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An exactly solvable model
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Vol. XXXV, n° 1, 1981,

Section A :

Physique ’ théorique. ’

ABSTRACT. 2014 We present a family of hamiltonian models for N-particle
systems in Predictive Relativistic Mechanics. The relation between posi-
tion and velocity variables and the non-physical canonical ones is derived.
The case of a harmonic oscillator potential is studied in detail. We compare
our model with some singular lagrangian systems already appeared in
the literature.

1. INTRODUCTION

This is the first of a series of papers about a class of systems of particles
interacting at a distance and their quantization. The interest of relativistic
action-at-a-distance theories has recently grown [7] ] [2] ] [3] ] [4] ] [J] ] [6].
From the theoretical viewpoint this is due to the fact that the simultaneous
character of the interaction has been made compatible with Poincare
invariance by Predictive Relativistic Mechanics. Also, hamiltonian sys-
tems with constraints have been better understood. These systems are
only defined on a submanifold of the phase space and this enables one
to circumvent the no-interaction theorem. The connexion between both

(*) Postal address: Diagonal, 647, Barcelona-28, Spain.
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formalisms, Predictive Relativistic Mechanics and Singular Lagrangian
Theory has been recently established by the authors [7] ] [8 ].
From a phenomenological viewpoint the use of covariant harmonic

oscillator models has allowed to obtain the mass spectrum of hadrons
and has provided a theoretical way to explain the quark-confine-
ment [9] ] [10 ].

Before the work of Droz-Vincent [5] ] only perturbative solutions of
physically interesting problems were known [7] ] [79] ] [20] ] within the
framework of Predictive Relativistic Mechanics.
We present here a family of exactly solvable models which includes

as a particular case for two particles the Droz-Vincent system.
Although we do not believe that this kind of simple models can describe

the interaction between quarks, this will be only possible in the framework
of a relativistic second quantization. Nevertheless, the clearness, the sim-
plicity and the exact solvability of these models permit a better under-
standing of the main features of quark interaction.

In sec. 2 we present a short reviews of Predictive Relativistic Mecha-
nics and the general characteristics of our model. It is inspired on Dirac’s
idea [77] ] of distinguishing the kinematic generators from the dynamic
ones among those of the Poincare Group. In our case we make the above
mentioned distinction among the generators of the Complete Symmetry
Group which is an abelian extension of the Poincare Group.

In sec. 3 we present the model in detail. In order to circumvent the No-
Interaction Theorems [72] ] [7~] ] we deal with a non-physical canonical
coordinates. The relation between the position and velocity variables
and the canonical ones is derived in sec. 4. In sec. 5 we present some appli-
cations of the model: harmonic oscillator potential, free particles system
and comparison with some singular lagrangian models.

2. PREDICTIVE HAMILTONIAN SYSTEMS

A Predictive Poincare invariant system is a second order differential
system

which describes the dynamics of N particles.
The acceleration 0~ must satisfy [7~] ] [7~] :

Annales de l’Institut henri Poincaré-Section A



3AN EXACTLY SOLVABLE MODEL IN PREDICTIVE RELATIVISTIC MECHANICS. I

where the summation convention holds for c, ... ...

indices, and the metric is taken (2014+++).
Equation (2.3) exhibits that 6a is the proper time of the particle « a »

1
appart from a multiplicative constant which we shall take equal to 2014.

If ~a were the proper time, it would yield ~

and the coordinates (x, 7~) would no longer be independent. This would
obstruct the construction of a halmitonian formalism. On the contrary,
the choice of mentioned above allows ~a to take on any value which,
according to eq. (2.2), will be an integral of motion.

