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Highlights 

 Hopf bifurcation appears between (8000, 8050), (9500, 9550) and (10100, 10200) 

respectively. 

 Neimark-Sacker bifurcation appears between (13500, 14000), (12250, 13000) and 

(11000, 11100) respectively. 

 Chaotic property appears between Re (16500, 17000) for all three cases. 

 Flow symmetry disappear as soon as flow periodicity appears. 

 Energy cascade and the frequency associated to each vortical structure are 

analyzed and discussed. 
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Abstract  

Wall-driven flow in square cavities has been studied extensively, yet it appears some main flow 

characteristics have not been fully investigated. Previous research on the classic lid-driven cavity (S1) flow 

has produced the critical Reynolds numbers separating the laminar steady and unsteady flows. Wall-driven 

cavities with two opposing walls moving at the same speed and the same (S2p) or opposite (S2a) directions 

have seldom been studied in the literature and no critical Reynolds numbers characterizing transitional flows 

have ever been investigated. After validating the LBM code for the three configurations studied, extensive 

numerical simulations have been undertaken to provide approximate ranges for the critical Hopf and 

Neimark-Sacker bifurcations for the classic and two two-sided cavity configurations. The threshold for 

transition to chaotic motion is also reported. The symmetries of the solutions are monitored across the various 

bifurcations for the two-sided wall driven cavities. The mirror-symmetry of the base solution for case S2p is 

lost at the Hopf bifurcation. The exact same scenario occurs with the pi-rotational symmetry of the base state 

for case S2a.  

 
Keywords: lattice Boltzmann method, wall driven cavities, transitional flow, symmetry property 

1. Introduction 

As a relatively new and promising numerical tool, the lattice Boltzmann method was originated and 

developed from the lattice gas automata (LGA) [1-3]. Based on the work performed by previous scholars [4-

6], the lattice Boltzmann method gradually improved to be a trustable numerical methodology. It turned out 

that the lattice Boltzmann method is numerically capable of solving many mathematical and physical 

problems, including all sorts of partial differential equations [7-10], applications such as acoustic wave 

phenomena [11-12], multi-phase flows [13-14], combustion [15-16], fluid mechanics [17-18], and many 

others.  

The present manuscript, focuses on the study of three wall-driven cavity configurations with various 

driving conditions: the classic lid-driven cavity flow (S1), and the cavity flow driven by the tangential motion 

of two opposing walls with equal speed in parallel (S2p) and anti-parallel directions (S2a). 

The present study starts with the in-house code validation, followed by the resolution study and ends with 

the new results and discussions on the transitional flow inside the cavity with the three different driving 

conditions (S1, S2a and S2p). In order to validate the numerical models presented, the results from references 

[19] and [20] are used to make the comparison with the simulated results of case S1. Ghia et al [19] presented 

a vorticity-stream-function based method to solve the 2D incompressible Navier-Stokes equations. Schreiber 

et al [20] provided a numerical method combining a linear solver, a Newtown-like non-linear solver and a 

continuation procedure, covering a range of Reynolds numbers comprised between 1 to 10000. When 

considering cases S2p and S2a, the computational results by Arun et al [21] have been used to compare with 

our present results. 
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Regarding some of the latest research on the square cavity, Hegele et al [22] presented a study about the 

flow inside a 3D square cavity by using the lattice Boltzmann method, where they implemented a special 

boundary condition to stabilize the turbulence model at Reynolds numbers up to 45 10 . Samantaray and Das 

[23] introduced a numerical study on incompressible turbulent flow inside a 3D lid-driven cavity with a series 

of span-to-length and depth-to-length aspect ratios. In their work, they employed the dynamic Smagorinsky 

model to simulate the turbulent flow at Reynolds number 11800.  

Despite the considerable amount of work done on the classic lid-driven cavity flow, little effort has been 

made in understanding the flow inside two-sided wall driven cavities. In fact, no previous systematic study of 

the flow in any of these cavities has been found in the literature. This is the reason why the authors decided to 

undertake a thorough systematic study of the flow properties in lid- and wall-driven cavities, including Hopf 

and Neimark-Sacker bifurcations, the onset of chaos, the symmetry properties and the energy cascade, which 

served to link the different vortical structures with the corresponding frequencies and energy associated. 

 

Nomenclature (all parameters are non-dimensional) 

a    Acceleration of molecules 

sc    Sound speed 

c    Lattice velocity 

D    Space dimension 

Dd    Particle diameter 

e    Unit velocities vector along discrete directions 

E    Macroscopic quantity, internal energy 

g    The vertical component of velocity vector difference 

( , , )f r t   Distribution function 

( , )eqf r    Equilibrium distribution function 

f    Discrete distribution functions on  directions 

F    Discrete distribution functions on  directions after collision 

( , )f r e t t t      Discrete –post collision distribution functions vector 

( , )f r t    Discrete –pre collision distribution functions vector 

eqf    Nine-ordered vector of discrete equilibrium distribution functions 

f    Discrete distribution functions vector after collision 

neqf     The non-equilibrium state of distribution functions  

L    Non-dimensional characteristic length 

Re   Reynolds number 
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R    Gas constant 

r    Spatial position vector 

t    Time 

T    Temperature 

u    Macroscopic quantity, velocity 

U    Initial velocity of the flow field  

U    Steady solution of the velocity time series on x direction 

V    Steady solution of the velocity time series on y direction 

lidU    Non-dimensional wall driven velocity 

xu    Horizontal component of velocity 

*

xu    Unified non-dimensional horizontal component of velocity 

yu    Vertical component of velocity  

*

yu    Unified non-dimensional vertical component of velocity 

u  Perturbation of velocity on x direction 

v  Perturbation of velocity on y direction 

    Discrete directions (from 0 to 8 in the present LBGK D2Q9 model) 

x    Grid spacing 

t    Time step 

    Kinematic viscosity 

    Macroscopic quantity, density 

0     Initial density 

    Single relaxation time term 

A    Mirror symmetry parameter 

B    Pi-rotational symmetry parameter 

f    Collision operator 

f

    Discrete collision operator on  directions 

d    Integral infinitesimal of angle  

    Weight Coefficients 
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    Velocity vector of molecules 

2. Mathematical background 

2.1. Original lattice Boltzmann equations 

Equation (1) presents the continuous Boltzmann equation. All parameters appearing in this equation, as 

well as in all the rest of the equations are non-dimensional. 

