1.5,2.2]. Since the aspect ratio of the pipe has been fixed
to A~20 radii, the triad /;,={6,7,8}, which activates waves
with k;={1.56,1.88,2.19}, must be initially excited.

The complex constants C?° and C;? in (8), which modu-
late the initial amplitude of the two components of the per-
turbation, are chosen so that the initial energy of the stream-
wise vortices, s(uSD), and of the three-dimensional waves,
e(u;P), take the desired values )" and &°, respectively. &7
is evenly distributed among the whole set of excited 3D
modes. The complex phases of these constants are generated
randomly.

With the aim of testing vortical perturbations of different
azimuthal topology, a slightly different type of initial condi-
tion has been defined. The 2D component in (8) has been
adapted in (10) to admit varying azimuthal wave numbers
(n,) in order to represent streamwise-independent structures
consisting of an arbitrary number of pairs of vortices. The
simplest polynomial form, detailed in (9), has been retained,
with j now representing n,. Thus, vortical structures with
n,=2,3 (N,,N3) can be considered along with the aforemen-
tioned single pair of vortices (1,=1, N;). No studies exist, to
the authors knowledge, on the optimal range of axial wave
numbers (k) of the waves that are most destabilized in the
presence of streaks developing from N, and N; vortical
structures. Consequently, rather than undertaking such a vast
task as would be determining the optimal axial wave num-
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bers, a decision has been made of simply adding a random
3D noise, which in fact narrowly mirrors what happens in
experiments, thus exciting 3D waves of all axial wave-
lengths. The exploration for a single pair of vortices (N;) has
been repeated with this random 3D noise for checking pur-
poses. The general expression of the initial disturbance for
this enhanced parameter exploration is

u2D u}D
0 0
uy= CZDei"vevnv(r) +U,ynq(r, 6,2) +c.c., (10)

with u,,,4 a random perturbation velocity field of the desired
amplitude, containing much lower energy than the stream-
wise component.

lll. CRITERIA FOR TRANSITION

In order to establish criteria to decide whether the per-
turbations (8) and (10) lead to turbulence or not, it is crucial
to run up to a time-horizon at which the streaks have fully
developed and the three-dimensional perturbations have had
enough time to grow. This time has been found to be at least
Tmax=1000 advective time units for the lowest &P at the
highest Re explored. After this period, either the streak
breakdown or the irreversible onset of viscous decay have
taken place. However, for Re<7500, T,,,=600 has been
found to be enough. Experimentally, considering the pertur-
bation is at worst advected downstream at the basic flow
maximum axial speed, this is equivalent to having the obser-
vation point at 300-500 diameters distance downstream from
the perturbation point. The longest constant mass flow rig
used in experiments allows us to make observations up to
530 diameters downstream from the perturbation location,9
which our time horizons represent well enough. Checking for
turbulence after this time is therefore a reasonable approach,
and this is done by a bare eye inspection of the modal energy
distribution. In the present study, a simulation run is consid-
ered turbulent if

e’P(T) = 107 and O(&*°(7)) ~ O(e*°(7)), (11)

otherwise laminar. Condition (11) is based on the fact that
three-dimensionality is a clear signature of turbulent dynam-
ics and therefore it is required for the streamwise-dependent
modes to be still active, and much stronger than initially, at
the end of the run. For low Re, however, transition for a
limited time window with an eventual relaminarization has
been consistently observed. These relaminarized runs would
have appeared as turbulent depending on the position of the
observation area in an experimental rig. The existence of this
phenomenon suggests that some of the runs considered
within a time horizon of 7=600 may have relaminarized if
longer runs had been envisaged. It is however important to
point out that we do not expect to properly model developed
turbulence with our discretization, as it is too coarse to rep-
resent the smallest turbulent scales at which the energy is
dissipated. Turbulence and relaminarization are therefore a
misrepresented phenomena in the current work, and should
be interpreted with extreme care. Figures 1(a)-1(c) illustrate
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FIG. 1. From top to bottom, (a) laminar, (b) turbulent, and (c) relaminarized
runs. In all three plots, the continuous line represents £?P(#), and the dotted
lines are the energies associated with the streamwise-dependent triads.

