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Nonlinear equilibrium states characterized by strongly localized vortex pairs are calculated in the
linearly stable parameter region of counterrotating Taylor-Couette flow. These subcritical states are rotating
waves whose region of existence is consistent with the critical threshold for relaminarization observed in
experiments. For sufficiently rapid outer cylinder rotation the solutions extend beyond the static inner
cylinder case to corotation, thus exceeding, for the first time, the boundary defined by the inviscid
Rayleigh’s stability criterion.
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Rotating fluid motion occurs in extremely diverse sit-
uations, ranging from swirl mixing in microfluidic junc-
tions to astronomical accretion disks. For nearly a century,
Taylor-Couette flow (TCF), the flow between differentially
rotating coaxial cylinders, has provided a canonical proto-
type to analyze shear and centrifugal fluid instabilities. This
has led to countless number of studies for varying values of
geometrical parameters such as the aspect ratio Γ ¼
H=ðro − riÞ and the radius ratio η ¼ ri=ro, with ri and
ro the inner and outer cylinder radii and H the apparatus
height [Fig. 1(a), see also [1], and references therein].
Rayleigh’s stability criterion [2] establishes that rotating

shear flows are stable whenever the modulus of the angular
momentum increases outwards. This criterion considers
centrifugal inviscid instability to axisymmetric disturb-
ances and is widely accepted as the origin of Taylor vortex
flow in TCF. By using the conventional definition of inner
and outer cylinder Reynolds numbers Ri ¼ ðro − riÞriΩi=ν
and Ro ¼ ðro − riÞroΩo=ν, with Ωi and Ωo the angular
velocities of the cylinders and ν the kinematic viscosity of
the fluid, the laminar base state, known as circular Couette
flow (CCF), is Rayleigh stable whenever Ωo=Ωi >
ðri=roÞ2, i.e., RiðRo − ηRiÞ > 0 [3]. Thus, inviscid stability
is to be expected in the (Ro; Ri)-parameter space region
delimited between the straight line Ro ¼ ηRi and the
Ri ¼ 0 axis (shaded region in Fig. 2). In practice, CCF
remains linearly stable for some extended region beyond
the theoretical inviscid stability boundaries due to viscous
stabilization. Above the viscous linear stability boundary
(dashed curve in Fig. 2), infinitesimally small disturbances
grow and saturate, eventually leading to rich pattern-
formation phenomena.
Experiments carried out nearly three and five decades

ago reported turbulent motion in the rapidly counterrotating
case under conditions for which the flow was expected to
be laminar due to the absence of linear instability [4]. Their

results, summarized in Fig. 2 by relaminarization bounda-
ries (blue triangles), delimit a hysteretical region where
laminar and turbulent flow can both occur and transition is
the result of finite-amplitude perturbations. These subcriti-
cal turbulent states seem to extend into the Rayleigh-stable
region beyond Ri ¼ 0, where the centrifugal instability
mechanism is absent. The study of nonlinear instability
below the linear stability boundary and further within the
Rayleigh-stable region is of paramount importance to the
identification of transition mechanisms other than centrifu-
gal in rotating fluids. Astrophysical accretion disks con-
stitute a relevant example of flow instability in the Rayleigh
stable regime of rotation [5].
Despite decades of research, turbulence sustainment in

subcritical TCF remains unexplained [6]. The common
hindrance encountered in lab experiments concerns the
unavoidable end cap effects of feasible apparatuses [7].
Recent numerical studies with imposed axial periodicity
have reported relaminarization boundaries consistent with
those observed in the experiments for moderate values of Ri
[8]. However, there is no corresponding study extending to
the static inner cylinder case.