2

1 2 1 2 1

( , , ) ( , , ) ( , , )
(F F ) cosD

f r t f r t f r t
a f f d g d d

t r

  
  



  
      

  
   (1) 

The term ( , , )f r t represents the distribution function, r stands for the spatial position vector, t indicates the 

non-dimensional time,  defines the velocity vector, a denotes the particle acceleration, 
Dd  characterizes the 

particle diameter, 
1 2F ,F and 

1 2,f f  are the post- and pre- collision distribution functions of two fluid particles, 

g is the vertical component of 1 2   and d is the angle differential. The left hand side, represents the 

streaming term, while the right hand side, characterizes the collision term, which is an integral-differential 

term in essence. Following Bhatnagar et al [24], the right hand side of equation (1) can be simplified through 

the BGK approximation, as shown in equation (2), where the collision term has been replaced by a simple 

collision operator f . As a result, the Boltzmann-BGK equation reads 

( , , ) ( , , ) ( , , ) 1
( , ) ( , , )eq

f

f r t f r t f r t
a f r f r t

t r

  
  



  
           

  (2) 

The parameter represents the singular relaxation time and ( , )eqf r  is the equilibrium distribution function.  

The lattice Boltzmann equation is obtained through a space-time discretization process, that results in  

1
( , ) ( , ) ( , ) ( , , )eq

ff r e t t t f r t f r f r t

     

         

  (3) 

The index represents each of the possible directions of discrete velocities. ( , )f r e t t t    and ( , )f r t  

are the discrete post- and pre-collision distribution functions, respectively, and f

 is the discrete collision 

operator in direction . The Navier-Stokes equations can be recovered from the discrete lattice Boltzmann 

equation by an adequate choice of equilibrium distribution functions [17, 25, 26]. Three relevant macroscopic 

physical quantities, density  , velocity u  and internal energy E , bear a simple relation with the microscopic 

scale physics as represented by equilibrium distribution functions [27], given by  
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2
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   (4) 

where D denotes the number of space dimensions, R is the non-dimensional gas constant and T refers to the 

non-dimensional temperature.  

Qian et al [17] presented an LBGK model for the Navier-Stokes equations that turned out to be a reliable 

model for two-dimensional simulations. The model has since become quite popular for many LBM related 

applications. This model is employed in the present paper for all the numerical predictions, the equilibrium 

distribution functions for the 9 discrete velocities (9-bit model) are determined by 

2 2

2 4 2

( )
1      0,1,...,8

2 2

eq

s s s

e u e u u
f

c c c

 
   

  
     

 
  (5) 

where  are the weight coefficients, and
sc denotes the non-dimensional lattice sound speed. The discrete 

velocities of LBGK two-dimensional 9-bit model D2Q9, the lattice sound speed and the weight coefficients 

are given by 

2
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2 2
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 
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



   (6) 

where 1c x t     is the non-dimensional lattice velocity, and x and t  represent the lattice grid non-

dimensional spacing and the non-dimensional time step, respectively. 

2.2. Boundary conditions 

The non-equilibrium extrapolation scheme [28], is employed to prescribe the wall boundary conditions in 

the current study. Wall-driven cavity flow features a unique boundary condition type, corresponding to the 

non-slip walls. The basic idea behind this scheme is that the distribution function in each direction can be split 

in two separate additive parts: a non-equilibrium and an equilibrium term.  
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Fig. 1. Discrete velocities of lattice Boltzmann D2Q9 model for straight wall boundaries.  

As shown in Fig. 1, which represents a wall boundary condition, grid nodes A, B and C are fluid domain 

points, while grid nodes D, E and F are wall boundary points. The distribution function of each direction for 

the points E and B, is given by equations (7) and (8). 

( , ) ( , ) ( , )eq neqf E t f E t f E t       (7)  

( , ) ( , ) ( , )eq neqf B t f B t f B t       (8)  

The equilibrium part ( , )eqf E t is obtained from the macroscopic quantities at node E, while, the non-

equilibrium distribution functions at node E can be replaced by its counterpart at node B. 

( , ) ( , )neq neqf E t f B t     (9)  

Hence, the distribution functions for node E become  

( , ) ( , ) ( , ) ( , )eq eqf E t f E t f B t f B t         (10)  

2.3. Code validation 

All cases studied in this paper correspond to the 2D flow inside wall-driven cavities. As presented in figure 

2, several wall motion configurations are considered. Case S1 is the classic wall-driven cavity flow, where the 

upper lid moves horizontally in the positive x direction. Case S2p corresponds to a cavity with top and bottom 

walls moving in the same direction and at the same speed. Case S2a, instead, represents a cavity with top and 

bottom walls moving at equal speed but in opposite directions. For all cases, the non-dimensional wall-driving 

velocity is set 0.1lidU  . 
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Fig. 2. Wall boundary and initial conditions of each cavity.  

 

 

Fig. 3. Streamlines and vorticity lines of each case, the Reynolds number of cases S1, S2p and S2a is 1000. The resolution of each 

cavity is 256 256 . 