Equations (2.3) show that the solution xa of system (2.1) only depends
on the parameter 6a. Furthermore, they guarantee the integrability of
the system. Equations (2.3) can also be written as :

The invariance of (2 .1 ) under the Poincare group implies that the func-
tions 8a(x, ~c) behave as four-vectors invariant under translations. This
is e uivalent to

where :

are the infinitesimal generators of the Poincare Group.
Equations (2.4) and (2.5) exhibit that Ha, PJl’ span a realization

of an abelian extension of the Poincare algebra [16 ]. The associated trans-
formation group ~ is the direct product of the Poincare group
(purely kinematic) and the dynamical group [RN.
A hamiltonian formalism for the system (2 .1 ) is determined by a sym-

plectic form Q on invariant under J 8&#x3E; AN.
As it is well known, a function f can be associated to each field A that

leaves Q invariant. This function is defined by [16 ].

This function is defined at least locally on and it is unique except
for an arbitrary additive constant.

Vol. XXXV, n° 1-1981.
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In particular, the functions associated to and Ha are the linear
momentum, the angular momentum and the hamiltonians, respectively.

This is the way to follow in order to quantize a classical system
like (2.1) [17]. We must point out that this procedure involves pertur-
bative solutions as in the cases of electromagnetic interaction and of
short range scalar and vector interactions [18 ].
We will follow, however, Droz-Vincents approach [5 ]. Instead of

constructing a hamiltonian formalism for a given interaction (e. g. elec-

tromagnetism...), we display some exactly solvable models which serve
us to know better the structure of these theories. We also want some of
these models to describe the interaction between quarks.
We work in an adapted canonical coordinates system p~) ofQ [16 ],

i. e. : these coordinates satisfy the following conditions :

i ) q~ and pb (a, b = 1, ..., N) are four-vectors and qa behaves like ~
under translations.

ii) the sympletic form Q can be expressed as :

or, equivalently, the Poisson bracket associated to Q is such that :

Then, if Pu and J 111- are the functions associated by eq. (2.7) to the gene-
rators Pl1 and of !J&#x3E;, we immediately obtain from the condition (i) that :

Therefore, the dynamical aspects of the system will be present in the
functions Ha(q, p) (associated to Ha) and in the functions x~(q, p), ~(~, p)
which relate the position and velocity variables to the canonical coor-
dinates and momenta.

Hence, a model will consist in giving N function p) satisfying the
following conditions :

i) each Ha( q, p) is invariant under the Poincare group

Both conditions guarantee that eq. (2.4) and (2.5) will be fulfilled by
the generators Ha associated to Ha(q, p) by (2.7).

After that several problems still remain. First we have to derive the

relationship between the adapted canonical coordinates (q, p)2014which
have not any physical significance and the position and velocity
variables ~). As far as we do not know these relations our hamil-
tonian model will neither be able to predict anything nor to be compared
with other physical models.

l’Institut Henri Poincaré-Section A



5AN EXACTLY SOLVABLE MODEL IN PREDICTIVE RELATIVISTIC MECHANICS. I

Takin into account eq . ( 2 .1 ), the functions x 03B1 must satisfy :

This means that the evolution of xa depends only on the parameter 6a,
unlike the canonical coordinates q a which depend on the whole set of
parameters ... , 6N~. 

.

If we can solve eq. (2.11) we will know the relation p). As we shall
see later a good set of initial data will permit us to collect one among the
infinity of solutions of (2.11).

Secondly, according to (2.2) {H~ ought to be an inte-
gral of motion. It is extremely complicated to impose this condition.
However we can circumvent this difficulty by assuming that the field

associated trough Q to p) is not equal to Ha but only proportional.
That is to say, if we write :

the parameter 03C4a is no longer equal to the proper time 
Now, given a solution xa = p) (a = 1, ..., N) of eq. (2.10), we need

only to require the change of variables

to be invertible.
There is at last one problem left : what is the relation between (x, x)

and (x, 7r)? As x a and 03C0 a are parallel we only need the ratio between their
lengths in order to define precisely the change of variables. This can be
done by giving a fixed value to each integral of motion ..., HN .
Similarly to the case of free particles or of separable interaction [7~] ]
we shall take

The relation between the parameters 6Q and 03C4a can be easily obtained :

where C. I. means the set of initial conditions which determine the trajec-
tories. The change of parameter can be now obtained from (2.15)
by a quadrature.

