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Rotating waves are periodic solutions in SO(2)
equivariant dynamical systems. Their precession
frequency changes with parameters and it may change
sign, passing through zero. When this happens, the
dynamical system is very sensitive to imperfections
that break the SO(2) symmetry and the waves
may become trapped by the imperfections, resulting
in steady solutions that exist in a finite region
in parameter space. This is the so-called pinning
phenomenon. In this study, we analyse the breaking
of the SO(2) symmetry in a dynamical system close
to a Hopf bifurcation whose frequency changes sign
along a curve in parameter space. The problem is
very complex, as it involves the complete unfolding
of high codimension. A detailed analysis of different
types of imperfections indicates that a pinning region
surrounded by infinite-period bifurcation curves
appears in all cases. Complex bifurcational processes,
strongly dependent on the specifics of the symmetry
breaking, appear very close to the intersection of the
Hopf bifurcation and the pinning region. Scaling laws
of the pinning region width and partial breaking of
SO(2) to Zm are also considered. Previous as well as
new experimental and numerical studies of pinned
rotating waves are reviewed in the light of the new
theoretical results.

1. Introduction
Dynamical systems theory plays an important role in
many areas of mathematics and physics because it
provides the building blocks that allow us to understand

c© 2013 The Author(s) Published by the Royal Society. All rights reserved.
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the changes many physical systems experience in their dynamics when parameters are varied.
These building blocks are the generic bifurcations (saddle–node, Hopf, etc.) that any arbitrary
physical system experiences under parameter variation, regardless of the physical mechanisms
underlying the dynamics. When one single parameter of the system under consideration is varied,
codimension-one bifurcations are expected. If the system depends on more parameters, higher
codimension bifurcations appear and they act as organizing centres of the dynamics.

The presence of symmetries changes the nature and type of bifurcations that a dynamical
system may undergo. Symmetries play an important role in many idealized situations, where
simplifying assumptions and the consideration of simple geometries result in dynamical systems
equivariant under a certain symmetry group. Bifurcations with symmetry have been widely
studied [1–6]. However, in any real system, the symmetries are only approximately fulfilled,
and the breaking of the symmetries, owing to the presence of noise, imperfections and/or other
phenomena, is always present. There are numerous studies of how imperfect symmetries lead to
dynamics that are unexpected in the symmetric problem [7–12]. However, a complete theory is
currently unavailable.

One observed consequence of imperfections in systems that support propagating waves is
that the waves may become trapped by the imperfections [7,13–15]. In these various examples,
the propagation direction is typically biased. However, a more recent experiment has considered
a case of a rotating wave pinned by symmetry-breaking imperfections for parameter values near
where its sense of precession changes sign [16]. We are unaware of any systematic analysis of the
associated normal form dynamics for such a problem and this motivates the present study.

When a system is invariant to rotations about an axis (invariance under the SO(2) symmetry
group), SO(2)-symmetry-breaking Hopf bifurcations result in rotating waves, consisting of a
pattern that rotates about the symmetry axis at a given precession frequency without changing
shape. This frequency is parameter dependent, and in many problems, when parameters are
varied, the precession frequency changes sign along a curve in parameter space. What has
been observed in different systems is that, in the presence of imperfections, the curve of zero
frequency becomes a band of finite width in parameter space. Within this band, the rotating wave
becomes a steady solution. This is the so-called pinning phenomenon. It can be understood as
the attachment of the rotating pattern to some stationary imperfection of the system, so that the
pattern becomes steady, as long as its frequency is small enough so that the imperfection is able
to stop the rotation. This pinning phenomenon bears some resemblance to the frequency-locking
phenomena, although in the frequency-locking case we are dealing with a system with two non-
zero frequencies and their ratio becomes constant in a region of parameter space (a resonance
horn), whereas here we are dealing with a single frequency crossing zero.

In this paper, we analyse the breaking of SO(2) symmetry in a dynamical system close to a Hopf
bifurcation whose frequency changes sign along a curve in parameter space. The analysis shows
that breaking SO(2) symmetry is much more complex than expected, resulting in a bifurcation of
high codimension (about nine). Although it is not possible to analyse in detail such a complex and
high-codimension bifurcation, we present here the analysis of five different ways to break SO(2)
symmetry. This is carried out by introducing into the normal form all the possible terms, up to
and including second order, that break the symmetry, and analysing each of these five terms
separately. Three of these particular cases have already been analysed in completely different
contexts unrelated to the pinning phenomenon [17–20]. In this study, we extract the common
features that are associated with the pinning. In all cases, we find that a band of pinning solutions
appears around the zero-frequency curve from the symmetric case, and that the band is delimited
by curves of infinite-period bifurcations. The details of what happens when the infinite-period
bifurcation curves approach the Hopf bifurcation curve are different in the five cases, and involve
complicated dynamics with several codimension-two bifurcations occurring in a small region of
parameter space as well as several global bifurcations.

Interest in the present analysis is twofold. First of all, although the details of the bifurcational
process close to the zero-frequency Hopf point are very complicated and differ from case to
case, for all cases, we observe the appearance of a pinning band delimited by infinite-period
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bifurcations of homoclinic type that, away from the small region of complicated dynamics, are
SNIC bifurcations, i.e. saddle–node on an invariant circle bifurcation [21]. Second, some of the
scenarios analysed are important per se, as they correspond to the generic analysis of a partial
breaking of the SO(2) symmetry, so that, after the introduction of perturbations, the system still
retains a discrete symmetry (the Z2 case is analysed in detail).

The paper is organized as follows. In §2, the properties of a Hopf bifurcation with SO(2)
symmetry with the precession frequency crossing through zero are summarized, and the general
unfolding of the SO(2) symmetry-breaking process is discussed. Section 3 explores the particulars
of breaking the symmetry at orders zero, one and two. Section 3b, c is particularly interesting
because it considers the symmetry-breaking processes SO(2) → Z2 and SO(2) → Z3, which are
readily realized experimentally. Section 4 extracts the general features of the pinning problem
from the analysis of the specific cases carried out in the earlier sections. Section 5 presents
comparisons with experiments and numerical computations in two real problems in fluid
dynamics, illustrating the application of the general theory developed in this study. Finally,
conclusions and perspectives are presented in §6.

2. Hopf bifurcation with SO(2) symmetry and zero frequency
The normal form for a Hopf bifurcation is

ż = z(μ + iω − c|z|2), (2.1)

where z is the complex amplitude of the bifurcating periodic solution, μ is the bifurcation
parameter, ω and c are functions of μ and generically at the bifurcation point (μ = 0) both are
different from zero. It is the non-zero character of ω that allows one to eliminate the quadratic
terms in z in the normal form. This is because the normal form ż = P(z, z̄) satisfies [22]

P(e−iωtz, eiωtz̄) = e−iωtP(z, z̄), (2.2)

where P is a low-order polynomial capturing the dynamics in a neighbourhood of the bifurcation
point. If ω = 0, this equation becomes an identity and P cannot be simplified. The case ω = 0 is a
complicated bifurcation that depends on the details of the double-zero eigenvalue of the linear
part L of P. Because z = x + iy is complex, L is a real 2 × 2 matrix using the real coordinates (x, y).
If L is not completely degenerate, that is

L =
(

0 1
0 0

)
, (2.3)

then we have the well-studied Takens–Bogdanov (TB) bifurcation, whereas the completely
degenerate case,