In order to validate the in-house code, all three wall-driven cavity cases, S1, S2p and S2a, have been 

analysed at Reynolds 1000. Figure 3 shows the streamlines and vorticity contours of all three cases. The 

baseline mesh used in the figure 3 has a resolution of 256 256 grid nodes in the vertical and horizontal 

directions. For case S1, a huge central clockwise vortex covers most of the domain, while two small anti-

clockwise vortices appear confined at the bottom corners. For case S2p, two mutually-symmetric counter-

rotating vortices take the bulk of the fluid domain. Two smaller, also symmetric, counter-rotating vortices 

nucleate at either side of the horizontal mid-plane on the right hand side static vertical wall. For the case S2a, 

a large pi-rotational-symmetric clockwise vortex dominates the flow, while two pi-rotational-conjugate-

symmetric clockwise vortices arise at the static vertical walls, close to the corners upstream from the moving 

walls, on the locations where the minimal pressure is to be found.  

Table 1 lists the positions of all vortex cores, that are characteristic of the lid-driven cavity flow (case S1) 

at Reynolds number 1000. Our numerical results for a resolution of 256 256 are compared against published 

data [19, 20]. Agreement is fairly good, with a maximum relative error of about 5.5%. 

Table 1. Comparison of vortex core locations of present results against published data [19 and 20], for case S1, at Re=1000, with a 

resolution of 256 256 . 

Position  This paper  Ref.[19]  Ref.[20] 

 Left secondary 

Vortex 

X 0.081148  0.0859  0.0857 

Y 0.075355  0.0781  0.0714 

 Right secondary 
Vortex 

X 0.864711  0.8594  0.8643 

Y 0.113206  0.1094  0.1071 
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 Primary  

 Vortex 

X 0.532912  0.5313  0.5286 

Y 0.566457  0.5625  0.5643 

Due to fact that, one of the aims of the present paper is investigating the onset of chaos, it is relevant to 

validate the code at higher Reynolds numbers. The case S1 at Reynolds number 5000, was chosen to perform 

this validation, figure 4 compares the results presented in references [19] and [29] with the ones obtained in 

the present research using a resolution of 512 512 . The agreement was very good. 

 

Fig. 4. Comparison of the velocity profile *

xu between the computed results from the present paper, case S1, and the data from 

references [19 and 29], Re =5000, resolution 512 512 . 

Table 2 lists the same vortex core positions given in table 1 but for different grid resolutions. The 

comparison between the results presented in table 2 and some of the previous researchers’ ones, can be done 

when comparing tables 1 and 2. Among these cases, all parameters are kept constant except the grid 

resolution. It is noticed that, the computational results are becoming more accurate as the grid resolution 

increases. It is also observed that the computational results are acceptable and accurate enough when the grid 

resolution is around or above 200 200 . According to the results presented in tables 1, 2 and figure 4, it can 

be stated that the lattice Boltzmann method is validated for case S1 at Reynolds numbers 1000 and 5000. 

Table 2. Grid independency test of top wall driven cavity, case S1, the Reynolds number is 1000.  

Resolution  (50,50)  (100,100)  (200,200)  (300,300) 

 Left secondary 
Vortex 

X 0.070775  0.07914  0.08146  0.081255 

Y 0.062431  0.07332  0.07518  0.075214 

 Right secondary 

Vortex 

X 0.862163  0.86334  0.86443  0.864734 

Y 0.11589  0.11407  0.113  0.113114 

 Primary  

 Vortex 

X 0.536735  0.53366  0.5327  0.532948 

Y 0.576075  0.5687  0.56665  0.5666489 

In order to further check the performance of the LBM approach used, the velocity profiles along the 

vertical central line, at 0.5x  , and the horizontal line, at 0.75y  , are presented in figure 5, for cases S2p 

and S2a. The comparison between the numerical predictions calculated in the present paper and the data by 

Arun et al [21] shows excellent agreement, which reinforces the applicability of the LBM model used for the 

other two cavity flow configurations explored at this Reynolds number. 
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Fig. 5. Comparison of the velocity profiles between the computed results from the present paper, cases S2p and S2a, and the data 

from reference [21], Re =1000, resolution 256 256 . 

2.4. Resolution study 

According to the related literature review study on wall-driven square cavities, it is found that Ghia et al 

[19] using the resolution 256 256 , studied the lid-driven cavity flow with Reynolds numbers up to 10000. 

Schreiber et al [20] employed the resolution 180 180  to investigate the lid-driven cavity flow at Reynolds 

numbers ranging from 1 to 10000. Arun et al [21] carried out their study on the two-sided lid-driven cavity at 

Reynolds number 5000 with a resolution of 258 258 . Bruneau and Jouron [30] employed the resolution 

256 256 in the study of the lid-driven cavity flow at Reynolds numbers up to 5000. Huser et al [31] analyzed 

the lid-driven cavity flow, for Reynolds numbers up to 30000, with a resolution of160 160 . Fortin et al [32] 

researched the lid-driven cavity flow with a resolution of 60 60 for a Reynolds number 8000. Auteri et al 

[33] studied the bifurcation inside the lid-driven cavity with a resolution of160 160 , the largest Reynolds 

number was 10000. Peng et al [34] studied the transition in the lid-driven cavity with a resolution of 

120 120 and they did a grid independence test at Reynolds number 5000, reporting a relative error of 
46.8 10 . Sahin et al [35] did a high Reynolds number study on the lid-driven cavity flow, he employed a 

resolution of 256 256 at Reynolds numbers up to 10000. Brueau and Saad [36], introduced a series of grid 

independency tests, the largest Reynolds number tested was 10000 based on a resolution of1024 1024 . For a 

periodic solution at Re 8200, they reported identical results with both 512 512 and1024 1024 resolutions but 

pushed the resolution to 2048 2048 , in order to provide highly accurate results at Reynolds number 5000.  