a laminar, a turbulent and a relaminarized run, respectively.
They all depict the evolution of N;-type disturbances and the
selected set of optimal 3D waves. In each plot, the continu-
ous line corresponds to the energy of the mode excited by the
streamwise perturbation, which constitutes a reliable signa-
ture of the development of the streaks. The dashed lines are
the energies associated with some of the streamwise-
dependent modes of the axial triads with n=0 or |n|=1. In
the laminar case, Fig. 1(a), the three-dimensional compo-
nents of the perturbation are only temporarily excited once
the streaks have developed, but this tendency is soon re-
verted and their energy rapidly decays before having been
able to perturb the streamwise streaks. The turbulent run,
Fig. 1(b), differs from the laminar one in the growth rate of
the streamwise dependent modes in the presence of the
streaks, eventually leading to a streak breakdown and setting
off chaotic dynamics or turbulent motion. This phenomenon
can be spotted by looking at the drastic fall of £2P(¢) for
t>50. Since the inflectional structure of the modulated flow
is streamwise independent, this transition scenario leads to
global turbulence instead of the intermittency phenomena
observed in the experiments, where coexistence of laminar
flow with turbulent regions, usually called puffs and slugs, is
observed. Finally, in the relaminarized run, Fig. 1(c), the
turbulent motion is abruptly interrupted and the streamwise-
dependent energies start decaying rapidly whilst the streaks
recover temporarily to slowly vanish afterwards for > 600.

IV. RESULTS AND DISCUSSION

For the present study, we have carried out a compre-
hensive exploration of the minimum initial amplitude,
Ap=A(uy), defined in (6) required to trigger transition, ac-
cording to the criteria established in Sec. III. This has ini-
tially been done for disturbances fulfilling all optimality cri-
teria derived from previous studies, i.e., a single pair of
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streamwise vortices, N, plus the 3D waves that are most
unstable to the streaks developed from these vortices, de-
tailed in (8).

The current exploration has been extended for distur-
bances consisting of different numbers of pairs of vortices
(N, and N3), on top of which random 3D noise has been
added according to (10), since no available data on the opti-
mal axial periodicity of 3D waves destabilized by streaks
developing from these vortices is available in the literature.
The critical threshold exploration for N, disturbances has
been repeated with random 3D noise to allow comparison
with the previous exploration only considering activation of
the optimal 3D waves, and to indeed assess their optimality.
Finally, the critical amplitude threshold for the N, type of
initial condition exciting the optimal 3D waves has been re-
computed on a much longer pipe in order to rule out length
scale effects on transition for the particular scenario investi-
gated. An extra run on the long pipe with random 3D noise
added on top of an N, vortical disturbance has been com-
puted to illustrate the streak breakdown global mechanism of
transition by comparing the same case on the short pipe.

A. N, disturbances with optimal 3D waves

The critical amplitude threshold exploration for this par-
ticular kind of disturbances covers a wide range of Reynolds
numbers, within the interval Re e [2.5 X 103,1.26 X 10%], and
initial energies e;° within the range &2°e[2.5X 10754
X 1072], while the energy associated with the streamwise-
dependent modes is held constant, with 88D=9 X 1078 evenly
distributed among the corresponding triads.

Results for the coarse computations (M, X NyX L,=24
X 33X 33), are shown in Fig. 2(a), where white triangles
represent laminar runs, black circles denote turbulent runs,
and empty circles correspond to relaminarized runs. The
critical amplitudes, obtained from a refined exploration
(M, X NgX L,=33X33X33), have been marked with gray
squares. Overall, the over two hundred exploratory runs re-
quired nearly 10 CPU months on a 3 GHz Athlon-PC cluster.

For low Reynolds numbers, it is remarkable how relami-
narization is a very common phenomenon, where the basic
flow preserves sound stability properties and considerably
big perturbations are required to trigger transition. As ex-
pected, the critical amplitude A, is a decreasing function of
the Reynolds number. In fact, A, exhibits a vertical threshold
evidenced by the behavior of the slope, which is very pro-
nounced at low Re (allegedly converging to a vertical as-
ymptote at Re = 2000).