3. A FAMILY OF MODELS

We shall choose the hamiltonians Ha with the following form :

where : Ta is a quadratic function of pb, V is a Poincare invariant function
and it is the same for all a.

Vol. XXXV, n° 1-1981.
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For the sake of simplicity we shall also require that both Ta and V are
well behaved under particle interchange. That is to say, if 6 E SN (the
symmetric group of N elements), then :

This condition implies that :

where 03B11, 03B21, 7i and 03B41 1 are arbitrary constants.
Instead of using the variables p~) it is more suitable to perform the

canonical transformation :

c ~ r, , ... , i .

The new variables P , y03BDAm z03BBB are translation invariant. Hence, V(q, p) must
be some function of the following scalar varia-bles:

where ZB are the projections of y A, Za perpendicular to Pu :

In terms of the new variables, eq. (3.2) yields :

where, in orden to simplify the notation, we have introduced :

and (x, ~3, y, ~ are arbitrary constants.
The functions Ha that we have chosen must satisfy the predictivity

equations (2.10). As the hamiltonians Ha are well behaved under particle
interchange it suffices to require : { = 0 A = 2, 3, ..., N. Using (3 . 6)
these conditions yield :

Annales de I Henri Poincaré-Section A



7AN EXACTLY SOLVABLE MODEL IN PREDICTIVE RELATIVISTIC MECHANICS. I

Taking into account that V depends on the variables (3 . 4) we obtain :

The simplest models are those with b = 0. Otherwise the differential

system (3. 7) becomes extremely complicated. For these simplified models
eq. (3 . 7) yields :

Hence, if we choose 5 = 0 and V(P2, PyA, AB, AB, AB) the pre-

dictivity condition (2.9) is automatically fulfilled.
Since V does not depen on the functions PyA are integrals of

motion. And, as p2 is also an integral of motion the products (PpJ are
conserved quantities, too.

Other integrals of motion are those associated to the generators of the
Lorentz group :

which can be expressed as :

with :

where : M = ( - P2) 1 ~2 and is the four-dimensional Levi-Civita tensor.

Analogously to the canonical transformation (3 . 3) we perform a change
of parameters :

It immediately follows from eq. (3.12&#x26;) that YÀ and zA do not depend
on ÀB and they are solely functions of ~,. Therefore, the transverse internal
motion of the system (i. e.: the evolution of the relative coordinates and

Vol. XXXV, n° 1-1981.
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momenta in the orthogonal hiperplane to is governed by the ordinary
second order differential system :

The potential V can depend on ~ 2~ but also on p2 and However,
as p2 and PyA are integrals of motion they can be regarded as parameters
in order to integrate the system (3.13). Therefore, eqs. (3.13) allows us to
obtain yA(~,; C. I.) and 2À(À; C. I.) independently of the evolution of the
other variables.

Finally, the evolution equations of (PX) and (PzA) yield :

~ A

If V does not depends on p2 and PyA, the system (3 .13) would be imme-
diately integrable, because p2 and PyA are conserved quantities. As we
shall see later, if we know (PX) and (PzA) in terms of ..1, ~,A and the initial
conditions then we can easily integrate the position equations (2 .11 ).
Therefore we shall consider hereafter only potentials of the form : zc).

In this case, by integration of eq. (3 .14) we obtain :

The hamiltonians to be considered hereafter are therefore:

4. INTEGRATION OF THE POSITION EQUATIONS

In order to complete the model proposed in the last section we must
integrate the position equation (2.11).
By analogy with the two-particle model of Droz-Vincent [5] and with

Annales de l’Institut Henri Poincaré-Section A



9AN EXACTLY SOLVABLE MODEL IN PREDICTIVE RELATIVISTIC MECHANICS. I

some singular lagrangians [2] ] [3] ] [4] we shall take the following initial
conditions :

The Frobenius theorem guarantees us that there exists a unique
solution of (2 .11 ) satisfying the initial conditions (4 .1 ). Given one point

there exists a unique integral cpa(~1, ..., ’~N),
..., TN) of the generalized Hamilton equations depending on N para-

meters :