Figure 6 shows several computational results, for cases S1, S2p and S2a (see figure 2), when using 

different grid resolutions. It is observed that, for the Reynolds number evaluated, Re=1000, the grid resolution 

between 200 200 and 300 300 produces very accurate results. Notice that, in each figure, the zoomed view 

of the curve main discrepancy area is presented. 
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Fig. 6. Grid independence study of two sided wall-driven cavities (cases S2p and S2a) and lid-driven cavity (case S1) at Re =1000. 

Each figure shows the zoomed zone where the small disagreement is spotted. 

Table 3 provides a further quantification of the accuracy by measuring the relative error of 
xu at the cavity 

centre as resolution is increased for case S1 at Re=1000. The solution with the highest resolution 512 512 , 

which corresponds to a steady state, is taken as the base line for error estimation. The relative error is seen to 

drop considerably for resolutions beyond 200 200 . Literature results with resolutions of 512 512 are 

reported as highly accurate for computing the laminar steady solution that arises for the lid-driven cavity flow 

at Reynolds 1000 [19-21]. Here we have shown that a resolution of 300 300  is sufficient to accurately 

resolve case S1 at Reynolds number 1000 when using the lattice Boltzmann method.  

Table 3. Relative error of different grid spacing over the minimum grid spacing ( x =0.00195) at Reynolds number 1000, case S1.  

Resolution 50,50 100,100 200,200 300,300 400,400 512,512 

Relative error 0.3912 0.224 0.007687 0.003638 0.001324 0.0 

Table 4. Frequencies of time series of
xu with different resolutions for case S1 at Reynolds number 8800.  

Resolution 100,100 200,200 300,300 512,512 800,800 1024,1024 

Frequency chaotic chaotic steady 0.4295 0.4321 0.4374 

Table 5. Frequencies of time series of
xu with different resolutions for case S2p at Reynolds number 9900.  

Resolution 100,100 200,200 300,300 512,512 800,800 1024,1024 

Frequency steady steady steady 1.415658 1.423 1.44095 

Table 6. Frequencies of time series of
xu with different resolutions for case S2a at Reynolds number 11000.  

Resolution 100,100 200,200 300,300 512,512 800,800 1024,1024 

Frequency steady steady steady 1.1775 1.1943 1.2083 

In order to extend the grid independence study for transitional flows, the results obtained when using 

various resolutions, were evaluated for the cases S1, S2p and S2a at Reynolds number 8800, 9900 and 11000 

respectively. Tables 4, 5 and 6 show the frequencies of periodic solutions based on different resolutions, 

ranging from 100 100 to 1024 1024 . The results were obtained from the probe 
1P  located at 

position  2,  2x L y L  for cases S1 and S2p and the probe 
2P  located at position  2,  4x L y L  for 

case S2a, see figure 2 (a). It is observed that as the Reynolds number increases, the mesh needs to be refined 

to obtain trustable results. Therefore, for the rest of the paper, a resolution of 1024 1024 is employed for all 

cases. For all the cases, the mesh used is a standard Cartesian grid. 

3. Results and discussion 

3.1. Transitional flow study for case S1 

According to different authors, the critical Reynolds number of the transitional flow from laminar steady to 

laminar unsteady in case S1 are expected to have the following values, 7500 [30, 34], 6000-8000 [29, 37, 38], 

8000 [31, 32, 33, 36], 8000-8300 [11] and 8000-8051 [33, 35, 39-41]. Koseff and Street [42, 43] 

experimentally investigated the lid-driven cavity flow and determined the critical Reynolds number for the 

Hopf bifurcation was between 6000 and 8000. This conclusion was also obtained by Prasad and Koseff [37] 

in their experiments. Bruneau and Jouron [30], numerically investigated the Hopf bifurcation via employing 
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2D finite differences, obtaining a value of 7500. Huser et al [31] analyzed the lid-driven cavity, for Reynolds 

numbers up to 30000 with resolution160 160 . Peng et al [34] found that the critical Reynolds number was 

7500 via analyzing the velocity history, phase-space trajectories of velocity yu versus velocity 
xu , and Fourier 

spectra of velocity 
xu . In the work performed by Bruneau and Saad [36], using as well 2D finite differences, 

the critical Reynolds number was estimated at 8000 by analyzing the evolution of Lyapunov exponents as 

Reynolds number was increased towards criticality. Via linearizing the N-S equations and obtaining a pair of 

eigenvalues from the Jacobian matrix, which crosses the imaginary axis, Fortin et al [32] obtained the critical 

Reynolds number 8000. Auteri et al [33] figured out the critical Reynolds number 8000 via using a second-

order spectral projection method. In two further articles undertaken by Zhuo et al [38] and Lin et al [29], by 

using lattice Boltzmann method, they presented the ranges of the Hopf bifurcation, which were appearing 

around  8200,8250 and  8325,8350 respectively. In the research performed by Murdock et al [44], they 

reported the Hopf bifurcation happens in the Reynolds number interval 7988.2 19 . Sahin and Owens [35] 

investigated the linear stability of the steady state using a novel implicit finite volume method, in combination 

with Arnoldi iteration to produce a critical Reynolds of 8031.93. An extended review of the literature on the 

lid-driven cavity flow Hopf bifurcation provides critical Reynolds numbers of 8018.2 0.6  [33], 8026.7 [39], 

8025.9 [40] or 8051 [41].  

  

 (a) (b)  

 

(c) 
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Fig. 7. (a) Perturbation of velocity history ( u and v ) of the monitoring point at Re=8000, (b) Streamlines topology at Re=8000. (c) 

Periodic orbit at Re=8050.  