L =
(

0 0
0 0

)
, (2.4)

is a high-codimension bifurcation that has not been completely analysed.
If the system has SO(2) symmetry, then it must also satisfy

P(eimθ z, e−imθ z̄) = eimθ P(z, z̄), (2.5)

where Zm is the discrete symmetry retained by the bifurcated solution. When the group Zm is
generated by rotations of angle 2π/m about an axis of m-fold symmetry, as is usually the case
with SO(2), then the group is also called Cm. Equations (2.2) and (2.5) are completely equivalent
and have the same implications for the normal form structure. Advancing in time is the same
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Figure 1. Hopf bifurcation with SO(2) symmetry and zero frequency; (a) the bifurcation diagram, where the thick lines are
bifurcation curves, and (b) the bifurcations along the path A shown in (a). The fixed point curve is labelled with the signs of its
eigenvalues. In regions II− and II+ the limit cycles, born at the Hopf bifurcations H− and H+, rotate in opposite senses. L is the
line where the limit cycle becomes an invariant curve of fixed points.

as rotating the solution by a certain angle (ωt = mθ ); the bifurcated solution is a rotating wave.
Therefore, if ω becomes zero by varying a second parameter, then we still have the same normal
form (2.1), owing to (2.5), with ω replaced by a small parameter ν,

ż = z(μ + iν − c|z|2). (2.6)

The Hopf bifurcation with SO(2) symmetry and zero frequency is, in this sense, trivial.
Introducing the modulus and phase, z = r eiφ , the normal form becomes

ṙ = r(μ − ar2), φ̇ = ν − br2, (2.7)

where c = a + ib, and let us assume for the moment that a and b are positive. The bifurcation
frequency in (2.7) is now the small parameter ν. The bifurcated solution RWm exists only for
μ > 0, and has amplitude r = √

μ/a and frequency ω = ν − bμ/a. The limit cycle RWm becomes
an invariant set of steady solutions along the straight line μ = aν/b (labelled L in figure 1) where
the frequency of RWm goes to zero; the angle between L and the Hopf bifurcation curve (the
horizontal axis μ = 0) is α0. The bifurcation diagram and schematic of the bifurcations along a
one-dimensional path is also shown in figure 1. The zero-frequency Hopf bifurcation point (ZF),
at μ = ν = 0, is of codimension-two. It coincides with the generic Hopf bifurcation, except that its
phase portrait includes a line L, starting from the point ZF, along which the bifurcated solution
has zero frequency.

Assuming c �= 0, we can simplify (2.7) by scaling z so that |c| = 1; we will write

c = a + ib = i e−iα0 = sin α0 + i cos α0, b + ia = eiα0 , (2.8)

which helps simplify subsequent expressions. The cases a and b are both positive, which we will
analyse in detail in the following sections, correspond to one of the fluid dynamics problems
that motivated the present analysis (see [16,23] and §5a). For other signs of a and b, analogous
conclusions can be drawn. It is of particular interest to consider the subcritical case a < 0 as it
corresponds to the other fluid dynamics problem analysed here (see [24,25] and §5b). By reversing
time and changing the sign of μ and ν, we obtain exactly the same normal form (2.7) but with the
opposite sign of a and b. By changing the sign of φ and ν, we obtain (2.7) with the opposite sign
of b. Therefore, all possible cases corresponding to different signs of a and b can be reduced to the
case where a and b are both positive.

(a) Unfolding the Hopf bifurcation with zero frequency
If the SO(2) symmetry in the normal form (2.6) is completely broken, and no symmetry remains,
then the restrictions imposed on the normal form by (2.5) disappear completely, and all the terms
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in z and z̄ missing from (2.6) will reappear multiplied by small parameters. This means that the
normal form will be

ż = z(μ + iν − c|z|2) + ε1 + ε2z̄ + ε3z̄2 + ε4zz̄ + ε5z2, (2.9)

where additional cubic terms have been neglected because we assume c �= 0 and that cz|z|2
will be dominant. As the εi are complex, we have a problem with 12 parameters. Additional
simplifications can be made in order to obtain the so-called hypernormal form; this method is
extensively used by Kuznetsov [26], for example. Unfortunately, many of the simplifications rely
on having some low-order term in the normal form being non-zero with a coefficient of order
one. For example, if ω �= 0, then it is possible to make c real by using a time re-parametrization. In
our problem, all terms up to and including second order are zero or have a small coefficient, and
so only a few simplifications are possible. These simplifications are an infinitesimal translation
of z (two parameters), and an arbitrary shift in the phase of z (one parameter). Using these
transformations, the 12 parameters can be reduced to nine. In particular, one of either ε4 or ε5 can
be taken as zero and the other can be made real. By rescaling z, we can make c of modulus one,
as in (2.8). A complete analysis of a normal form depending on nine parameters, i.e. a bifurcation
of codimension of about nine, is completely beyond the scope of this paper. In the literature,
only codimension-one bifurcations have been completely analysed. Most of the codimension-two
bifurcations for ordinary differential equations and maps have also been analysed, except for a
few bifurcations for maps that remain outstanding [26]. A few codimension-three and very few
codimension-four bifurcations have also been analysed [27,28], but, to our knowledge, there is no
systematic analysis of bifurcations of codimension greater than two.

In the following sections, we consider the five cases, ε1 to ε5, separately. A combination of
analytical and numerical tools allows for a detailed analysis of these bifurcations. We extract
the common features of the different cases when εi �

√
μ2 + ν2, which captures the relevant

behaviour associated with weakly breaking SO(2) symmetry. In particular, the ε2 case exhibits
very interesting and rich dynamics that may be present in some practical cases when the SO(2)
symmetry group is not completely broken and a Z2 symmetry group, generated by the half-turn
θ → θ + π , remains.

Some general comments can be made here about these five cases, which are of the form

ż = z(μ + iν − c|z|2) + εzqz̄p−q, (2.10)

for integers 0 ≤ q ≤ p ≤ 2, excluding the case p = q = 1 which is SO(2) equivariant, and so ε can be
absorbed into μ and ν. By changing the origin of the phase of z, we can modify the phase of ε so
that it becomes real and positive. Then, by re-scaling z, time t, and the parameters μ and ν as

(z, t, μ, ν) → (εδz, ε−2δt, ε2δμ, ε2δν), δ = 1
3 − p

, (2.11)

we obtain (2.10) with ε = 1, effectively leading to codimension-two bifurcations in each of the
five cases. We expect complex behaviour for μ2 + ν2 � ε2, when the three parameters are of
comparable size, whereas the effects of small imperfections breaking SO(2) will correspond to
μ2 + ν2 � ε2. From now on ε = 1 will be assumed, and we can restore the explicit ε-dependence
by reversing the transformation (2.11). Three of the five normal forms (2.11) have been analysed
in the literature (discussed below), focusing on the regions where μ, ν and ε are of comparable
size; here we will also consider what happens for μ2 + ν2 � ε2, which is particularly important
for the pinning phenomenon.