As soon as Re is increased, the numerical results shown
in Fig. 2(a) clearly suggest that pipe Poiseuille flow follows
the same behavior as other shear ﬂows,'s’16 with a cri-
tical amplitude that decreases with Re according to
A.~Re 472002 yery close to the exponent y=-3/2 quoted
in previous numerical studies with far less resolution and run
on a much shorter domain'? (dashed straight line in Fig. 2),
at least within the studied range. This behavior has been
confirmed by increasing the spectral resolution of the nu-
merical scheme. Furthermore, the axial/azimuthal resolutions
have been validated as sufficient by assessing the decay of
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FIG. 2. Threshold amplitude for N,-type perturbations with optimal 3D
waves. (a) Coarse exploration with lower spectral resolution M, X NyX L,
=24X33X33. (b) Zoomed region on top, showing the numerical refine-
ments for M, X NyX L,=33 X33 X 33. Overall, the 200 runs presented here
required nearly 10 CPU months on a 3.0 GHz Athlon PC cluster.

the energy contents of the highest Fourier modes for the
subcritical runs, which has been required to be 6 to 7 orders
of magnitude below that of the basic flow. The resolution is
certainly not sufficient for runs exhibiting transition once
turbulence sets in. However, since this work is only con-
cerned with bounding the basin of attraction of the basic
flow, properly representing the laminar phases of the transi-
tion process is enough. The uncertainty on the exponent y
has been assessed by estimating the evolution of the slope of
the critical threshold through linear regressions on subsets of
contiguous data points and by assessing the variability of this
slope around the average value at which it seems to stabilize
at high Reynolds. Figure 2(b) shows a zoom on the squared
out region in Fig. 2(a), including the higher resolved integra-
tions that have been used to accurately determine the thresh-
old amplitude.

The experimental results recently reported in HIM re-
vealed a clear exponent y=-—1. The numerical simulations
presented here are not necessarily in contradiction with the
experiments. In fact, expression (1) implicitly involves many
physical aspects that require an accurate description before
making any comparison between numerics and experiments.
First, the mathematical definition of the amplitude A appear-
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ing in (6) was provided in terms of the kinetic energy of the
perturbation, whereas HIM measured the amplitude A as a
ratio between the perturbing injected flux and the basic mean
flux, i.e., A~ ®;;/Pypp. Second, the geometrical features of
the perturbation will necessarily condition the subspace over
which we are measuring the amplitude appearing in (1).
In the present scenario, we have selected streamwise-
independent disturbances that optimally trigger inflectional
instability, whereas in the experiments, the disturbances are
axially localized, thus exciting the full spectrum of stream-
wise wave numbers. Besides, the azimuthal symmetry of the
numerical perturbation is n,=1, in contrast to the six-jet de-
vice used in HIM that forces an n,=6 symmetry. Third, our
perturbation mechanism is mathematically posed as an initial
value problem, whereas the injections used in HIM require
finite durations, thus transiently modifying the original topo-
logical features of the basin of attraction. Finally, expression
(1) is only valid for high values of Re. Thus, over the range
studied both in experiments and numerics the exponent ob-
tained must necessarily be local. This would also be in line
with results obtained for plane Poiseuille ﬂow,16 where full
simulations at low Re also give different exponents that are
ascribed to finite-Re effects. Further increase of the Reynolds
number would be required to asymptotically confirm the
value of 7.

The observed discrepancies with experiments should not
be taken as a major hindrance. We are concerned with natural
transition due to unknown perturbation sources that are al-
ways present in the flow. The aim of this study is to identify
the components of this unknown sources that can be held
responsible for transition and, to that end, numerical simula-
tion is much more flexible than experiments. We are quite
confident, however, that experimental disturbances contain-
ing strong components of the numerically used ones are re-
alizable and that they will very much yield the same results
as our numerical experiments.

B. N, ,; disturbances with random 3D noise

To gain some understanding on the effect on transition of
the azimuthal topology of the initial disturbance, a system-
atic search for the critical amplitude threshold has been
implemented based on initial conditions consisting of n,=1,
2, and 3 pairs of rolls (N, N,, and N; disturbances). As
previously stated, the objective is to test their presumed
higher capability of destabilizing 3D waves despite their
lesser transient growth when compared with N; perturba-
tions. Ideally, we would have liked to test azimuthal wave
numbers of up to n,=6 so as to allow direct comparison with
the 6-jet experimental injection used in HJM, but the azi-
muthal resolution this would require renders such an explo-
ration unaffordable.