Satisfying ~(0.. ~ 0) = ~ ..., 0) = p~.
By variation of all the parameters but one za, this integral submanifold

permits us to go from Q to Qa = p~) 

where : bza = 0 and are suitable variation of the parameters.
From eq. (2.11) p) is not altered by a change of 03C4a,(a’ ~ a). Hence

xa(Q) is equal to and using eq. (4.1) we have:

in terms of Q = (q~(Ü)’ 
Therefore, if we can express in terms of Q = (~S, p~) the inte-

gration of (2.11) with the initial conditions (4.1) will be concluded.
From eq. (3.3), (3.11) and (4.3) we obtain

where the subindex has been omitted from Ku, M, pv and because

they are integrals of motion.
Writing eq. (3.15) at Q and Qm substracting them and taking into account

eq. (4.1), we have :

where ~~,A, ~~, are expressed in terms of the (N - 1) parameters 
by (3.12).

Vol. XXXV, n° 1-1981.
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We can find the unknowns (PX) and U from eq. (4 . 5) and we obtain :

where the subindex Q is understood in the quantities on the right hand side.
Now the quantities (~ 2014 are still to be found. Let us write (3.13) as :

I. C.), ~; I. C.)} be the general integral of (4 . 8). Then,
it is quite clear that :

where 5x is given by eq. (4.7).
Substituting eq. (4.9) and (4.6) in eq. (4.4) the integration of the posi-

tion equations (2.11) is complete. We have to point out that only the
term (~ 2014 depends on the potential. Since Q is arbitrary, the result
is general, so the indices Q and (0) will be dropped from now on.
The change of variables ( q, p) --+ (x, x) can be finally written as :

were the subindex (0) is dropped from (4.9).
If this change of variables is to be invertible and acb and pl1 well behaved,

the followins conditions must be also satisfied :

In any case 
’ we can choose o ~, y and 0 V such that the conditions above

hold 0 in (TM4)N except, perhaps, in a set of measure ’ zero.

Annales de l’Institut Henri Poincare-Section A
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5. APPLICATIONS

a~ Harmonic oscillator.

In order to explain the interaction between quarks, different

models of relativistic harmonic oscillators have appeared in the litera-

ture [27] ] [22] ] [5] ] [6 ]. We shall now present a model of N-particle har-
monic oscillator, which for N = 2 includes the model of Droz-Vincent [5] ]
mentioned above as a particular case. We shall use the potential:

Then, the equations of motion for the relative transverse coordinates
and momenta can be written as :

Then, we obtain the following eq uation 

In other words, all the relative transverse coordinates oscillate with

the same frequency úJ = NN03B3K. On the other hand, eq. (3.15) shows
that the component parallel to pl1 of these coordinates depends linearly
on za.
To completely solve this model we must derive the change of

variables ( q, p) -~ (x, x). From (4 . 9) and (5 . 3) we obtain easily :

where ~~. is given by (4. 6). The introduction of the results (5 . 4) in eq. (4 .10)
a

and (4. .11 ) determines the above mentioned change of variables. For the

particular case N = 2 a = 1 - 1 - 1 our hamiltonians
yield: 

2 8 2

Vol. XXXV, n° 1-1981.
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which coincides with the harmonic oscillator hamiltonian presented by
1

Droz-Vincent [5 ], if we take : KDv = 2 K .
In this case the position and velocity variables can be expressed in a

particularly simple form :

where: y = y2 , z = z2 , r~a = (- 1)~+ y a = 1, 2.
Equations (5.6) coincide with Droz-Vincent’s expressions. We have

to point out that, when restricted to ~ _ ~ (TM4)2 ~ P - ( q 1 - q2) = 0},
not only x~( q, p) = but also : p) = p~.
On the other hand, if N &#x3E; 2 it is no longer possible to find suitable values

of (X, ~/~~y such that T - - a 1 2 pa 2 . Because of this it was necessary to gene-
ralize the expression of T~ in order to describe (in a solvable way) a model
involving three or more particles.

b~ Singular lagrangian systems.