3. Bifurcation diagrams for the five symmetry-breaking cases
The normal forms corresponding to the ε1, ε2 and ε3 cases have already been analysed in contexts
completely different from the SO(2) symmetry-breaking context considered here. The context
in which these problems were studied stems from low-order resonances in perturbed Hopf
problems. Time-periodic forcing near a Hopf bifurcation point has previously been studied [17],
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analysing the problem using the Poincaré stroboscopic map. The normal forms corresponding to
the 1 : 1, 1 : 2 and 1 : 3 strong resonances coincide with the normal forms we present below for cases
with only the ε1, ε2 and ε3 terms retained in (2.9), respectively. Later, motivated by a problem
of a nonlinear oscillator with damping and quasi-periodic driving, a series of papers extended
the strong resonance results of Gambaudo [17] by studying the semi-global bifurcations for
periodically and quasi-periodically perturbed driven damped oscillators near a Hopf bifurcation
(see [18–20] and references therein). The other two cases we consider, with only the ε4 or the
ε5 terms retained in (2.9), do not appear to have been studied previously. They fall outside the
context in which the other three were studied because they do not correspond to any canonical
resonance problem. We should point out that, within the resonance context, the three cases
studied would not make sense to consider in combination (they correspond to completely distinct
frequency ratios and so would not generically occur in a single problem). By contrast, within
the context motivating our study, all five cases correspond to different ways in which the SO(2)
symmetry of a system may be broken, and, in a physical realization, all five could coexist. In the
following sections, we present a short summary of the results. A detailed analysis of all five cases
can be found in Marques et al. [29].

(a) Symmetry breaking of SO(2) with an ε term
The normal form in this case is (2.10) with p = q = 0 and ε = 1:

ż = z(μ + iν − c|z|2) + 1. (3.1)

This case has been analysed previously [17–20].
The fixed points of (3.1) are given by a cubic equation. The parameter space is divided into two

regions: region III has three fixed points, and the rest of the parameter space has one fixed point,
separated by a saddle–node curve shown in figure 2a as a thick black line. The saddle–node curve
is divided into three different arcs SN± and SN0 by two codimension-two cusp bifurcation points,
Cusp±. The fixed points also undergo Hopf bifurcations along the curves H± shown in grey in
figure 2a. Figure 2b shows what happens when the ε dependence is restored; what we have is that
figure 2a just scales with ε as indicated in (2.11), and the pinning region collapses onto the line L
of the perfect case with SO(2) symmetry. For |ν| → ∞, the Hopf curves H± are asymptotic to the
μ = 0 axis, the Hopf curve for ε = 0. The other ends of the H± curves are the TB points TB± on
the saddle–node curve. The TB− and Cusp− codimension-two bifurcation points are very close
to each other. For clarity in the schematic shown in figures 2a and 3, we have exaggerated their
separation. In region I, there is a single stable fixed point. It loses stability along the Hopf curves
H±; so in regions II±, there exist an unstable fixed point and a stable rotating wave; the rotating
waves in II± rotate in opposite directions and III is the pinning region where the rotation stops
and we have a stable fixed point. Solutions with ω = 0, which existed only along a single line in
the absence of imperfections, now exist in a region of finite width.

From the TB points, dynamical systems theory says that two curves of homoclinic bifurcations
emerge, resulting in global bifurcations around these points. Moreover, the stable limit cycles in
regions II± do not exist in region III, so they must disappear in additional bifurcations. Figure 3
summarizes all the bifurcation curves that appear in the present case. There are nine codimension-
two points organizing the dynamics of the normal form (3.1), and most of the bifurcation curves
correspond to global bifurcations of limit cycles; they are described in detail in Marques et al. [29].
For large values of μ2 + ν2, the stable limit cycles in regions II± disappear at SNIC± (saddle–
node on an invariant circle) bifurcation curves. On these curves, a saddle–node bifurcation of
fixed points takes place on top of the limit cycle, and the cycle disappears in an infinite-period
bifurcation. What remains, and is observable, is the stable fixed point born at the saddle–node.

The width w of the pinning region at a distance d =
√

μ2 + ν2 from the origin is measured
transversally to the straight line L. In the case considered here, it is given by w = 2/

√
d.

Restoring the ε-dependence, we obtain w(d, ε) = 2ε/
√

d. The pinning region becomes narrower
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Figure 2. (a) Bifurcations of the fixed points corresponding to the normal form (3.1), and (b) is a perspective view of the
corresponding codimension-three bifurcation in terms of (μ, ν , ε). See table 1 for a glossary.

Table 1. Glossary of bifurcations.

codimension-one bifurcations

SN±,0 saddle–node (also called fold) bifurcations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H±,0 Hopf bifurcations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PF± pitchfork bifurcations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CF cyclic fold: two limit cycles are born simultaneously
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L, Ll,u limit cycle becoming a family of fixed points
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hom±,0, Hom homoclinic collision of a limit cycle with a saddle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Het±,0 heteroclinic collision of a limit cycle with saddles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SNIC±,0 saddle–node appearing on a limit cycle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Glu gluing bifurcation-two limit cycles collide with a saddle

codimension-two bifurcations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cusp± cusp bifurcations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TB±, TB Takens-Bogdanov bifurcations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dPF± degenerate pitchfork-zero cubic term
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ba Bautin bifurcation–degenerate Hopf with zero cubic term
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PfGl simultaneous gluing Gl and pitchfork PF bifurcations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CfHom simultaneous cyclic-fold CF and homoclinic collision Hom
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CfHet± simultaneous cyclic-fold CF and heteroclinic collision Hom
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SnicHom±,0 simultaneous SNIC and homoclinic collision
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SnicHet±,0 simultaneous SNIC and heteroclinic collision
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with increasing distance from the bifurcation point, and its width is proportional to ε, the
magnitude of the imperfection (figure 2b).

(b) Symmetry breaking of SO(2) toZ2: the εz̄ case
The ε2z̄ term in (2.9) corresponds to breaking SO(2) symmetry in a way that leaves a system with
Z2 symmetry. The normal form is (2.10) with p = 1, q = 0 and ε = 1,

ż = z(μ + iν − c|z|2) + z̄. (3.2)
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Figure 3. Schematic of the bifurcations of the normal form (3.1). See table 1 for a glossary.
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Figure 4. (a) Bifurcations of the fixed points corresponding to the normal form (3.2). (b) Global bifurcations in the symmetry
breaking of the SO(2) to Z2 case. See table 1 for a glossary.

The normal form (3.2) is invariant to z → −z, or, equivalently, the half-turn θ → θ + π . This is
all that remains of the SO(2) symmetry group. In fact, this Z2 symmetry implies that P(z, z̄)
in ż = P(z, z̄) must satisfy (2.5) for θ = π . In other words, P must be odd: P(−z, −z̄) = −P(z, z̄).
Therefore, (3.2) is the unfolding corresponding to the symmetry breaking of SO(2) to Z2. This case
has also been analysed previously [17–20].

The normal form (3.2) admits up to five fixed points. One is the trivial solution r = 0; the other
fixed points come in two pairs of Z2-symmetric points. There are three different regions in the
(μ, ν)-parameter plane shown in figure 4a: region III with five fixed points, bounded by two
parallel straight lines and the half unit circle PF−; region I0 with three fixed points, bounded
by the circle of radius one; and the remaining parameter space with one fixed point. These three
regions are separated by four curves along which steady bifurcations between the different fixed
points take place, as shown in figure 4a. PF± are curves of pitchfork bifurcations, and SN± are
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SN–
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Figure 5. Schematic of bifurcation curves corresponding to the normal form with quadratic terms (3.3) in the ε z̄2 case for
(a) α0 > π/6 and (b) α0 < π/6. H0 is tangent to the parabola at the Takens–Bogdanov points TB±; H0 and Hom0 almost
coincide with SN−.

saddle–node bifurcation curves. Figure 4b also includes the Hopf curves H± that coincide with the
Hopf curves in the unperturbed case for |ν| > 1, and terminate at the two TB points TB±. Solutions
with zero frequency, which existed only along a single line L in the absence of imperfections,
now exist in the region bounded by the semi-circle and the two half-lines; this region III is the
pinning region.