Lacking insight on the most rapidly growing axial wave
numbers, the 3D component of the perturbation has been
introduced as a random velocity field fairly evenly distribut-
ing among all modes an energy four to five orders of mag-
nitude below that of the streamwise vortices. The objective is
to make sure the optimal 3D waves are activated, notwith-
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FIG. 3. Critical amplitude threshold as a function of Re for initial distur-
bances made up of n,=1,2,3 pairs of vortices and a much lower random 3D
noise.

standing the fact that some spurious energy is being wasted
on irrelevant modes. No significant differences on the critical
threshold should a priori be expected from using a random
3D perturbation instead of 3D waves within the optimal axial
wave-number range. While the approach of adding a random
perturbation is of much simpler implementation, the possi-
bility of identifying the optimal waves by comparison with
computations exciting exclusively certain (optimal) wave
numbers, can be very valuable, since it may be relevant to
understanding transition and can help establish connections
with recently found travelling-wave solutions,”™*! some of
which have wavelengths in the vicinity of the optimally de-
stabilized 3D perturbations.

Thus, the critical threshold for N, and N5 has been ob-
tained and the one for N, is recomputed for disturbances with
a random 3D component, using the initial condition pre-
sented in (10). Over 100 additional runs with a spatial reso-
lution of (M, X NyX L,=33X 33X 33) have been performed
to bound the critical threshold for the three different types of
initial disturbance. Figure 3 shows the critical amplitude
thresholds of N, N,, and N; disturbances with random 3D
noise added. The estimated asymptotic exponents, resulting
from the analysis through linear regression of the evolution
of the slope, are displayed with dashed straight lines.

A first obliged remark is that, for Ny, adding a random
noise instead of activating the right axial wavelengths, as
was done in the first exploration, does not alter the picture
substantially. This seems to confirm that a small packet of
waves can be held responsible for transition, the rest of
modes playing no role whatsoever until the streaks have been
broken and chaotic motion has set in. The exponent,
however, seems to have slightly decreased to a value of
y1~—1.35+0.02, which is less pronounced than the previ-
ously found y=-1.47+0.02. Exciting nonoptimal wave-
lengths seem to deteriorate the capability of the 3D distur-
bance to bring about transition as Re is increased, as though
competing waves were disturbing one another through non-
linear interaction, thus deferring transition.

The critical thresholds for N, and N5 appear to be of a
similar order of magnitude and both considerably lower than
that for N;, for moderate values of Re. It is therefore clear
that, within the studied Re range, initial disturbances consist-
ing of a couple of pairs of streamwise vortices are slightly
more effective than those consisting of three pairs and con-
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FIG. 4. From top to bottom, energy-evolution plots of streak breakdown
transition examples for vortical perturbations of the (a) Ny, (b) N,, and (c)
Nj types, for Re=5012. In all three cases, the added 3D component is a
random field.

siderably better than a single pair of vortices. However, it is
not immediately clear whether this will still be the case at
higher Re. Assuming the asymptotic regime of the critical
threshold has more or less been established by the time
we reach the right end of the explored Re range, N, distur-
bances stand a better chance of dominating the transition
threshold for Re tending to infinity, as N, disturbances pro-
duce an exponent y,~—1.10+0.03 and N; disturbances a
v3~—1.06, not yet stabilized but apparently tending towards
—1. Nevertheless, the possibility that all disturbance thresh-
olds mellow out asymptotically to an exponent y~—1 cannot
be discarded nor proved from the present study, since the
exponent stabilization may be apparent and its evolution
could resume at higher Re.

To the difficulty of discussing the current results, we
must add a further hindrance, namely, that the critical ampli-
tude at a given Re depends on the initial energy of the 3D
component of the perturbation, which is assumed to be very
small compared to the 2D component to ensure the streak
breakdown mechanism, and not oblique transition, takes
place. Chances are that the 3D perturbation energy level has
an effect on the critical threshold at moderate Re but a rather
weak one on its asymptotic exponent, since as Re increases
the streaks lifetime stretches giving a longer time for the 3D
waves to grow, thus making their initial energy level irrel-
evant as long as it is finite. Figures 4(a)-4(c) exemplify the
streak breakdown mechanism for the Ny, N,, and N5 types of
initial disturbance, respectively. Depicted are the time evolu-
tion of the energy of the streaks (2P, solid line), together
with that of the 3D component (£3P, dashed line). All three
runs correspond to Re=5012 and initial perturbations which
are just supercritical (A;=2.75X 1072, A,=8.13X 1073, and
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t =140

o a6e

FIG. 5. From left to right, contours of (w)., {(g’P). and (&°P),, for the N, disturbance evolution with A=20.1 and Re=5012. Time elapses from top to bottom,
with snapshots taken at the most relevant instants, marked with gray circles in Fig. 4(a).