Figure 7 (b) shows a collection of streamlines of the steady state at Re=8000 to illustrate its flow topology. 

At this value of the Reynolds number and below, time evolution drives the flow towards this well-known 

steady state, consisting of a large clockwise vortex that occupies the centre of the cavity that is flanked by 

three anti-clockwise vortices on the left wall close to the top corner and at the two bottom corners. The latter 

engulf a cascade of ever smaller vortices of alternate sense of rotation as the corners are approached. We have 

monitored the final approach towards the steady state with a probe
1P  located at the centre of the cavity.  

Figure 7 (a) shows decay of the two components of the perturbation velocity at this point. Following some 

initial transients, the signal asymptotically approaches the constant value that characterizes the steady state. 

Direct time evolution at a slightly higher Reynolds number Re=8050 converges instead onto a periodic state 

with the frequency 0.44032 (see figure 7 (c)). The signal is no longer constant but oscillates in a periodic 

fashion as shown in the inset of figure 7 (c). This observation is indicative of the occurrence of a Hopf 

bifurcation for Reynolds number in between 8000 and 8050, as already well established in the literature [33, 

39-41]. Beyond the Hopf point, infinitesimal perturbations are expected to grow exponentially thus rendering 

the steady state linearly unstable. 

The critical Reynolds numbers separating periodic from quasi-periodic and quasi-periodic from chaotic 

flows have been studied in figure 8, by monitoring at the same point
1P  the time series of horizontal velocity 

xu , phase-space trajectories of yu  vs 
xu , and the Fourier spectrum of the velocity 

xu . A systematic study 

across a wide range of Reynolds numbers covering the interval from 8000 to 20000 reveals that a second 

critical value arises for Reynolds numbers between 13500 and 14000. At Re=13500 the flow is still periodic 

while at Re=14000 the flow has become quasi-periodic. Chaotic dynamics appear at a Reynolds number 

between 16500 and 17000. 

Figure 8 illustrates the different time-dynamics of the flow at the three time-dependent stages. Since the 

collection of critical values has been determined only approximately, the Reynolds numbers 8800, 14000 and 

20000 have been chosen to represent the three different types of solutions, namely laminar unsteady periodic, 

laminar unsteady quasi-periodic and chaotic flows. 

Figure 8 (a) shows a periodic solution at Re=8800, well beyond the Hopf bifurcation. A phase map 

projection on the (
xu , yu ) plane, shown in an inset, where 

xu  and yu  are the horizontal and vertical 

velocities at the probe in the center of the cavity (
1P ), clearly illustrates the periodic nature of the solution as 

the trajectory exactly closes on itself. The main panel depicts the spectrum of the xu  signal in the upper inset. 

A sharp peak at 0.4374f   accompanied by a series of harmonics, indicates that phase map trajectories wind 

with a period 1 2.2862T f  , which can be identified with the time period of the periodic solution. 

Further increase in Reynolds number destabilizes the periodic solution into quasi-periodicity, as illustrated 

by the converged solution at Re=14000 shown in Figure 8 (b). The phase map projection clearly fails to close 

after a period and the loops keep drifting while winding on and densely filling an invariant two-torus. The 

spectrum retains the fundamental peak and harmonics of the periodic solution 1 0.66048f  , but incorporates 

a second incommensurate frequency peak at 2 0.2944f  and the secondary peaks at all linear combinations 

of
1f and

2f . 

When the Reynolds number is increased further, the quasi-periodic solution is replaced by chaotic motion, 

as shown in Figure 8 (c) for Re=20000. The phase map projection winds haphazardly in the region of phase 

space where the quasi-periodic solution used to be, but a certain degree of deterministic chaos can be 

observed. As a matter of fact, while the spectrum still shows some indication of the original 1f  frequency, the 

fundamental peaks are now surrounded by broadband noise associated to chaotic dynamics. 
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 (a) Re=8800 (b) Re=14000 

 

 (c) Re=20000 

Fig. 8. Time series of velocity
xu versus advective time, phase trajectory of yu versus 

xu and Fourier transform of time series
xu for 

case S1 at different Reynolds numbers. (a) Describes the periodic orbit at Re=8800. (b) Introduces the quasi-periodic solution at 
Re=14000. (c) Presents the chaotic solution at Re=20000.  

To understand the energy associated to the different vortical structures, at a turbulent Reynolds number 

20000, case S1, the spectral decomposition from the temporal velocity signal
xu obtained from the probe

1P , is 

presented in figure 9 (a). Notice that in the inertial subrange, the energy decays with a slope very close to -5/3, 

which proves that LBM with a grid resolution of1024 1024 , is capable of properly capturing the energy 

cascade. Nevertheless, the mesh is not dense enough to evaluate the dissipation range defined by the 

Kolmogorov scales. Figures 9 (b) and (c) present the streamlines topology and the vorticity contours for the 

same case and Reynolds number. When observing the spectrum, figure 9 (a), it can be seen two relevant 

frequency peaks, labelled as
1f and

2f . Frequency
1f  is associated to the main vortex that occupies the centre 

of the cavity (see figure 9 (b)). The neat frequency peak at 
2f  is instead related to the modulational dynamics 

of the smaller vortex located at the upper left corner. The collection of smaller peaks that appear at higher 

frequencies characterize the dynamics of the yet smaller vortices located at both bottom corners. The largest 

vortices have been shown to contain a higher level of energy, while the energy associated to smaller vortices 

decreases as their size decreases. 
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 (a) (b) (c) 

Fig. 9. (a) Spectral decomposition of time series
xu . (b) Introduces the streamlines at Re=20000. (c) Presents the vorticity contours at 

Re=20000.  