Again, we can ask about the fate of the stable limit cycles approaching the pinning region,
and about the global bifurcations emerging from the TB points. The resulting scenario is very
complex. A schematic of all local and global bifurcation curves is shown in figure 4b. There are
nine codimension-two points, and a variety of curves where global bifurcations of limit cycles
take place. The details are in the mentioned references, and in particular in Marques et al. [29].
As in the previous case, §3a, with increasing μ2 + ν2, the saddle–node appears precisely on the
limit cycle, resulting in a SNIC bifurcation. The width of the pinning region is constant: w = 2.
On restoring the ε-dependence, we obtain a width w(d, ε) = 2ε independent of the distance to the
bifurcation point and proportional to the magnitude of the imperfection.

(c) Symmetry breaking of SO(2) toZ3: the εz̄2 case
The ε3z̄2 term in (2.9) corresponds to breaking SO(2) symmetry in a way that leaves a system with
Z3 symmetry. The normal form to be analysed in this case is

ż = z(μ + iν − c|z|2) + z̄2. (3.3)

This normal form is invariant to rotations θ → θ ± 2π/3, or equivalently to z → exp (±2π i/3)z.
P(z, z̄) must satisfy (2.5) for θ = ±2π/3, and the only εj term in (2.9) satisfying this condition is
ε3z̄2. Therefore, (3.3) is the unfolding corresponding to the symmetry breaking of SO(2) to Z3.
This case has been analysed previously [17,19].

The normal form (3.3) admits up to seven fixed points, the trivial solution r = 0 and two triplets
of Z3-symmetric points. There are different regions in the (μ, ν)-parameter plane. Region III,
with seven fixed points, is the interior of the parabola in figure 5, and is the pinning region.
The parabola is a curve of saddle–node bifurcations, where the two triplets of steady points
are simultaneously born, one triplet being stable and the other unstable. Region I is below the
horizontal axis and outside the parabola, where there is only one fixed point r = 0. This r = 0 fixed
point, which exists in all parameter space, is stable below the μ = 0 axis, and it loses stability along
the Hopf bifurcation curves H± at the horizontal μ = 0 axis, delimiting regions II±. These regions
are outside the parabola and above the μ = 0 axis, where there is one unstable fixed point and a
stable rotating wave, which rotates in opposite senses in II±.
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Figure 6. Schematic of bifurcation curves corresponding to the normal formswith (a) quadratic terms in the εzz̄ case (3.4) and
(b) quadratic terms in the εz2 case (3.5).

In this case, there are also additional codimension-two points and curves of global bifurcations.
There are two different scenarios depending on the value of the angle α0. Figure 5a corresponds
to α0 > π/6 with three codimension-two points, and figure 5b corresponds to α0 < π/6 with seven
codimension-two points. As in the previous cases, for large values of d =

√
μ2 + ν2, the limit cycles

in regions II± undergo SNIC± bifurcations on the parabola and disappear at the border of the
pinning region. The scaling of the width of the pinning region with ε is discussed at the end of
the next section, because all the quadratic cases share the same scaling.

(d) The quadratic ε4zz̄ and ε5z2 cases
These two cases are new and have not been considered in the literature to the best of our
knowledge, because they do not appear in the context of low-order resonances in perturbed Hopf
problems. These two cases have a much simpler dynamics than the previously considered three
cases, and are very similar to the simple scenario in the quadratic ε3z̄2 depicted in figure 5a. The
corresponding normal forms are

ż = z(μ + iν − c|z|2) + zz̄ (3.4)

and
ż = z(μ + iν − c|z|2) + z2. (3.5)

The two cases have three fixed points in the interior of the same parabola as in the z̄2 case.
The parabola is a saddle–node bifurcation curve, and, outside of it, there exists only one fixed
point, the trivial solution z = 0, that also undergoes a Hopf bifurcation along the curve μ = 0. The
difference with the previous quadratic case is that the Z3 symmetry does not exist, and in fact
the SO(2) symmetry is completely broken. Therefore, the two triplets of solutions that existed
in the z̄2 case reduce to a pair of fixed points in the present cases. Another difference is in the
dynamics associated with the codimension-two points and global bifurcations of limit cycles.
Figure 6a,b shows schematics of all the local and global bifurcations in the two cases. Figure 6a
corresponds to (3.4) and is identical to figure 5a with three codimension-two points, except that
at the saddle–node curves only one pair of fixed points is born. Figure 6b corresponds to (3.5)
and is more complicated. There are five codimension-two points, including two additional TB
points, TB±, connected by a homoclinic curve, H0. Along this curve, the phase portrait has a
homoclinic connection whose interior is filled with a continuous family of periodic orbits. This
peculiar degenerate feature is analysed in detail in Marques et al. [29], and it will not appear in
real systems because the normal form (3.5) is not the unfolding of some symmetric case; it will
always appear in combination with the other cases discussed previously.
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Figure 7. An imperfect Hopf bifurcation under general perturbations; (a) the various regions in parameter space and
(b) a bifurcation diagram along the one-dimensional path A–A’. The signs (++,−−,+−) indicate the sign of the real part
of the two eigenvalues of the solution branch considered.

A common feature of the two cases considered here is the presence of SNIC± bifurcation
curves away from the origin in (μ, ν)-parameter space, as in the previously analysed cases. In
the three quadratic cases, the pinning region is delimited by the same parabola, and the width of
the pinning region is given by w = 2

√
d, resulting in w(d, ε) = 2ε

√
d when the dependence on ε is

restored. The width of the pinning region increases with the distance d to the bifurcation point,
and is proportional to the magnitude of the imperfection ε.

4. Common features in the different ways to break SO(2) symmetry
Here we summarize the features that are common to the five different perturbations analysed in
the previous sections. The most important feature is that the curve of zero frequency splits into
two curves with a region of zero-frequency solutions appearing in between (the so-called pinning
region). Of the infinite number of steady solutions that exist along the zero-frequency curve in
the perfect system with SO(2) symmetry (figure 1b), only a small finite number remain. These
steady solutions correspond to the pinned solutions observed in experiments and in numerical
simulations, such those to be described in §5. The number of remaining steady solutions depends
on the details of the symmetry-breaking imperfections, but when SO(2) is completely broken
and no discrete symmetries remain, there are three steady solutions in the pinning region
III (figure 7a). One corresponds to the base state, now unstable with eigenvalues (+, +). The
other two are born on the SNIC± curves delimiting region III away from the origin. Of these
two solutions, one is stable (the only observable state in region III) and the other is a saddle
(figure 7b). There are also the two Hopf bifurcation curves H− and H+. The regions where the
Hopf bifurcations meet the infinite-period bifurcations cannot be described in general, and, as
has been shown in the examples in the previous sections, will depend on the specifics of how
the SO(2) symmetry is broken, i.e. on the specifics of the imperfections present in the problem
considered. These regions contain complex bifurcational processes, and are represented as grey
discs in figure 7a. The stable limit cycle existing outside III, in regions II±, undergoes a SNIC
bifurcation and disappears upon entering region III (figure 7b). When the SNIC± bifurcation
curves approach the Hopf bifurcation curves (i.e. enter the grey disc regions), the saddle–node
bifurcations do not occur on the stable limit cycle but very close by, and the limit cycle disappears
in a saddle–loop homoclinic collision that occurs very close to the saddle–node bifurcations.

