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Direct numerical simulation of transitional pipe flow is carried out in a long computational domain in

order to characterize the dynamics within the saddle region of phase space that separates laminar flow

from turbulent intermittency. For Reynolds numbers ranging from Re ¼ 1800 to 2800, a shoot and

bisection method is used to compute critical trajectories. The chaotic saddle or edge state approached by

these trajectories is studied in detail. For Re � 2000 the edge state and the corresponding intermittent puff

are shown to share similar averaged global properties. For Re � 2200, the puff length grows unboundedly

whereas the edge state varies only little with Re. In this regime, transition is shown to proceed in two

steps: first the energy grows to produce a localized turbulent patch, which then, during the second stage,

spreads out to fill the pipe.
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Transition to turbulence in pipe flow still remains an
open problem of hydrodynamic stability theory. Hagen-
Poiseuille or pipe flow (fluid flow through an infinitely long
pipe of circular cross-section) is believed to be always
stable with respect to infinitesimal perturbations [1] but
becomes turbulent in practice [2–5]. It is one of the most
fundamental examples of subcritical transition to turbu-
lence in fluid dynamics, i.e., transition to turbulence by-
passing linear stability (see [6,7] and references therein).

Instability of pipe flow typically occurs for Reynolds
numbers above Re ’ 1750 [4,8]. The standard definition of
the Reynolds number in a pipe Re ¼ D �U=� is adopted,
where D is the pipe diameter, �U is the mean streamwise
flow speed and � is the kinematic viscosity of the fluid. For
Reynolds numbers within the range Re 2 ½1750; 2700�,
perturbations can trigger transition to intermittent turbulent
spots usually named puffs, which coexist with the laminar
Hagen-Poiseuille flow [2,5,9]. They can be reproduced
reliably in experiments, their averaged properties seem to
be independent of the initial condition and their length of
about 40–50 radii is preserved during downstream advec-
tion. Above Re ’ 2200–2700, puff structures destabilize,
either experiencing a splitting process that leads to a higher
number of puffs or, eventually, growing in size and leading
to much longer intermittent structures (slugs), which are
the predecessors of global pipe turbulence.

Much of the recent progress in pipe flow transition
understanding is connected to the finding of exact traveling
wave solutions to the Navier-Stokes equations. While
lower branch traveling waves appear to play an important
role in transition, upper branch waves are usually related
with the development and eventual sustainment of near-
wall turbulence [10–14]. To this date, however, all travel-
ing waves found in fully resolved numerical simulations
are periodic with wavelengths of a few pipe diameters and
are therefore incapable of explaining the localization and

the large-scale intermittency phenomena described above
and observed in experiments.
In this Letter we aim to explain the main features of the

dynamics of long preturbulent localized states in pipe flow.
To this end, we numerically characterize the dynamics on
the critical threshold that discriminates relaminarizing or-
bits from those that lead to turbulent structures. Our goal is
to identify the relative attractor within the critical threshold
(edge state), and compare its main properties with turbu-
lent structures at the same Re. This allows us to support the
expectation that only localized perturbations are needed in
order to trigger turbulence and to reveal a two stage process
for the formation of spatially extended turbulence in pipe
flow. The stable manifold of this localized edge state
separates laminar and turbulent flows and can be used to
design optimal perturbation strategies.
In cylindrical nondimensional coordinates (r, �, z), the

basic Hagen-Poiseuille solution of the Navier-Stokes prob-

lem reads ub ¼ ubr̂þ vb�̂ þ wbẑ ¼ ð1� r2Þẑ. The
Navier-Stokes equations for the velocity-pressure u-p per-
turbation fields are

@tu ¼ �rpþ 1

Re
�u� ðu � rÞðub þ uÞ � ðub � rÞu;

r � u ¼ 0; uð1; �; z; tÞ ¼ 0;

where an adjustable pressure gradient ensures the constant
mass-flux constraint and � ¼ 100 is the dimensionless
periodic length of the pipe, in radii units. For the spatial
discretization we use a solenoidal Petrov-Galerkin spectral
scheme with 25� 33� 193 radial� azimuthal� axial
grid points. The solution is evolved using a 4th order
linearly implicit method with �t ¼ 5� 10�3 [15], where
we measure time in units of D=ð4 �UÞ. The scheme has
accurately reproduced linear stability analysis results [15]
and reliably matched experimental results on transition
threshold scaling [16]. Additional computations at even
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higher spatial resolution and in a longer domain of � ¼
200 were carried out to confirm the validity of our edge
state simulations.

Starting from a localized pair of rolls, u0 ¼ Aðg sin�r̂þ
ðgþ rg0Þ cos��̂Þe�wsin2ð�z=�Þ, where gðrÞ ¼ ð1� r2Þ2 and
w ¼ 100 localizes the rolls within about 6 radii, a refine-
ment in the critical amplitude A is carried out via an iter-
ative bisection method, allowing to transiently land on the
stable manifold of the critical edge state [17,18]. Different
algorithms relying on very different time-stepping codes
have produced consistent results in the past [13,14,18]. The
method only precludes transition and relaminarization, but
otherwise allows the flow to freely evolve on the basin
boundary, thus evidencing the attracting nature of the edge
state [19]. As a relative attractor residing within the critical
threshold, its stable manifold separates initial conditions
that go turbulent from those that do not.