FIG. 1 (color online). Sketch of (a) Taylor-Couette flow and (b)
plane Couette flow.
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In this Letter, we attempt to address a theoretical
description of subcritical instabilities in TCF by means
of dynamical systems theory applied to highly accurate
spectral discretizations of the Navier-Stokes equations. The
major complication in determining subcritical transition
thresholds is that they depend on the size and shape of the
disturbances triggering the instability. The approach taken
here consists in directly searching for nonlinear solutions as
potential precursors to the turbulent state. The interrelations
among such states and increasingly complex states bifur-
cated from them set the stage for the formation of a chaotic
set capable of sustaining turbulent motion [9].
The simplest nonlinear Navier-Stokes solutions take the

form of stationary and relative equilibria (traveling or
rotating waves) [10]. Such solutions are called exact
coherent states (ECSs) and express the minimal physical
mechanisms behind turbulence sustainment [11].
Subcritical transition of canonical shear flows such as
those in channels or pipes have been repeatedly shown
to rely on the existence of ECSs [12]. Turbulent attractors
arise from a sequence of instabilities of primal ECSs that
originally appeared in saddle-node bifurcations. A satis-
factory explanation of turbulence transition and sustain-
ment in linearly stable TCF in terms of ECSs is still
missing, while no other approach has yielded convincing
results so far.
Newton-Raphson-based iterative methods have been

used here in the search of ECSs within the linearly stable
domain of TCF. Two spectral schemes, independently
developed in [13] and [14], have been exploited concur-
rently. Both schemes discretize the Navier-Stokes equa-
tions by means of Fourier expansions in the axial and
azimuthal coordinates, whereas the radial direction is

approximated on a Chebyshev grid. The number of radial,
azimuthal, and axial modes used to resolve ECSs in the
both axially and azimuthally periodic domain are denoted
Nr; Nθ, and Nz, respectively, and systematic convergence
tests have been performed with both schemes to ensure a
satisfactory degree of spectral decay. Hereinafter we use
d ¼ ro − ri and ν=d as length and velocity units, respec-
tively. The nondimensional fundamental azimuthal and
axial wave numbers of the ECSs, denoted by n and k,
respectively, define the periodic computational
domain ½ri; ro� × ½0; 2π=n� × ½0; 2π=k�.
A first attempt to identify subcritical ECSs in linearly

stable TCF was undertaken in [15]. By choosing seeds
emerging from linear instability, a number of primary
(spiral) and secondary (ribbon) branches were shown to
be only mildly subcritical.
In contrast, inspired by [10], the present study uses

curvature homotopy to continue solutions from plane
Couette flow [Fig. 1(b), the flow between exactly counter-
sliding parallel plates, i.e., η ¼ 1]. Noting that artificially
generated disturbances evolve into hairpin-shaped vortices
in Rayleigh-stable Taylor-Couette experiments [16], we
deem convenient to start the homotopy from a recently
found plane Couette ECS featuring hairpin vortices [17]
within its flow structure. Following the strategy of [13], the
solution branch can be tracked successfully as it deforms
from the flat to the curved geometry. The homotopic
continuation procedure followed reduces η while preserv-
ing the exact counterrotation speed of the cylinders
throughout. The choice η ¼ 0.883 as the target allows
comparison with the classical experimental studies of [4]
and falls within the wide gap class as described in [18],
where η ¼ ηcrit ≡ 0.9 ∼ 0.95 is identified as a critical radius
ratio involving a qualitative change in transition. Details of
the homotopy path followed are not included here, as
ðRo; n; kÞ change in turns in such a contorted way that
makes interpretation of the evolution of the solution
along the path too complicated to be of interest. A simpler
way of computing the new solutions is nevertheless
provided later.
The resultant ECSs are characterized by a frozen three-

dimensional structure that travels in the azimuthal direction
with angular wave speed c. The Ri continuation of solution
branches corresponding to several triplets ðRo; n; kÞ
undergo saddle-node bifurcations at Ri ¼ RSN

i ðRo; n; kÞ
as shown in Fig. 3. Inner cylinder torque T, normalized
by the CCF torque at the same parameter values, is used to
measure deviation from CCF. For each value of Ro, the
wave numbers ðn; kÞ are chosen so that the saddle-node
point RSN