In all cases considered, the curves delimiting the pinning region away from the origin are
SNIC bifurcations, and dynamical systems theory provides a simple argument for this. Consider
the generalization of (2.10); writing z = r eiθ in polar coordinates gives

ṙ = r(μ − ar2) + εF1(r, θ), θ̇ = ν − br2 + εF2(r, θ), (4.1)

where Fi is periodic in θ . Away from the origin, μ and ν are non-zero, and ε � μ, ν. For sufficiently
small ε, there exists an attracting invariant circle [26]. Therefore, letting r2 → μ/a (plus order ε

terms) in the phase equation results in

θ̇ = ν − bμ
a

+ εf (θ) = ζ + εf (θ), (4.2)
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where f is periodic in θ . We have introduced the detuning parameter ζ = ν − bμ/a, proportional
to the distance from the point (μ, ν) to the straight line L (the zero-frequency line in the perfect
system; figure 1a). If the detuning parameter is large, the invariant circle is a periodic solution
with frequency ≈ ζ . If ζ = O(ε), the dynamics is more complicated. In the five cases considered
here, f (θ) = k sin mθ , and (4.2) is the well-known Adler equation [30], the continuous version of
the Arnold circle map. Both equations have regions in parameter space where phase-locking takes
place (Arnold’s tongues). For the Adler equation, fixed points exist inside the region ζ ∈ [−kε, kε]
that originate on the boundary of the region in saddle–node bifurcations taking place on the
invariant circle, i.e. SNIC bifurcations. Moreover, the width of the pinning region away from the
origin is proportional to ε.

In all cases considered, the width of the pinning region scales linearly with the magnitude of
the symmetry-breaking imperfection ε. We have found w(d, ε) = 2εd(p−1)/2, where p = 0, 1, 2 is the
order of the symmetry breaking considered (2.10). For lower order terms, the width decreases (in
the zero-order ε case) or remains constant (in the first-order εz̄ case) with increasing distance from
the bifurcation point. For quadratic terms, the width increases with the distance. When arbitrary
perturbations are included, we expect a behaviour of the form w(d, ε) = εf (d), where the function
f will depend on the details of the symmetry-breaking terms involved. The size of the regions
containing complex bifurcational processes (the grey discs in figure 7a) is of order ε or smaller, as
we have seen in all cases considered. Therefore, these regions are comparable in size or smaller
than the width of the pinning region.

Of the five scenarios analysed, two of the cases correspond to breaking the SO(2) symmetry
to Zm, for m = 2 and m = 3 or Z3. For m ≥ 4, the symmetry-breaking dynamics is much simpler
because the additional terms in the normal form are of order higher than three. They have
been analysed previously [17,29], and are very similar to the weakly resonant Neimark–Sacker
bifurcation [26]. The width of the pinning region at a distance d from the origin is given by
w(d) = 2εd(m−2)/2. The boundaries of the pinning region are SNIC bifurcation curves, and the
width of the pinning region is proportional to the magnitude of the imperfection ε, as in the five
cases analysed in the preceding section.

Another common feature is that the SNIC± bifurcations, where the stable limit cycle
disappears on entering the pinning region away from the origin (μ = ν = 0), become homoclinic or
heteroclinic collisions close to the origin. There is a codimension-two global bifurcation, SnicHom,
where the SNIC, saddle–node and homoclinic collision curves meet. This bifurcation is discussed
in detail in Marques et al. [29]. It has important implications, because the scaling laws for the
period of the limit cycle approaching either a SNIC or a homoclinic collision are different: the
scaling is square-root for a SNIC bifurcation and logarithmic for a homoclinic collision. When
the interval between the SN− bifurcation and the homoclinic collision is very small, it cannot be
resolved experimentally, or even numerically in an extended system such as the Navier–Stokes
equations. In such a situation, the square-root fit appears adequate, because, away from the SN−
point, the dynamical system just feels the ghost of the about-to-be-formed saddle–node pair and
does not distinguish between whether the saddle–node appears on the limit cycle or just very
close to it. However, if the very narrow parameter range between the saddle–node formation and
the subsequent collision with the saddle can be resolved, then the log fit matches the period in
this narrow interval much better.

5. Fluid dynamics examples of pinning owing to breaking the SO(2)
symmetry

(a) Pinning in small aspect ratio Taylor–Couette flow
Experiments in small aspect ratio Taylor–Couette flows have reported the presence of a band in
parameter space where rotating waves become steady non-axisymmetric solutions (a pinning
effect) via infinite-period bifurcations [31]. Previous numerical simulations, assuming SO(2)
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Figure 8. (a) Experimental regimes found in the small aspect ratio Taylor–Couette problem, with a pinning region, adapted
from Pfister et al. [31]. (b) Numerically computed rotating wave at Re= 1200,Γ = 1 and η = 0.5, adapted from Marques &
Lopez [32], typical of those found in regions II±.

symmetry of the apparatus, were unable to reproduce these observations [32]. Recent additional
experiments suggest that the pinning effect is not intrinsic to the dynamics of the problem, but
rather is an extrinsic response induced by the presence of imperfections that break the SO(2)
symmetry of the ideal problem. Additional controlled symmetry-breaking perturbations were
introduced into the experiment by tilting one of the endwalls [16]. Direct numerical simulations
of the Navier–Stokes equations including the tilt of one endwall by a very small angle have
been conducted [23]. Those simulations agree very well with the experiments, and the normal
form theory developed in this paper provides a theoretical framework for understanding the
observations.

Taylor–Couette flow consists of a fluid confined in an annular region of inner and outer radii ri
and ro, capped by endwalls a distance h apart. The endwalls and the outer cylinder are stationary,
and the flow is driven by the rotation of the inner cylinder at constant angular speed Ω . The
system is governed by three parameters: the Reynolds number, Re = Ωri(ro − ri)/ν, the aspect
ratio, Γ = h/(ro − ri), and the radius ratio, η = ri/ro, where ν is the kinematic viscosity. The system
is invariant to arbitrary rotations about the axis, SO(2) symmetry, and to reflections about the
mid-height, a Z2 symmetry that commutes with SO(2). In both the experiments and the numerical
simulations, the radius ratio was kept fixed at η = 0.5, and Re and Γ were varied.

For small Re, below the curve PF in figure 8a, the flow is steady, axisymmetric and reflection
symmetric, consisting of two meridional cells [32]. The Z2 reflection symmetry is broken in
a pitchfork bifurcation along the curve PF, and a pair of steady axisymmetric one-cell states
that have a jet of angular momentum emerging from the inner cylinder boundary layer near
one or other of the endwalls is born. Both are stable, and which is realized depends on initial
conditions. The only symmetry of these symmetrically related solutions is SO(2). These steady
axisymmetric one-cell states are stable in region I. There are other flow states that are stable in
this same region. For example, above the dashed curve SN in figure 8a, the two-cell state becomes
stable and coexists with the one-cell states. However, the two-cell and the one-cell states are well
separated in phase space and the experiments and numerics we describe below are focused on
the one-cell state. On increasing Re, the one-cell state suffers a Hopf bifurcation that breaks the
SO(2) symmetry and a rotating wave state emerges with azimuthal wavenumber m = 2. Figure 8b
shows an isosurface of axial angular momentum, illustrating the three-dimensional structure
of the rotating wave. For slight variations in aspect ratio, the rotating wave may precess either
prograde (in region II+ above H+) or retrograde (in region II− above H−) with the inner cylinder,
and in between a pinning region III is observed. This is observed even with a nominally perfect
experimental system, i.e. with the SO(2) symmetry to within the tolerances in constructing the
apparatus. The Hopf bifurcation is supercritical around the region where the precession frequency
changes sign. However, for smaller aspect ratios the Hopf bifurcation becomes subcritical at the
Bautin point Ba in figure 8a.
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Figure 9. Bifurcation diagrams for the one-cell state from (a) the experimental results of Abshagen et al. [16] with natural
imperfections, and (b) the numerical results of Pacheco et al. [23] with a tilt of 0.1◦ on the upper lid. The dotted curve in both is
the numerically determined Hopf curve with zero tilt.