A;=1072, for the N, N,, and Nj cases, respectively). As ex-
pected, in all three cases the streaks develop and excite 3D
modes that start growing exponentially until they acquire
sufficient energy to nonlinearly interact with the streaks and
bring about transition. The N; case exhibits a slightly more
complex behavior as the different stages of the 3D perturba-
tion energy growth evince.

In Figs. 57, three series of snapshots at selected times,
conveniently indicated with gray circles on the energy evo-
lution plots [Figs. 4(a)-4(c)], help illustrate the streak break-
down process for each type of vortical disturbance. On the
left of Figs. 5-7 z-averaged cross-sectional contours of the
axial speed component of the flow v=(u,v,w) are repre-
sented within the range 0=<(w).(r,0,1)<1 in order to visu-
alize the streaks formation and destabilization. The center
and right vertical sequences of pictures correspond to energy
density contours of the velocity component usp(r, 6,z,1) ap-
pearing in (7). More specifically, the central array of figures
contains z-averaged cross-sectional contours, while the right
array shows @-averaged contours on a transversal section
(r,z) €[0,1]X[0,A]. The aforementioned energy density
averages are given by

A
[usp(r, 6,2,1)|*dz,

(&%), (r, 0,1) = % f (12)

0

and

2

1
(D) y(r,2,1) = 5 f [usp(r, 6,2,0)|Pd 6, (13)

0

and their contours are drawn in arbitrary units. In addition,
the axial coordinate of the longitudinal sections has been
conveniently scaled to aid representation. These series of
contours reveal the modal structure of the 3D waves as well
as their location and destabilization effects over the streaks.
A fixed number of contour lines is extrapolated between 0
and the maximum energy at each particular instant of time.

Because of their simplicity, it seems natural to start by
discussing the N, and Nj cases, shown in Figs. 6 and 7,
respectively. The 3D perturbation organizes itself and grows
exponentially in the vicinity of the saddle lines of the
streaks-modulated axial velocity profiles, as can be seen in
the snapshots at =120 for N, and =100 for N;. Once the
3D perturbation has reached a sufficient energy level, non-
linear interaction with the streaks starts (270 <7< 300 for N,
and 200=<r=<220 for N;), destabilizing the laminar profile
and leading to turbulence. It should be noted that the axial
structure of the 3D waves is neither long nor stretching,
which could be taken as evidence that the transition scenario
investigated does not contemplate the possibility of local
transition or intermittency phenomena, plausibly rendering
results fairly independent of the pipe length considered. It
should also be noted that the structures shown in the longi-
tudinal sections of Figs. 5-7 are being advected downstream
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| 3

= 167r/5

FIG. 6. Same as Fig. 5, for the N, perturbation. Snapshots are taken at instants marked with gray circles in Fig. 4(b).

seem to compete at different stages of the streaks formation
and development. In a first stage, the 3D perturbation seems
to be transiently concentrated near the wall, where the axial
velocity gradients are largest (not shown in Fig. 5), to be

and hence re-enter the domain from the left as soon as they

leave it through the right-end due to the axial periodicity.
Conversely to what happens in the N, and N; cases, the

N, case admits no easy interpretation, as several 3D modes

FIG. 7. Same as Fig. 5, for the N5 perturbation. Snapshots are taken at instants marked with gray circles in Fig. 4(c).
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eventually absorbed by a stronger perturbation that grows up
closer to the pipe centerline, in the vicinity of the saddle
lines of the axial velocity profile (/=140 in Fig. 5). This
centered perturbation grows rapidly until it saturates and is
then overtaken again by near-wall components (1=230) that
eventually destabilize the streaks (r=290) and trigger transi-
tion. The wavelength of the dominant perturbation at each
stage of the process varies. Long wavelengths only become
dominant in the last stages before transition.