Three videos, characterizing three different flow status, periodic, quasi-periodic and chaotic at Reynolds 

numbers 8800, 14000 and 20000 respectively, are presented as supplementary materials in the Appendix. 

3.2. Transitional flow study for case S2p 

For the case S2p, the same procedure as for the case S2a has been used. The main difference between cases 

S1 and S2p, resides in that the information presented for case S2p, figures 10 and 11, were obtained using a 

probe 
3P  located at  2, 3 4x L y L   (see figure 2 (a)). The Hopf bifurcation appears at a Reynolds 

number between 9500 and 9600 for the present configuration. The base steady state for the S2p cavity 

preserves the mirror symmetry (mirror reflection with respect to a horizontal line through the center of the 

cavity) as is clear from figure 10 (b), where the flow topology is again illustrated by streamlines. At Re=9500, 

two large counter-rotating vortices, slightly squeezed in the vertical direction, occupy the top and bottom 

hemispheres of the cavity. Each of the vortices has similar features to the core vortex of the S1 case, except 

that they have been confined in shallower half cavities. Two smaller vortices, also mutually-symmetric appear 

on the stationary wall close to the corners from which the driving walls are moving away. The bottom 

stationary wall boundary of the S1 cavity has now been replaced by a symmetry plane that acts as a slip wall. 

As a result, the upstream bottom vortex of case S1 disappears while the downstream bottom corner persists, 

albeit largely modified, with no cascading of ever smaller vortices as happened for the S1 case. 

Figure 10 (a) displays the decay of a flow field perturbation onto the steady state at Reynolds number 

9500. The time evolution of the horizontal and vertical perturbation velocity are represented in the top left 

panel. Notice that the signal asymptotically approaches a constant value. At Re=9600, the flow has become 

periodic instead with a frequency 1.4404, as shown in figure 10 (c). The instability has been pushed to higher 

Reynolds numbers as compared to the S1 cavity as a result of the lower mean shear induced by two parallely 

moving walls as compared to a single moving wall with the opposing wall stationary. Although not shown in 

figure 10, the solution was found to be periodic at Reynolds number 9550 with frequency was 1.435. 

Following the same methodology as for case S1, taking a large range of Reynolds numbers, numerical 

simulation reveals that the flow changes from periodic into quasi-periodic at a Reynolds number between 

12250 and 13000. The critical value marking the appearance of chaotic flow is found to be between Reynolds 

numbers 16500 and 17000.  
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 (a) (b) 

 

(c) 

Fig. 10. (a) Perturbation of velocity history ( u and v ) of the monitoring point at Re=9500. (b) Streamlines topology at Re=9500. (c) 

Periodic orbit at Re=9600. 

  

 (a) Re=10000 (b) Re=14000 
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 (c) Re=18000 

Fig. 11. Time series of velocity
xu versus advective time, phase trajectory of yu versus 

xu and Fourier transform of time series
xu for 

case S2p at different Reynolds numbers. (a) Describes the periodic orbit at Re=10000. (b) Introduces the quasi-periodic solution at 

Re=14000. (c) Presents the chaotic solution at Re=18000. 

Figure 11 presents the time series of velocity 
xu , phase-space trajectories of the velocity

xu versus yu , and 

the Fourier transform for three Reynolds numbers, 10000, 14000 and 18000, at which the flow is unsteady 

periodic, quasi-periodic and chaotic, respectively. At Re=10000, the phase map projection of figure 11 (a) 

shows that the solution is still periodic. As a matter of fact, the time signal seems to preserve a space-time 

symmetry, where evolving half a period is equivalent to a reflection with respect to the 2y L  plane. The 

fundamental peak of the spectrum reveals that the frequency of the solution is 1.4387f  , which is of the 

same order of magnitude as that for the S1 cavity but somewhat lower as a result of the smaller characteristic 

size of the vortices that are destabilized.  

Figure 11 (b) shows how the space-time-symmetric stable periodic orbit has been replaced by a quasi-

periodic solution at Re=14000. Quasi-periodicity enforces a final disruption of the symmetry which is no 

longer present except from a statistical point of view if sufficiently long time series are considered. The 

spectrum remains discrete but peaks arise at all linear combinations of the main 
1 1.4541f   and secondary 

2 1.022f   frequency peaks. At Re=18000 quasi-periodicity has already degenerated into plain chaotic 

dynamics. Trajectories evolve chaotically in phase space, yet in a structured fashion, and the spectrum has 

become continuous and broadband.  

Figures 12 (a), (b) and (c) present the Fourier transform, the streamlines topology and the vorticity 

contours for case S2p at Reynolds number 18000 for the chaotic solution. Six relevant frequency peaks, 

defined as
1f  to

6f , and obtained from the probe 
3P  are shown in figure 12 (a). The energy associated to the 

main vortex pair of figure 12 (b), has a frequency peak
1f  associated to it. The broad band covered by the 

peak is due to time modulation of the main vortex pair. This modulation is more clearly seen in the video 

presented in Appendix. The second peak, characterized by frequency
2f , is the second harmonic of the main 

frequency. The very neat peaks of frequency
3f and

4f , are associated to the secondary vortices appearing at 

the central horizontal line and attached to the right hand side wall. These two vortices are very similar in 

shape, so that their frequencies are also very close. The peak at frequency
5f corresponds to the two vortices 

appearing at left wall upper and lower corners. The tiny eddies appearing around the secondary and tertiary 
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vortices have associated frequencies around
6f . Notice that several peaks can be spotted around this particular 

frequency, characterizing the different dimensions of these tiny eddies. 

   
 (a) (b) (c) 

Fig. 12. (a) Spectral decomposition of time series
xu . (b) Introduces the streamlines at Re=18000. (c) Presents the vorticity contours 

at Re=18000. 