Various different experiments in this regime have been conducted in the nominally perfect
system, as well as with a small tilt of an endwall [16,31,33,34]. Figure 9a shows a bifurcation
diagram from the laboratory experiments of Abshagen et al. [16]. These experiments show that,
without an imposed tilt, the natural imperfections of the system produce a measurable pinning
region, and that the additional tilting of one endwall increases the extent of the pinning region.
Tilt angles of the order of 0.1◦ are necessary for the tilt to dominate over the natural imperfections.
Figure 9b shows a bifurcation diagram from the numerical results of Pacheco et al. [23], including
a tilt of one of the endwalls of about 0.1◦, showing very good agreement with the experimental
results. Included in figure 9a,b is the numerically computed bifurcation diagram in the perfect
system, shown as dotted curves. The effects of imperfections are seen to be important only in
the parameter range where the Hopf frequency is close to zero and a pinning region appears.
It is bounded by infinite-period bifurcations of limit cycles. The correspondence between these
results and the normal form theory described in this paper is excellent, strongly suggesting
that the general remarks on pinning extracted from the analysis of the five particular cases are
indeed realized both experimentally and numerically. These two studies [16,23] are the only
cases we know of where quantitative data about the pinning region are available. Yet, even in
these cases, the dynamics close to the intersection of the Hopf curve with the pinning region,
which according to our analysis should include complicated bifurcational processes, has not been
explored either numerically or experimentally. This is a very interesting problem that deserves
further exploration.

(b) Pinning in rotating Rayleigh–Bénard convection
Up to now, we have considered the zero-frequency Hopf problem in the context of a supercritical
Hopf bifurcation. However, in the Taylor–Couette example discussed in the previous section, the
zero frequency occurs quite close to a Bautin bifurcation, at which the Hopf bifurcation switches
from being supercritical to subcritical, and a natural question is what are the consequences of
the zero frequency occurring on a subcritical Hopf bifurcation. The normal form theory for the
behaviour local to the Hopf bifurcation carries over by changing the direction of time and the sign
of the parameters μ and ν as discussed before, but then both the limit cycle and the pinned state
are unstable and not observable in a physical experiment or direct numerical simulation. The limit
cycle becomes observable as it undergoes a saddle–node of limit cycle (a cyclic fold) bifurcation
at the fold associated with the Bautin bifurcation (figure 10a), and we expect that the pinned state
does likewise with a saddle–node of fixed points bifurcation along the same fold. In this section,
we identify a rotating convection problem where precisely this occurs [24,25], and conduct new
numerical simulations by introducing an SO(2) symmetry-breaking bifurcation that produces a
pinning region on the upper branch of the subcritical Hopf bifurcation.
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Figure 10. (a) Schematic of the Bautin bifurcation, including the path L of frequency zero bifurcated states in the SO(2) perfect
system, shown in a two-parameter space (μ, ν) with A a global measure of the solution. Also shown is the projection of the
saddle–node surface on parameter space. (b) Bifurcation curves forΩ = 100,σ = 7 andγ = 1, where H∓ are the segments
of the Hopf bifurcation with negative and positive frequency, the Bautin point Ba is where the Hopf bifurcation switches from
super- to subcritical and the cyclic-fold bifurcation curve CF emerges. The lines Ll and Lu are the loci where the rotating wave
has zero frequency on the lower and upper branches of the cyclic fold. The rectangle around Lu corresponds to figure 11a.
(c) The frequency along the Hopf bifurcation H∓ with the Bautin point and the point ZF, where the sense of precession changes,
marked as open symbols.

The rotating convection problem consists of a fluid-filled cylinder of radius r0 and height h,
rotating at a constant rate ω rad s−1. The cold top and hot bottom endwalls are maintained at
constant temperatures T0 ∓ 0.5�T, where T0 is the mean temperature and �T is the temperature
difference between the endwalls. The sidewall has zero heat flux. The system is governed by
five parameters: the Rayleigh number, Ra = αgh3�T/(κν), the Froude number, Fr = ω2r0/g, the
Coriolis number, Ω = ωh2/ν, the Prandtl number, σ = ν/κ , and the aspect ratio, γ = r0/h, where
α is the coefficient of volume expansion, g is the gravitational acceleration, κ is the thermal
diffusivity and ν is the kinematic viscosity. For any Fr �= 0, the system is not invariant to the
so-called Boussinesq symmetry corresponding to invariance to a reflection Kz about the half-
height z = 0. The system is invariant only under rotations about the axis of the cylinder, the
SO(2) symmetry.

The governing equations have been solved using a second-order time-splitting method
combined with a pseudo-spectral method for the spatial discretization, using a Galerkin–Fourier
expansion in the azimuthal coordinate θ and Chebyshev collocation in r and z. The details are
presented in Mercader et al. [35]. We have used nr = 36, nθ = 40 and nz = 64 spectral modes in r,
θ and z and a time step dt = 2 × 10−5 thermal time units in all computations. We have checked
the spectral convergence of the code using the infinity norm of the spectral coefficients of the
computed solutions. The trailing coefficients of the spectral expansions are at least five orders of
magnitude smaller than the leading coefficients. In order to compute the zero-frequency line L in
the subcritical region of the Bautin bifurcation, where the fixed points and limit cycles involved
are unstable, we have used arclength continuation methods for fixed points and for rotating
waves adapted to our spectral codes [36,37].

Figure 10b shows the parameter region of interest in this convection problem. In the
region of high Froude number (region I), we have a stable steady solution, consisting of a
single axisymmetric convective roll where the warm fluid moves upwards close to the axis
(due to the rotation of the container), and returns along the sidewall. This base state loses
stability when the Froude number Fr decreases, in a Hopf bifurcation along the curves H±.
The bifurcation is supercritical for Ra < 14 157 and subcritical for higher Ra; the change from
supercritical to subcritical happens at the codimension-two Bautin bifurcation point Ba, at
(Ra, Fr) ≈ (14 157, 0.3684). The bifurcated limit cycle, a rotating wave with azimuthal wave
number m = 3, is unstable, but becomes stable at the cyclic fold curve CF (a saddle–node
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Figure 11. (a) SNIC bifurcation curves in (Ra, Fr) space bounding the pinning region for Ω = 100, σ = 7 and γ = 1; the
region is the rectangle in figure 10b. The dashed line is the Lu curve in the perfect case. (b) The period of the rotating wave C3 as
it approaches the SNIC bifurcations at Fr = 0.32. The solid line is a cubic spline fit to the computed periods (solid symbols), and
the dashed line is a square-root fit.

bifurcation of limit cycles). This curve CF originates at the Bautin point Ba. There are other flow
states that are stable in this same region [25]. These additional states are well separated in phase
space, and here we focus on the base state and the m = 3 bifurcated rotating wave.