i takes its minimal value. The spectral resolution
used in the continuation is within the range ðNr; Nθ; NzÞ ∈
½38; 52� × ½18; 24� × ½26; 30� to ensure convergence. Solid
lines are ECS families found by homotopy from plane
Couette flow. For Ro ¼ −1200 (red solid line), the branch
bifurcates in a saddle-node bifurcation that reaches a
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FIG. 2 (color online). Stability diagram of TCF for η ¼ 0.883.
Note that ðRi; RoÞ and ð−Ri;−RoÞ correspond simply to turn
upside down the TCF setup. The shaded region is Rayleigh
stable. The base laminar flow, CCF, is linearly stable below the
dashed curve representing the viscous linear stability boundary,
while turbulence may be sustained above the line delimited by
blue triangles [4]. The red filled circles indicate the saddle-nodes
loci corresponding to the nonlinear solutions presented in this
Letter.
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minimum RSN
i ≈ 377.3 for ðn; kÞ ¼ ð10; 2.56Þ. The primary

linear instability of CCF for Ro ¼ −1200 occurs at
Ri ≃ 447.4 and corresponds to the bifurcation of a spiral
mode with ðn; kÞ ¼ ð5; 5.125Þ (red open circle). Although
slightly subcritical, the spiral solution does not reach the
low Ri values of the homotopic ECSs [15] and therefore the
ECSs qualify as remarkably subcritical. This subcriticality
is enhanced as the outer cylinder is made to rotate faster
(see Ro ¼ −2000;−4000, and −5000; solid green, blue,
and black lines, respectively). The minimal saddle-node
point RSN

i as a function of Ro shows a clear trend in Fig. 2
(filled red circles connected by a red solid line): as the
outer cylinder rotation rate is increased in modulus, the
inner cylinder can be taken to lower counterrotation
rates, eventually reaching the corotation regime as jRoj
exceeds ≈4500. The line defined by the saddle nodes
runs parallel to and below the experimental thresholds
found by [4]. This is compatible with the aforementioned
scenario whereby a bifurcation cascade starting from an
ECS originated at a saddle node gives rise to a turbulent set.
For Ro ¼ −1200 the ECS solution branch connects to

Taylor vortices [red dashed line, ðn; kÞ ¼ ð0; 5.12Þ, bifur-
cated from CCF at Ri ≈ 480.0] in a symmetry-breaking
bifurcation at Ri ≈ 495.6. We have found no such con-
nection for larger jRoj. The resolution required to continue
the solutions beyond the explored parameter ranges renders
computations unaffordable. This connection suggests an
alternative means of producing ECS solutions. Linear
stability analysis of the Taylor vortices provides the
eigenstate that must be added to the Taylor vortices in
order to converge the ECS via Newton iteration. From this

first ECS branch at ðRi; Ro; n; kÞ ¼ ð495.6;−1200;
10; 2.56Þ, the rest of ECS branches in this Letter can
simply be obtained by continuation.
Two distinct families of solution branches exist for

Ri ¼ 0, as shown in Fig. 4. The pair of solutions at
Ri ¼ 0 for the Ro ¼ −5000 branch in Fig. 3 correspond to
the upper and lower solution branches of the first family
(black loop in Fig. 4). The second family (gray line in
Fig. 4), which can only be computed for larger jRoj,
corresponds to a pair of extra crossings that are already
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FIG. 3 (color online). Evolution of normalized (by CCF torque)
inner cylinder torque T along the Ri-continuation branches for
fixed ðR0; n; kÞ triplets. Solid lines represent ECS branches after
curvature homotopy from a plane Couette solution. For each
value of Ro, the wave numbers n and k minimize the saddle
node RSN

i . Also shown are the Taylor vortices branch
[ðn; kÞ ¼ ð0; 5.12Þ, red dashed line] and the linear critical point
[ðn; kÞ ¼ ð5; 5.125Þ, red open circle] for Ro ¼ −1200. Note that
all ECS branches are connected when the parameters are varied
appropriately.
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FIG. 4. Bifurcation diagram showing Ro-continuation ECS
branches for Ri ¼ 0 and n ¼ 10. The wave number k is chosen
such that the rightmost saddle node RSN

o occurs closer to 0. The
plus sign represents a single solution computed at an increased
resolution and used for flow field visualization. (a) Torque. (b)
Angular wave speed.