The trajectory on the edge is always bounded by two
neighboring orbits (one leading to turbulence and the other
relaminarizing) whose relative euclidean distance is moni-
tored throughout the time evolution. Every time the dis-
tance between the two bounding orbits surpasses a
prescribed tolerance (10�5 in our computations), a new
pair of trajectories is found by bisection along the chord
connecting the two. Computation is then resumed from
the instant of time where the tolerance was violated with
the new pair of trajectories. This is illustrated in Fig. 1(a),
where the resulting edge trajectory and some of the cor-
responding relaminarizing and turbulent bounding orbits
are represented. Following the critical trajectory for 1000
time units took over a month for each Reynolds num-
ber explored within the range Re 2 ½1800; 2800�, using

4-processor 2.8 GHz SUNmachines. The results are shown
in Fig. 1(b), where the total perturbation energy associated
to trajectories that remain on the edge for arbitrarily long
times has been represented as a function of time in D=4 �U
units (dubbed ES, solid curves). In the same plot we have
included the energies of trajectories that lead to a turbu-
lent ‘‘state’’ (labeled TS, dashed curves). For all Re, the
energy of critical trajectories remains well below turbulent
levels, which allows to apply the discussed approximation
method.
In Fig. 2, we show the axial distribution of the axisym-

metric and the nonaxisymmetric energy components to-
gether with the total energy of both the edge and its
corresponding turbulent state (in this case a developed
puff) for Re ¼ 1900. The typical energy distribution of a
puff can be clearly recognized in Fig. 2(b): an extended
leading edge (front), manifested by a slow and mild expo-
nential energy decay in the downstream region, and a sharp
trailing edge (rear), characterized by a quick exponential
energy drop in the upstream region. In contrast, the edge
state, shown in Fig. 2(a), is slightly shorter and character-
ized by extended interfaces in both the front and rear re-
gions. Both states, however, share in common a fairly axi-
symmetric front and a strongly nonaxisymmetric rear, as
pointed out by the axial distribution of the energy con-
tained in the axisymmetric and nonaxisymmetric modes.
To compare the three-dimensional flow fields of both

localized structures, in Figs. 2(c) and 2(d) we represent

(a)

(b)

FIG. 1 (color online). a) Energy of turbulent (red) and relami-
narizing (blue) trajectories which bracket the edge state (black).
The bisection refinements were applied, on average, at time
intervals of �T ¼ 12:8 time units, never surpassing 40.
(b) Energies of the critical (solid) and turbulent (dashed) trajec-
tories for different Re.

FIG. 2 (color online). Localized edge state (ES) and turbulent
state (TS) at Re ¼ 1900. Energy distribution of (a) the localized
edge state and (b) a turbulent state. The axial position z is
measured in units of the radius. Total energy and the energy
contents of the axisymmetric and the nonaxisymmetric compo-
nents are shown in black, red and blue, respectively. The bottom
frame shows energy isosurfaces representing the 3D structure.
(c) and (d) show cross-sectional distributions of uz and uz ¼
�0:07 isosurfaces of the edge state and the turbulent state,
respectively. The axial positions of the visualized cross-sections
are indicated by rings. Red, green and blue indicate regions
where the streamwise flow speed is higher than, similar to or
lower than for the corresponding parabolic profile. In all cases
the flow direction is from left to right.
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instantaneous axial velocity isosurfaces and several pipe
cross sections revealing the presence of streaks. The edge
state flow field appears as much less complex and preserves
higher spatial coherence than the turbulent puff. The three-
fold azimuthal periodicity evidenced at the rear of the edge
state [Fig. 2(c)] is recurrent but not preserved throughout
time evolution, although the structure remains simpler than
that of the puff at all times.

Having discussed the different dynamical characteristics
of the edge state and a turbulent puff at Re ¼ 1900, we
now consider higher Re for which pipe turbulence appears
in the form of growing slugs instead of equilibrium puffs.
Since the states analyzed are chaotic, we report statistical
properties, averaged over long time series, rather than
properties at given time instants. In Fig. 3(a) we represent
time-averaged energies corresponding to edge and turbu-
lent states, asymptotically approached by the critical and
turbulent trajectories shown in Fig. 1(b), respectively, for
all the Reynolds numbers explored. The error bars corre-
spond to �2�. The lowest curve of Fig. 3(a) is the energy
of the initial condition (IC) leading to a trajectory that ends
up landing on the edge. Discarding the first critical points
near the vertical transition threshold, the critical perturba-
tion amplitude corresponding to the initial conditions curve

fits the power law Ac � E1=2
IC � Re�1:3, in agreement with a

critical amplitude threshold analysis [20] that explored a
wider Re range and was based on global transition via
streak breakdown. The edge state energy does not change
noticeably within the explored Re range. The critical per-
turbation energies are much lower than the typical energy
of the edge, indicating that its stable manifold bends down
to very low amplitudes in some directions of state space.
The turbulent energy level is higher, at all Re, than the one
associated to the edge, which ultimately makes it possible
to track the critical trajectories with the shoot and bisection
method described before.