Figure 10c shows the computed frequency of the limit cycle along the Hopf bifurcation curve.
This frequency is negative along H− and positive along H+, and is zero at the ZF (zero frequency)
point. At this point, we have precisely the scenario discussed in this paper: a flow (the base
state) with SO(2) symmetry undergoing a Hopf bifurcation that has zero frequency at that point.
Figure 10b also includes the line L where the frequency of the bifurcated states is zero. This curve
has been computed using continuation methods, because the zero-frequency state is unstable in
the lower part (Ll) of the saddle–node CF, and therefore cannot be obtained via time evolution.
The zero-frequency state becomes stable upon crossing the saddle–node curve CF and moving to
the upper part Lu of the saddle–node CF, and becomes observable both experimentally and by
numerical simulations advancing the Navier–Stokes equations in time.

In order to break the SO(2) symmetry and see whether a pinning region appears, an
imperfection has been introduced, in the form of an imposed linear temperature profile at
the top lid, Θ(r, θ , z = 0.5) = ε r cos θ , where ε is a measure of the symmetry breaking. This
term completely breaks the rotational symmetry of the governing equations, and no symmetry
remains. Figure 11a shows that the line L becomes a band of pinned solutions, steady solutions
with frequency zero, as predicted by the normal form theory presented in this paper. We can also
check the nature of the bifurcation taking place at the boundary of the pinning region. Figure 11b
shows the variation of the period of the limit cycle approaching the pinning region. It is an infinite
period bifurcation, and the square-root fit (shown in the figure) works better than the logarithmic
fit. We estimate that the bifurcation is a SNIC bifurcation, as the normal form theory presented
predicts it should be sufficiently far from the zero-frequency point ZF.

Figure 12 shows snapshots of isotherms at mid-height (z = 0) with Ra = 21 950 and Fr = 0.32,
which is a parameter point inside the pinning region (figure 11a). Figure 12a shows a solution
in the symmetric system (ε = 0) and figure 12b is the pinned solution with an imperfection of
ε = 0.05, corresponding to a maximum variation in temperature of 5 per cent �T at the top lid.
The steady-pinned solution has broken the Z3 symmetry; one of the three arms of the solution is
closer to the wall than the other two. The attachment of the solution to the sidewall, owing to the
imperfection at the top lid, results in the pinning phenomenon.

6. Summary and conclusions
The aim of this paper has been to provide a general dynamical systems description of the pinning
phenomenon that is observed in systems possessing two ingredients: slowly travelling or rotating
waves and imperfections. The description boils down to the unfolding of a Hopf bifurcation in
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(a) (b)

Figure 12. Isotherms at mid-height (z = 0) for Ω = 100, σ = 7, γ = 1, Ra= 21950 and Fr = 0.32. (a) The symmetric
solution (ε = 0) and (b) a pinned solution with ε = 0.05. There are 20 quadratically spaced contours in T ∈ [−0.31, 0.31],
with blue (red) for the cold (warm) fluid. (Online version in colour.)

an SO(2) equivariant system about the point where the Hopf frequency is zero. This turns out to
be a very complicated problem owing to the degeneracies involved, but, by considering all of the
low-order ways in which SO(2) symmetry may be broken near a zero-frequency Hopf bifurcation,
we can identify a number of general features which are common to all scenarios, and hence can be
expected to be found in practice. These are that the curve of zero-frequency splits into a region in
parameter space of finite width that scales with the strength of the imperfection, and this region
is delimited by SNIC bifurcations. In the very small neighbourhood of the zero-frequency Hopf
bifurcation point, where the SNIC curves and the Hopf curve approach each other, the dynamics
is extremely complicated, consisting in a multitude of codimension-two local bifurcations and
global bifurcations. The details depend on the particulars of the imperfection, but all of these
complications are very localized and are not resolvable in any practical sense. We provide two
examples in canonical fluid dynamics to illustrate both the pinning phenomenon and the use
of the theory to describe it. These are a Taylor–Couette flow in which the Hopf bifurcation is
supercritical and a rotating Rayleigh–Bénard flow in which the Hopf bifurcation is subcritical.
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and Spanish Government grants (nos FIS2009-08821 and BES-2010-041542). The authors thank the referees for
very useful suggestions, in particular in §4.

References
1. Golubitsky M, Schaeffer DG. 1985 Singularities and groups in bifurcation theory, vol. I. Berlin,

Germany: Springer.
2. Golubitsky M, Stewart I, Schaeffer DG. 1988 Singularities and groups in bifurcation theory, vol. II.

Berlin, Germany: Springer.
3. Chossat P, Iooss G. 1994 The Couette–Taylor problem. Berlin, Germany: Springer.
4. Golubitsky M, Stewart I. 2002 The symmetry perspective: from equilibrium to chaos in phase space

and physical space. Basle, Switzerland: Birkhäuser.
5. Chossat P, Lauterbach R. 2000 Methods in equivariant bifurcations and dynamical systems.

Singapore: World Scientific.
6. Crawford JD, Knobloch E. 1991 Symmetry and symmetry-breaking bifurcations in fluid

dynamics. Annu. Rev. Fluid Mech. 23, 341–387. (doi:10.1146/annurev.fl.23.010191.002013)
7. Keener JP. 1987 Propagation and its failure in coupled systems of discrete excitable cells. SIAM

J. Appl. Math. 47, 556–572. (doi:10.1137/0147038)
8. Campbell SA, Holmes P. 1992 Heteroclinic cycles and modulated travelling waves in a system

with D4 symmetry. Physica D 59, 52–78. (doi:10.1016/0167-2789(92)90206-3)
9. Knobloch E, Hettel J, Dangelmayr G. 1995 Parity breaking bifurcation in inhomogeneous

systems. Phys. Rev. Lett. 74, 4839–4842. (doi:10.1103/PhysRevLett.74.4839)

http://dx.doi.org/doi:10.1146/annurev.fl.23.010191.002013
http://dx.doi.org/doi:10.1137/0147038
http://dx.doi.org/doi:10.1016/0167-2789(92)90206-3
http://dx.doi.org/doi:10.1103/PhysRevLett.74.4839
http://rspa.royalsocietypublishing.org/


18

rspa.royalsocietypublishing.org
ProcRSocA469:20120348

..................................................

 on February 14, 2013rspa.royalsocietypublishing.orgDownloaded from 
10. Hirschberg P, Knobloch E. 1996 Complex dynamics in the Hopf bifurcation with broken
translation symmetry. Physica D 90, 56–78. (doi:10.1016/0167-2789(95)00227-8)

11. Dangelmayr G, Hettel J, Knobloch E. 1997 Parity-breaking bifurcation in inhomogeneous
systems. Nonlinearity 10, 1093. (doi:10.1088/0951-7715/10/5/006)

12. Lamb JSW, Wulff C. 2000 Pinning and locking of discrete waves. Phys. Lett. A 267, 167–173.
(doi:10.1016/S0375-9601(00)00097-9)

13. Westerburg M, Busse FH. 2003 Centrifugally driven convection in the rotating cylindrical
annulus with modulated boundaries. Nonlinear Proc. Geophys. 10, 275–280. (doi:10.5194/npg
10-275-2003)