Most of the singular lagrangian systems existing in the literature present
the constraints :

We are going to show that, when N = 3 and for suitable values of (x, {3, y
and V, our hamiltonian model is a predictive extension of the Takabayasi
lagrangian system [4 ]. In other words, we are going to prove that, when
restricted to the submanifold E*, the equations of motion derived from
our model yield the equations of motion of Takabayasi (*).
Each integral of our generalized Hamilton equations (4.2) is a N-sub-

manifold parametrized by Ti, ...,TN which intersects E* in a curve.

This is the world line of the system on L*. It is immediate to show that
the derivative a/~~, is tangent to E*, while (A = 2, ..., N) are not.
Therefore, ~? is a good parameter to describe the evolution of the sys-
tem on E*. Hereafter we shall write instead of :E* and we shall

consider a potential of the form V(zA)-we have to realize that zA = zA
on E*.

(*) The same can be done easily for the Kalb and Van Alstine Lagrangian [2]
which has the same structure as (5. 10] with N = 2.

Annales de l’Institut Henri Poincaré-Sectíon A
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The equations of motion (4.2) restricted to E* yield :

from which we obtain the following second order differential equations :

Let us now consider the Takabayasi Lagrangian [4 ] :

where (’) means the derivative referred to any Poincare invariant para-
meter T and ~’11 is the projection of perpendicular to the relative coor-
dinates z2 and z3.

In fact, the model presented in ref. [4] ] does not exhibit the cross
term (z2, z3). We have added it in order to maintain the invariance under
particle interchange. It is immediate to prove that there is a linear trans-
formation which changes the Takabayasi lagrangian into the form (5.10).
From the lagrangian (5.10) we derive the equations of motion :

which hold on the constrained submanifold = 0, PyA = 0, A = 2,3}.
Here pl1 and yA are the conjugated momenta of Xl1 and zA:

From eq. [3] ] [8] ] [P] ] [77] ] [72] we see easily that both models coincide
if we take :

Vol. XXXV, n° 1-1981.
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and

where  and C are numerical constants and it is clear that is an

integral of motion. We have to point out that eq. (5.14) is the expression
of U(zA) given by Takabayasi in order to obtain a free particle system
when V = 0.

c) Free particle system.

When V = 0 the equations of motion (4 . 2) read :

Hence, the coordinates q a depend linearly on 03C4b and the momenta p 03B1 are
integrals of motion.
We have to point out that the relation between p~ and qa is not the usual

simple one : qQ = p~ .
This is due to the fact that we have had to give up the usual free particle

form of T - - 1 2 a = 1, ..., N.

Nevertheless, in terms of the position and velocity variables we

can see immediately from eq. (2.10) (4.10) (4.11) and (5.15) that :

where oa and oa are the positions and velocities at T 1 = ... = TN = 0.

6. CONCLUSION AND OUTLOOK

In earlier models with interaction-at-a-distance [2] ] [3] ] [4] ] [5] two or
three particle systems have been treated separately. They neither can be
generalized to N-particle systems nor permit to deal with quark interaction
for mesons and baryons in a unified way. Here we have presented a family
of N-particle systems which includes the earlier quoted ones when N = 2
or N = 3 it is a predictive extension of some of them [2] ] [3] ] [4] and
coincides with the predictive Droz-Vincent’s model [5 ].
Many of those models are incomplete because the relation between

the position and velocity variables and the canonical ones is not specified.
Hence, the physical meaning of the coordinates involved remains unknown.

l’Institut l’Institut Poincaré-Section A
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We have carefully discussed this question and the above mentioned rela-
tion has been exactly derived for our family of systems.
Owing to the generality of the potential V, our model permits to describe

different kinds of interaction. We have applied it to the particular case of
a harmonic oscillator potential since it is specially interesting in order
to describe the quark interaction.

In a future work we shall quantize the model and we shall compare
the mass-spectrum and other properties with the phenomenological data
obtained from hadrons.
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