C. Pipe length effects on transition

The streak breakdown mechanism is based on the devel-
opment of a global inflectional profile affecting the whole
pipe length. The mathematical explanation is provided when
studying the streamwise invariance of the u?P introduced
initially. The structure of Eq. (3) preserves streamwise inde-
pendence of u?P(7) due to the fact that the disturbance has
spanwise components only, whereas the basic flow is purely
streamwise. Therefore, upon streaks generation, saddle
points, or rather saddle streamwise lines, appear along the
pipe, resulting in an inflectional instability of the u*P(r) com-
ponents destabilizing the whole pipe length at once. The in-
flectional stability thus generated has been numerically
shown to follow selection rules as to which axial wave num-
bers can be destabilized by the streaks.'>?® The streak break-
down transition process happens to be clearly dominated by
medium-short wavelengths of order O(\)~ #. Hence, no
substantial discrepancies can be expected when repeating the
computations on a longer aspect-ratio pipe.

Intermittency is a commonly observed phenomenon in
experimental pipe transition. Perturbations initially localized
in space lead to small patches of turbulent motion called
slugs that, while convected downstream, grow into the sur-
rounding laminar regions to end up filling the whole pipe
domain. To properly capture this behavior numerically, long
enough computational domains need to be set up for these
long-scale turbulent structures to show up and grow freely.
The aspect ratio we have used so far (A=6.47~20) is
clearly too short to allow for intermittency phenomena,
whose characteristic length has been shown to be biggelr.zs‘29
However, the transition mechanism studied here is global;
hence, not depending on the formation of long structures, but
of medium-short ones.

To assess the pipe-length effects on streak-breakdown
transition, we have computed the critical threshold for N,
disturbances, exciting only the optimal 3D waves, but
this time on a much longer pipe of A=327~100. To pre-
serve a somewhat sufficient representation of the small axial
scales, the axial grid points count has been four-folded to
produce a mesh of M, X NyX L. =33X33X129. The triads
1,={30,35,40} for |[n|=0,1 in (8) have been excited to acti-
vate the same 3D waves that were activated in the short pipe
version, i.e., k;={1.56,1.88,2.19}. Table I reports the critical
amplitudes for the long and the short pipe. It is reasonably
clear from the compared results that no significant differ-
ences are introduced by a pipe elongation, at least for com-
putational domains of up to 100 radii.

As a last verification that pipe-length effects are of little
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TABLE I. Critical amplitude threshold as a function of Re for initial distur-
bances made up of a single pair of vortices and waves of selected axial
periodicity derived from computations on a short (A ~20 radii) and a long
(A ~100 radii) pipe.

ACr
Re Short pipe Long pipe
4467 4.6%X1072 4.7x1072
5012 3.3%1072 3.3%1072
6310 1.8X1072 1.8X1072
8913 1.1X1072 1.1X1072
12589 6.4%x1073 6.4%x1073

importance in the streak breakdown transition scenario, the
evolution of N;-type disturbances defined in (10) and shown
in Figs. 4(a) and 5 have been computed on the longer com-
putational domain. An exact evolution cannot be expected in
any case, since the random 3D energy, now distributed
among extra axial modes that were not present in the short
pipe case, makes a perfect timing unachievable. Also the
slight reduction of axial resolution, inevitable to compute on
such a long domain, may have an effect on the results.
Figure 8 shows the energy-evolution plot for the N, dis-
turbance on the long pipe, to be compared to that on the short
pipe [Fig. 4(a)]. The streaks development is completely
analogous. As for the 3D component of the perturbation, the
agreement is reasonably good but for a couple of discrepan-
cies that need comment. First, at the very initial stages of the
streaks formation, the short pipe exhibits 3D energy oscilla-
tions that are not present in the long pipe. The reason is that
the long pipe simulation takes into account modes with very
low axial wave number, not captured in the short pipe ver-
sion. These modes are known to experience large algebraic
transient growth that could be masking the organization of
the 3D waves that are to be destabilized later by the streaks.
Second, in the latter stages before transition, the short pipe
seems to hesitate a bit longer before bringing about streak
breakdown. The slightly diminished axial resolution of the
longer pipe, thus dissipating less energy in the small scales
could be at the origin of the slightly faster transition. Another
possible explanation for the faster transition on the long pipe
when compared with the short one could be derived from the
random properties of the 3D noise. If, as we hypothesize, the
streak breakdown transition is global and only depends on
short-medium wavelengths, the long pipe could be behaving
as a mere concatenation of short pipes, each with its particu-