Three videos, characterizing three different flow status, periodic, quasi-periodic and chaotic, at Reynolds 

numbers 10000, 14000 and 18000 respectively, are presented as supplementary material in Appendix. 

3.3. Transitional flow study for case S2a 

In order to investigate at which Reynolds number flow unsteadiness occurs, the probe 
3P  located 

at  2 , 3 4x L y L   (see figure 2 (a)), was employed. As already introduced in figures 7 (b) and 10 (b), 

figure 13 (b) characterizes for the present case, the streamlines topology at which the flow inside the cavity is 

steady.  

Although the mean shear across a vertical line is double that of the regular S1 cavity, the actual physics and 

location of the instability are such that the base steady state remains stable for Reynolds numbers all the way 

up to 10100, as shown in figure 13 (a). The flow topology (see figure 13 (b)), retains the core vortex and the 

left top secondary vortex of case S1, this latter now replicated at the bottom right corner. The steady state at 

Re=10100 clearly preserves the pi-rotation symmetry of the problem. At Re=10300, time series no longer 

converge unto a steady value but keep oscillating with frequency 1.2186, as illustrated in figure 13 (c). 

Although not shown, the flow is already periodic at Re=10200 with frequency 1.2218f  . 

  

 (a) (b)  
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(c) 

Fig. 13. (a) Perturbation of velocity history ( u and v ) of the monitoring point at Re=10100. (b) Streamlines topology at Re=10100. 

(c) Periodic orbit at Re=10300. 

Systematic simulation for Reynolds numbers beyond 10300 shows the occurrence of a Neimark-Sacker 

bifurcation. Quasi-periodic motion appears somewhere in between Re=11000 and Re=11100. The two 

frequencies associated to the quasi-periodic solution at Re=11100 are
1 1.2015f  and

2 0.13653f  . Chaotic 

dynamics appear for Reynolds numbers between 17000 and 17500.  

   
 (a) Re=11000 (b) Re=14000 
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(c) Re=18000 

Fig. 14. Time series of velocity
xu versus advective time, phase trajectory of 

yu versus 
xu and Fourier transform of time series

xu for 

case S2a at different Reynolds numbers. (a) Describes the periodic orbit at Re=11000. (b) Introduces the quasi-periodic solution at 

Re=14000. (c) Presents the chaotic solution at Re=18000. 

The three different flow categories for case S2a, periodic, quasi-periodic and chaotic, are represented in 

figure 14, the following respective Reynolds numbers, 11000, 14000 and 18000 were chosen to characterize 

each category. 

At Re=11000, the solution is periodic. The phase map and spectrum, see figure 14 (a), demonstrates the 

periodicity of the solution and allow to estimate its frequency as 1.2083f  . This frequency is roughly double 

that of the S1 cavity 0.6702f   at the same Reynolds number, such that it might indicate a different 

instability mechanism. At Re=14000, trajectories have become quasi-periodic as illustrated by phase map 

projections and spectrum of the velocity signal based on the readings of the probe
3P . A new modulational 

frequency 
2 0.135177f   has appeared on top of the oscillatory frequency 

1 1.2902f  inherited from the 

Hopf bifurcation.  

Somewhere in between Re=16500 and 17000, the flow becomes chaotic. The phase map trajectory and the 

Fourier transform of the horizontal velocity signal at 
3P  shown in figure 14 (c) clearly shows that the solution 

is highly chaotic at Reynolds number 18000. 

Figures 15 (a), (b) and (c) show the spectrum, streamlines topology and vorticity contours, respectively, for 

case S2a at Reynolds number 18000. From the spectrum, three relevant frequency peaks, labelled as
1f , 

2f and
3f can be observed. Frequency

1f , characterizes the highest energy level associated to the main central 

vortex in figure 15 (b). The clear peak at frequency
2f  is associated to the secondary vortices appearing at the 

upper-left and lower-right corners. Around this particular peak, several similar peaks also arise. We speculate 

that these peaks have the same origin at the two vortices at the upper-left and lower-right corners. As 

demonstrated by the video attached in Appendix, the secondary vortices are not temporally stable, which 

would account for the generation of time-dynamics at many different frequencies. The frequency
3f  is 

connected to the tertiary vortices appearing as well on the upper-left and lower-right corners. 

   

 (a) (b) (c) 

Fig. 15. (a) Spectral decomposition of time series
xu . (b) Introduces the streamlines at Re=18000. (c) Presents the vorticity contours 

at Re=18000. 

Three videos, characterizing three different flow status, periodic, quasi-periodic and chaotic at Reynolds 

numbers 11000, 14000 and 18000 respectively, are presented as supplementary materials in Appendix. 
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3.4. Symmetry properties for two sided wall-driven cavities (cases S2p and S2a) 

In the present subsection, and considering the driven conditions employed for cases S2p and S2a, the 

symmetry properties along with their critical Reynolds numbers will be investigated. In order to do so, for 

these two cases, two probes 
2P and 

3P were respectively located at positions  2, 4x L y L   

and  2, 3 4x L y L  . The time history of the velocity components 
xu and yu were recorded in each of these 

two probes. The norm of the difference between these velocities is chosen as the parameter to evaluate flow 

symmetry. Regarding the symmetry, for case S2p, the symmetry parameter employed to describe the mirror 

symmetry, is defined in equation (11), while for case S2a, the symmetry parameter defined in equation (12) is 

used to evaluate the pi-rotational symmetry.  