The energy of the turbulent regime experiences a notice-
able jump for Re � 2200. To better understand this dis-
continuity, Fig. 3(b), shows the axial length lz of the
structures, defined as the minimal axial extent containing
98% of the axisymmetric energy component in Fig. 2, as a
function of Re. These curves clearly show that the turbu-
lent energy surge observed at 2000 � Re � 2200 is asso-
ciated with the unbounded growth of the turbulent struc-
tures, which end up filling the whole domain. This result is
in good agreement with former DNS computations [21]
that did not observe equilibrium puffs for Re ¼ 2200. It
differs quantitatively from recent analyses [22], where the
computations obtained developed puffs for Reynolds num-
bers beyond Re ¼ 2200. This can be ascribed to the fact
that we are slightly under-resolving puffs (not so with edge
states, which are the fundamental object of analysis here).
Some checks at very high resolution have shown that while
under-resolving puffs leads to altered lifetime statistics as
well as to some uncertainty in the prediction of the regime
at which unbounded growth of puffs occurs, it does not

substantially affect the features that are relevant in the
present study. In contrast to turbulence, which starts to
expand at about Re� 2200, there is no such transition in
the edge states branch. The flow structure’s length slightly
increases with Re but remains bounded, the edge being
localized regardless of the dominant turbulent state (puff or
slug) to which transition is experienced. The observation
of localized edge states even for large Re seems to be
generic, as has also been observed in a reduced model
that practiced a severe truncation in the azimuthal direc-
tion, only allowing for sinusoidal variation [23]. The mean
streamwise speed c of the localized states has been plotted
in Fig. 3(c). Within the range explored, the advection speed
of the edge states does not remarkably change. They al-
ways move faster than the mean flow and than the puffs,
which travel downstream at about the mean flow velocity
with a tendency to slow down as Re is increased.
Finally, Fig. 3(d) depicts the friction factor �, computed

over the structure length lz, corresponding to both edge and
turbulent states. This last plot clearly reveals that the
former preserve strong laminar properties, whereas the
latter (especially in the puff regime) follow a law which
is closer to the one describing fully developed turbulent
flow. Beyond Re ¼ 2000, the turbulent branch exhibits a
clear change in its friction factor, bending upright and
overshooting the �turb law.

FIG. 3 (color online). Statistical properties of the turbulent
states (blue, TS, puffs and slugs) and the edge states (red, ES)
as a function of Re. (a) Time-averaged energy of the runs shown
in Fig. 1(b). The lowest curve, labeled IC, is the energy of the
initial perturbation unfolding the critical trajectory. (b) Length of
the ESs and TSs within the explored Re range. (c) Mean axial
speed of the ESs and the TS (puffs) in �U units. (d) Friction factor
for the ESs and TSs. For reference, turbulent and laminar friction
factors are shown as dashed lines.
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The simple structure and smoothness of the edge state is
preserved within all the explored range and this is clearly
evidenced in Fig. 4, for a localized edge state at Re ¼
2800. This spatially coherent localized structure coexists
with global turbulence and thus indicates the different
features of turbulence and edge dynamics. This figure
shows how the edge states seem to even gain smoothness
as Re is increased, the rear gets more and more elongated
and the front slightly shorter. The azimuthal simpler spatial
coherence is also preserved and clear traces of the traveling
wave [14] underlying the edge in a short 5D pipe [24] can
be recurrently found at the rear of the structure, as can be
spotted in the uz cross sections shown in Fig. 4.

The nature of transition to global turbulence is clarified
in Fig. 5, where the energy (E) and axial perturbation
length (lz) have been represented for a destabilizing edge
state at Re ¼ 2800. It becomes apparent that transition
follows two stages. In a first stage (t1 < t < t2), a linear
instability nucleates in a very short axial region of the ES,
and starts growing exponentially in energy but remains
narrowly localized in space producing an axial concentra-
tion of total energy, which accounts for the apparent
shrinking of the structure. The result is a turbulent spot
that, in a second stage (t2 < t < t3), starts a linear un-
bounded axial expansion. The two stages of the transition
process suggest that two distinct instability mechanisms
are at work: a first one responsible for the energy increase
and a second one causing the spreading in space. While the

first one can be understood through an instability of a
rather simple structure of traveling wave type, the second
one is perhaps related to the mechanisms at work in other
examples of structured turbulence [25,26].
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FIG. 4 (color online). uz ¼ �0:07 isosurfaces of the edge state
at Re ¼ 2800. Also shown uz cross-sectional contours at the
indicated axial location (top left), to be compared with the
traveling wave underlying the short pipe edge state at Re ¼
2875 (top right).

FIG. 5. Time evolution of a destabilizing edge state at Re ¼
2800: total energy (E, bold line) and structure length (lz, dashed
line). t1, t2 and t3 indicate the beginning of the exponential
energy growth, the beginning of the linear growth of axial extent
and the saturation to fully developed turbulence, respectively.
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