14. Thiele U, Knobloch E. 2006 Driven drops on heterogeneous substrates: onset of sliding motion.
Phys. Rev. Lett. 97, 204501. (doi:10.1103/PhysRevLett.97.204501)

15. Thiele U, Knobloch E. 2006 On the depinning of a driven drop on a heterogeneous substrate.
New J. Phys. 8, 313. (doi:10.1088/1367-2630/8/12/313)

16. Abshagen J, Heise M, Hoffmann C, Pfister G. 2008 Direction reversal of a rotating wave in
Taylor–Couette flow. J. Fluid Mech. 607, 199–208. (doi:10.1017/S0022112008002176)

17. Gambaudo JM. 1985 Perturbation of a Hopf bifurcation by an external time-periodic forcing.
J. Differ. Equ. 57, 172–199. (doi:10.1016/0022-0396(85)90076-2)

18. Wagener F. 2001 Semi-local analysis of the k : 1 and k : 2 resonances in quasi-periodically forced
systems. In Global analysis of dynamical systems (eds W Broer, B Krauskopf, G Vegter), p. 113.
London, UK: IOP Publishing Ltd.

19. Broer H, van Dijk R, Vitolo R. 2008 Survey of strong normal-internal k : l resonances in quasi-
periodically driven oscillators for l = 1, 2, 3. In SPT 2007: Symmetry and perturbation theory:
Proc. of the Int. Conf. SPT 2007 Otranto, Italy, 2–9 June 2007 (eds G Gaeta, R Vitolo, S Walcher),
p. 45. Singapore: World Scientific.

20. Saleh K, Wagener FOO. 2010 Semi-global analysis of periodic and quasi-periodic normal-
internal k : 1 and k : 2 resonances. Nonlinearity 23, 2219–2252. (doi:10.1088/0951-7715/
23/9/009)

21. Strogatz S. 1994 Nonlinear dynamics and chaos. London, UK: Addison-Wesley.
22. Haragus M, Iooss G. 2011 Local bifurcations, center manifolds, and normal forms in infinite-

dimensional dynamical systems. Berlin, Germany: Springer.
23. Pacheco JR, Lopez JM, Marques F. 2011 Pinning of rotating waves to defects in finite Taylor–

Couette flow. J. Fluid Mech. 666, 254–272. (doi:10.1017/S0022112010004131)
24. Marques F, Mercader I, Batiste O, Lopez JM. 2007 Centrifugal effects in rotating convection:

axisymmetric states and three-dimensional instabilities. J. Fluid Mech. 580, 303–318.
(doi:10.1017/S0022112007005447)

25. Lopez JM, Marques F. 2009 Centrifugal effects in rotating convection: nonlinear dynamics.
J. Fluid Mech. 628, 269–297. (doi:10.1017/S0022112009006193)

26. Kuznetsov YA. 2004 Elements of applied bifurcation theory, 3rd edn. Berlin, Germany: Springer.
27. Chow SN, Li C, Wang D. 1994 Normal forms and bifurcations of planar vector fields. Cambridge,

UK: Cambridge University Press.
28. Dumortier F, Roussarie R, Sotomayor J. 1997 Bifurcations of cuspidal loops. Nonlinearity 10,

1369–1408. (doi:10.1088/0951-7715/10/6/001)
29. Marques F, Meseguer A, Lopez JM, Pacheco JR, Lopez JM. 2012 Hopf bifurcation with zero

frequency and imperfect SO(2) symmetry. (http://arxiv.org/abs/1206.1643)
30. Adler R. 1946 A study of locking phenomena in oscillators. Proc. Inst. Radio Eng. 34, 351.
31. Pfister G, Schulz A, Lensch B. 1991 Bifurcations and a route to chaos of a one-vortex-state in

Taylor–Couette flow. Eur. J. Mech. B, Fluids 10, 247.
32. Marques F, Lopez JM. 2006 Onset of three-dimensional unsteady states in small-aspect ratio

Taylor–Couette flow. J. Fluid Mech. 561, 255–277. (doi:10.1017/S0022112006000681)
33. Pfister G, Schmidt H, Cliffe KA, Mullin T. 1988 Bifurcation phenomena in Taylor–Couette flow

in a very short annulus. J. Fluid Mech. 191, 1–18. (doi:10.1017/S0022112088001491)
34. Pfister G, Buzug T, Enge N. 1992 Characterization of experimental time series from Taylor–

Couette flow. Physica D 58, 441–454. (doi:10.1016/0167-2789(92)90130-F)
35. Mercader I, Batiste O, Alonso A. 2010 An efficient spectral code for incompressible flows in

cylindrical geometries. Comput. Fluids 39, 215–224. (doi:10.1016/j.compfluid.2009.08.003)
36. Sanchez J, Marques F, Lopez JM. 2002 A continuation and bifurcation technique for Navier–

Stokes flows. J. Comput. Phys. 180, 78. (doi:10.1006/jcph.2002.7072)
37. Mercader I, Batiste O, Alonso A. 2006 Continuation of travelling-wave solutions of the

Navier–Stokes equations. Int. J. Numer. Method Fluids 52, 707. (doi:10.1002/fld.1196)

http://dx.doi.org/doi:10.1016/0167-2789(95)00227-8
http://dx.doi.org/doi:10.1088/0951-7715/10/5/006
http://dx.doi.org/doi:10.1016/S0375-9601(00)00097-9
http://dx.doi.org/doi:10.5194/npg10-275-2003
http://dx.doi.org/doi:10.5194/npg10-275-2003
http://dx.doi.org/doi:10.1103/PhysRevLett.97.204501
http://dx.doi.org/doi:10.1088/1367-2630/8/12/313
http://dx.doi.org/doi:10.1017/S0022112008002176
http://dx.doi.org/doi:10.1016/0022-0396(85)90076-2
http://dx.doi.org/doi:10.1088/0951-7715/23/9/009
http://dx.doi.org/doi:10.1088/0951-7715/23/9/009
http://dx.doi.org/doi:10.1017/S0022112010004131
http://dx.doi.org/doi:10.1017/S0022112007005447
http://dx.doi.org/doi:10.1017/S0022112009006193
http://dx.doi.org/doi:10.1088/0951-7715/10/6/001
http://arxiv.org/abs/1206.1643
http://dx.doi.org/doi:10.1017/S0022112006000681
http://dx.doi.org/doi:10.1017/S0022112088001491
http://dx.doi.org/doi:10.1016/0167-2789(92)90130-F
http://dx.doi.org/doi:10.1016/j.compfluid.2009.08.003
http://dx.doi.org/doi:10.1006/jcph.2002.7072
http://dx.doi.org/doi:10.1002/fld.1196
http://rspa.royalsocietypublishing.org/

	Introduction
	Hopf bifurcation with SO(2) symmetry and zero frequency
	Unfolding the Hopf bifurcation with zero frequency

	Bifurcation diagrams for the five symmetry-breaking cases
	Symmetry breaking of SO(2) with an  term
	Symmetry breaking of SO(2) to Z2: the  case
	Symmetry breaking of SO(2) to Z3: the 2 case
	The quadratic 4 z and 5 z2 cases

	Common features in the different ways to break SO(2) symmetry
	Fluid dynamics examples of pinning owing to breaking the SO(2)symmetry
	Pinning in small aspect ratio Taylor--Couette flow
	Pinning in rotating Rayleigh--Bénard convection

	Summary and conclusions
	References