10°
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FIG. 8. Same as Fig. 4(a), but computed on the long pipe.
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FIG. 9. Same as Fig. 5, but on the long pipe with A=100.5. Snapshots are
taken at instants marked with gray circles in Fig. 8. From left to right,
t=140, =230, and #=290.

lar random 3D component. It would not be strange, then, that
a particular section of the whole pipe receives a more effec-
tive initial random field and ends up triggering transition
ahead of the rest of the sections, which eventually achieve
enough energy to also destabilize their region of influence,
now probably competing with another mechanism, namely
the growth of the already transitioned turbulent patches. For
all this, the long pipe could be behaving as the most effective
of 5 short pipes, each with a different random noise. This is
just a simplification, since the different sections of the long
pipe are not evolving independently, but gives an idea of
what could be actually happening.

Figure 9 shows the same pictures that were presented in
Fig. 5 except those for the largest time at which developed
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turbulence is observed. The same caption times that were
used for the short pipe have been retained, although the 3D
perturbation is at slightly different stages of evolution. The
fact is that streaks are evolving all throughout the process
and, therefore, influencing the location and shape of the 3D
perturbation independently of its magnitude, which depends
on the pseudolinear inflectional instability mechanism.

The sequence shows a very good agreement between
short and long pipe results. Only the smallest scales are
slightly worse resolved in the long pipe, as some resolution
has been sacrificed to produce a longer domain. It is inter-
esting to see how the transition process is dominated by
short-medium wavelengths that get destabilized at random
locations along the pipe length, are advected with the mean
flow and end up triggering transition. Transition can be con-
sidered both local and global in nature. Local, because tur-
bulence first appears at discrete axial positions. Global, be-
cause the spacing of these axial positions is considerably
short and no intermittent structures such as slugs have time
or space to appear and then stretch freely to end up polluting
the whole domain.

V. CONCLUSIONS

The capability of vortical streamwise perturbations to
trigger transition in pipe flow has been assessed and an upper
bound for their critical amplitude provided by means of ac-
curate numerical simulations based on a theoretical scenario
of transition that has been proved to be universal in many
other shear flows. The computations have been carried out
using suitable time windows, making it possible to distin-
guish relaminarization from long-lasting nonlinear chaotic
dynamics. The criteria for transition within the specified time
horizons is based on the comparison of relative amplitude of
the two-dimensional and three-dimensional perturbation
components.

The computed amplitude threshold seems to scale differ-
ently for vortical perturbations consisting of different num-
bers of pairs of rolls. Thus, our best estimates suggest that
single-paired vortical disturbances follow an asymptotic
scaling law A,~Re™'=7="135_ while double and triple-
paired perturbations respond to scaling laws A.~Re™!"! and
A,~Re !0, respectively, for the highest Reynolds numbers
explored. Although the critical threshold shrinks faster for
the single-paired vortical disturbances, two or three pairs of
rolls are more effective in triggering transition within the
explored Re range, making it adventurous to proclaim which
type of perturbations will dominate at higher Re numbers.

Results at the lower end of the explored Re, where even
very strong disturbances only lead to transient destabiliza-
tion, show evidence of the vertical region of what is often
called the double threshold. Somewhere around Re ~ 2000,
the critical threshold tends to a vertical asymptote and no
sustained turbulence is ever achieved for lower Re.

The instability mechanisms based on the streak break-
down process presented in this work may be difficult to re-
produce in the laboratory due to the fact that this scenario
requires a streamwise initial perturbation, which is irrealiz-
able in experiments by localized injections that necessarily
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trigger three-dimensional components of some streamwise
structure. In addition, our numerical explorations do not ex-
hibit any of the transitional structures frequently observed in
experiments, characterized by the coexistence or intermit-
tency between laminar and turbulent regimes. Further com-
putations carried out for pipe aspect ratio A ~ 100 involving
nearly 1.5 10° degrees of freedom confirm the global na-
ture of the considered instability mechanism, where long
wavelengths take the lead only towards the final stage before
transition. Nevertheless, the length scale of these developing
waves is not dramatically misrepresented in the short pipe
computations.

Other internal mechanisms could also be at work in the
transition process and also longer time horizons with
T> Tphax should be explored in order to check for eventual
relaminarization of cases considered turbulent in the present
work, along with its implications in the value of the expo-
nent, i.e., y=y(T). All these issues will be addressed in fu-
ture works but they are currently far beyond the scope of our
study.
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