FIG. 5 (color online). Visualization of the localized vortex
pattern of the ECS (plus sign of Fig. 4). The blue (dark gray) and
red (light gray) isosurfaces implement the λ2 criterion by showing
30% and 80% of the minimum negative value, respectively. The
fundamental periodic domain ðn; kÞ ¼ ð10; 1.93Þ is shown. The
outer cylinder rotates leftward, while the inner cylinder is
stationary.
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hinted at by theRo ¼ −5000branch inFig. 3,where a further
turning point issues a discontinued leftward-pointing upper
branch. For jRoj in excess of 6000 and provided that k is
relaxed and allowed to increase up to 1.93 the solutions
can be continued back to Ri ¼ 0.
The solutions present a strongly localized structure that

calls for a very fine discretization. A single refinement with
a high resolution of ðNr; Nθ; NzÞ ¼ ð56; 50; 60Þ (the plus
sign in Fig. 4; torque T ¼ 2.076, angular wave speed
c ¼ 242.7) results in a very accurate spectral convergence,
thus confirming that the solutions are physical and that their
main features are already captured with the lower reso-
lutions. The localized vortical structure of the solution is
shown in Fig. 5, where the λ2 criterion [19] has been used to
identify vortex cores. While only one axial or azimuthal
wavelength is shown, periodicity results in a staggered
pattern of vortex pairs when considering the full annulus
and a long-aspect ratio apparatus.
Figure 6 shows radial, axial, and azimuthal sections

through the leftmost vortex core in Fig. 5. The radial cut of
azimuthal vorticity contours reveals the staggered arrange-
ment of vortex pairs, clearly identifiable as a shift-rotate
symmetry ½u; v;w�ðr; θ; zÞ ¼ ½u; v;w�ðr; θþ π=n; zþ π=kÞ,
where ðu; v; wÞ ¼ ur̂þ vθ̂þ wẑ are the radial, azimuthal,
and axial velocity components. The solution also
exhibits a mirror symmetry ½u;v;w� ðr;θ;zþz0Þ¼½u;v;−w�
ðr; θ;−zþ z0Þ, with respect to two z planes at z0 ¼ π=2k
and 3π=2k traversing the space in between each localized
vortex pair. Note that λ2 and azimuthal vorticity are even
and odd upon z reflection, respectively. The localized vortex
is congruent with experimentally generated vortices in
[16], where agreement with the theoretical predictions
of [20] is reported. The tilt angle of the localized vortex of
Fig. 6 (z cut) is in excellent agreement with the theoretical
value ϕ ≈ 40° predicted by considering the localized

disturbance as developing on a background flow described
by the θ-z averaged velocity field vbðrÞ shown in Fig. 7. The
critical radius r ¼ rc ≈ 7.882 crosses right through thevortex
core, as is evident fromFig. 6,whichmeans that thevortex has
developedwithin the thin layer around r ¼ rc and is advected
with the average flow vbðrcÞ.
The mirror symmetry of the solutions presented in this

Letter is likely to be essential to the origin and sustain-
ment of nonlaminar states in highly subcritical TCF,
given that the non-mirror-symmetric plane Couette sol-
utions of [10] yield but mild subcriticality when con-
tinued to TCF. Furthermore, the staggered pattern of
localized vortex pairs is compatible with the observed
fact that oblique-banded structures typical of narrow-gap
stationary inner cylinder TCF collapse into intermittency
when η falls below ηcrit.
In summary, our investigation uncovers the existence of

nonlinear solutions that have all the features necessary for
the sustainment of turbulence in highly subcritical TCF.
The solutions, which may comprise the backbone of the
chaotic set that is responsible for turbulence, are driven by
the effect of shear as settled by the fact that they subsist
even in the Rayleigh stable regime. At the other end, these
solutions connect to Taylor vortices of centrifugal origin.
Analyzing how our highly subcritical solutions evolve as
centrifugal forces take over might be of relevance in
elucidating the essential mechanisms behind centrifugal
and shear instabilities of rotating flows.
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