/2, /4 /2,3 /4 /2, /4 /2,3 /42 2( ) ( )L L L L L L L L

A x x y yu u u u        (11)  

/2, /4 /2,3 /4 /2, /4 /2,3 /42 2( ) ( )L L L L L L L L

B x x y yu u u u        (12)  

This symmetry parameter is defined as a combination of the horizontal and vertical velocities measured on 

both probes. Notice that the difference between equations (11) and (12) resides on the sign associated to the 

velocity component
xu , measured in one of the probes. This modification is required since the 

xu velocities on 

both probes have different directions in case S2a, they have the same direction for case S2p. It is found that 

the symmetry properties disappear at the following Reynolds numbers interval, (9500, 9550) and (10100, 

10200) respectively for cases S2p and S2a. Figure 16 highlights this point.  

  

(a) Case S2p Re=9500 and 9600 (b) Case S2a Re=10100 and 10300 

Fig. 16. Symmetric parameter versus iteration steps at different Reynolds for cases S2p and S2a. 

Figure 16 shows the time evolution of the symmetry parameter for cases S2p and S2a at Reynolds numbers 

for which the symmetry has already been broken. The main panels (a) and (b) represent the symmetry 

parameter versus advective time. The insets zoom into the permanent regime. The Reynolds numbers shown 

correspond to the first symmetry-broken solutions, which happen to coincide with the first periodic solutions 

following the occurrence of the Hopf bifurcations. It is therefore highly probable that both Hopf points are 

symmetry-breaking bifurcations and that the onset of time-dynamics and the disruption of the symmetry occur 

all at once for both cases S2p and S2a. The frequency of the symmetry parameter is twice of the frequency 
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associated to the time series of 
xu for both cases. This outcome is to be expected as the space symmetry 

disruption is in fact traded for a space-time symmetry whereby the evolution of the flow by half a period from 

any starting snapshot results in its exact symmetry conjugate. Although not presented in figure 16, the 

smallest Reynolds numbers at which symmetry no longer exist are found to be 9550 and 10200 for the cases 

S2p and S2a, respectively. The values of the symmetry parameters calculated are very small, 
A is having a 

value around 101.5 10  and the value of 
B is around 72.25 10 , indicating the onset of the asymmetry is 

around these Reynolds numbers. 

Figure 17 shows the symmetric and symmetry-broken flow topologies for cases S2p and S2a. The 

symmetry-breaking is highlighted with a box containing the flow region in which the asymmetry is most 

clearly visible. For both cases, this happens in the vicinity of small scale eddy boundaries. 

To better understand why the mirror symmetry disappears when the flow becomes periodic for case S2p, 

we have compared the symmetry-broken solution with the steady state at a slightly lower Reynolds number 

for which the solution is still symmetric. Close observation of the two small vortices located on the right hand 

side of the figure, right inside the box, shows that the upper one turns anti-clockwise, while the lower one 

turns clockwise. As a result, the flow on the central horizontal line separating the vortex pair is particularly 

unstable. Across this boundary, momentum interchange between particles is likely to occur. The turning speed 

associated to these small vortices is over five times bigger than the one associated to the main vortex pair. The 

line separating these small counter-rotating vortices is the location where the symmetry initially disappears. 

An analogous analysis of figures 17 (c) and (d), which characterize the pi-rotational symmetric and 

asymmetric flow structure at Reynolds numbers 9000 and 11500, respectively, shows that the fluid along the 

curves separating the primary vortex and the secondary vortices located at opposite corners always flows in 

the same direction. The same occurs on the separation curves between the secondary vortices and tertiary 

vortices. A very thin elongated vortex, only visible in figure 17 (d) when zoomed in, is observed between the 

driving walls and the secondary vortices. These small elongated vortices prevent the fluid from flowing 

against the neighbouring moving lids. The area around these thin elongated vortices is particularly unstable, 

as the turning speed associated to these vortices is particularly high, such that here is where the pi-rotational 

symmetry initially disappears. 

  

(a) Case S2p Re=9000 (b) Case S2p Re=9900 
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 (c) Case S2a Re=9000 (d) Case S2a Re=11500 

Fig. 17. Rotational symmetric and asymmetric structures of streamlines for cases S2p and S2a at different Reynolds numbers. 

4. Conclusions  

 For case S1, a Hopf bifurcation occurs at Reynolds number between 8000 and 8050, as already noted in 

the literature. By systematically analyzing a set of different Reynolds numbers, we determine that a 

Neimark-Sacker bifurcation occurs between Reynolds number 13500 and 14000. 

 For cases S2p and S2a, the range of Reynolds numbers where the Hopf bifurcations occur are between 

9500 and 9550, and between 10100 and 10200, respectively). The flow evolves from periodic to quasi-

periodic at Neimark-Sacker bifurcations occurring in the Reynolds intervals 12250 to 13000 and 11000 to 

11100, for the cases S2p and S2a, respectively. 

 Regarding the onset of chaos, case S1 produces a critical Reynolds separating it from quasi-periodic 

solutions between 16500 and 17000. The flow becomes chaotic between Reynolds number 16500 and 

17000, for cases S2p and S2a. 

 Symmetric properties have also been investigated for cases S2p and S2a. For case S2p, the mirror 

symmetry about the horizontal half plane disappears at the Reynolds number at which unsteadiness starts. 

For case S2a, a similar phenomenon is observed. The Reynolds number interval at which pi-rotational 

symmetry disappears, coincides also with the Hopf bifurcation. 
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Appendix  

A total of 9 videos are provided in this paper. Three videos characterize case S1 at Reynolds numbers 8800, 

14000 and 20000, representing three stages (periodic, quasi-periodic and chaotic) of the flow. Three videos 

introduce the three different flow status (periodic, quasi-periodic and chaotic) for case S2p at Reynolds 
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numbers 10000, 14000 and 18000. The rest of the videos show transitional change among periodic, quasi-

periodic and chaotic at Reynolds numbers 11000, 14000 and 18000 for case S2a. 
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