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Spiral Vortices Between Concentric Cylinders
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Dept. F́ısica Aplicada. Universitat Politécnica de Catalunya.

Abstract. Spiral vortices appearing in Couette-Taylor flows are studied by means of numerical
simulation. Transition curves from Couette to spiral vortices for different radius ratios and
wavenumbers have been calculated in order to test our technique. Critical Reynolds numbers,
angular velocities and slopes of the spirals at the onset of the instability agree with previous
results [1]. Non-linear solutions obtained by a pseudospectral collocation method are studied,
and they show a weak net axial flow. In order to counteract this effect, which is absent in the
usual experimental set-up, an axial pressure gradient has been included. This procedure has
proved to be sufficient to make the axial flow negligible. The onset of a quasiperiodic flow for
larger Reynolds numbers, corresponding to a secondary bifurcation is also presented.
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1. Introduction

Since the experimental work of Andereck et al. [2], counter-rotation has been
known to produce a different primary instability; instead of Taylor vortex flow,
Couette flow gives rise to spiral vortices, which are traveling waves in both the
axial and azimuthal directions. The spiral vortex flow thus breaks both the con-
tinuous azimuthal and axial symmetries and is time periodic. In fact, it is a Hopf
bifurcation of multiplicity two. Taylor-vortex flow is stable for a wide range of pa-
rameters. In contrast, spiral flow is stable only for a narrow interval, bifurcating
towards interpenetrating laminar spirals which develop turbulent spots and spiral
turbulence. In the present paper we report some results obtained by using a 2D
numerical simulation in the region of parameters where spiral vortices appear.

2. Equations

The parameters that describe axially periodic Couette-Taylor systems are the ra-
dius ratio η = Ri/Ro Ri and Ro being the inner and outer radius of the cylinders,
and their Reynolds numbers Rei and Reo. In order to eliminate the pressure and
the incompressibility condition from Navier-Stokes equations we write the veloc-
ity field in terms of two scalar potentials as v = ∇× (ψêz) +∇×∇× (φêz). In
[3] there is a detailed description of the set of evolution equations and boundary
conditions for ψ and φ equivalent to Navier-Stokes equations. Here we suppose
periodicity in the axial direction, so the domain under consideration in cylindrical
coordinates is (r, θc, z) ∈ [Ri/d,Ro/d]×[0, 2π]×[0, 2πb], where b is the wavelength
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in z direction and d = Ri − Ro. Double periodicity thus allows us to reduce the
order of some of the equations and describe the velocity field as

v = f êθ + gêz +∇× (hêθ + ψêz) +∇×∇× (φêz) (1)

where f(r, z), g(r, z), h(r, θc) are certain averages of the above-mentioned scalar
potentials and ψ, φ are the remaining part of ψ, φ.
To force spiral geometry we introduce the curvilinear coordinates x = 2r − δ,

θh = θc, ρ = z/b−θc, (x, θh, ρ) ∈ [−1, 1]×[0, 2π]×[0, 2π], where δ = (1+η)/(1−η).
Functions depending only on x and ρ are invariant under combined rotation
and axial shift movements, so they have helical symmetry. We therefore look for
solutions independent of the θh coordinate in order to obtain spiral structures,
so ∂θh

= 0, ∂θc
= −∂ρ, ∂z = ∂ρ/b. Thus the dependency of the potentials is

f = f(r), g = g(r), h = 0, ψ = ψ(r, ρ), φ = φ(r, ρ), and the equations take the
form

(∂t −DD+)f = −Pρêθ · ω × v (2)

(∂t −D+D)g = −Pρêz · ω × v (3)

(∂t −∆)∆hψ = (1− Pρ)êz · ∇ × ω × v (4)

(∂t −∆)∆∆hφ = −(1− Pρ)êz∇×∇× ω × v (5)

with ω = ∇ × v , D = ∂r , D+ = D + 1/r , ∆h = D+D + 1/r
2∂2ρρ , ∆ =

∆h+1/b
2∂2ρρ Pθ = Pρ being the θ and ρ average operators. Boundary conditions

are

f(Ri) = Rei, f(Ro) = Reo and g = 0, (6)

Dψ = φ = ∆hφ = −bψ + rDφ = b∆∆hφ+ rD∆hψ = 0 on r = Ri, Ro (7)

f , g are the mean velocities in the azimuthal and axial directions, averaged with
respect to θ and z coordinates.

3. Linear stability analysis

In this section we study the linear stability of the Couette flow defined by vc =
fcêθ, fc = Ar +B/r and gc = ψc = φc = 0 with

A =
Reo − ηRei
1 + η

, B =
η(Rei − ηReo)

(1 + η)(1− η)2
. (8)

By linearizing equations (2) to (5) about fc and trying out solutions of the
form ψ(r, ρ, t) = ψ(r)eλt+inρ, φ(r, ρ, t) = φ(r)eλt+inρ, we obtain the eigenvalue
problem

λ∆hψ = ∆∆hψ + in(
2A

b
∆hφ+

fc
r
∆hψ) (9)
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Fig. 1. Linear analysis curves.

λ∆∆hφ = ∆∆∆hφ− in(
2fc
br
∆hψ +

4Bn2

br4
ψ

−
4B

br3
ψr −

fc
r
∆∆hφ+

4B

r3
D−∆φ) (10)

with boundary conditions (7), and n 6= 0 because Pρψ = Pρφ = 0. In this
eigenvalue problem equations for f and g are diffusion ones and do not contribute
to the instability, so the perturbation of vc is v = ∇× (ψêz) +∇×∇× (φêz).
Notice that now eigenvalues and eigenfunctions depend on a fourth parameter b

in adition to Rei, Reo, η. For some values of the radius ratio η we have determined
the curves of critical inner Reynolds number Recriti , the slope bcrit and the rotation
frequency at the onset of spirals, all as functions of the outer Reynolds number
Reo. Curves of Re

crit
i and Ωcrit are shown in Fig. 1 for η = 0.8. Our results agree

with those from [1].
The eigenvalue problem has been discretized using a Tchebychev collocation

method.

4. Non-linear solutions

Equations derived from (2) to (7) for the perturbation of the Couette flow were
solved by using a semi-implicit first order Euler-Adams-Bashforth scheme for time
integration and a pseudospectral collocation method for the spatial discretization.
The potentials are expanded in trigonometric functions for the ρ coordinate and
Tchebychev polinomials for the radial dependence. (See [4] and [5] for details).
The transition from Couette flow to spiral vortices is a Hopf bifurcation giving

rise to periodic attractive orbits. Fig. 2.b shows the velocity field corresponding to
η = 0.8, Reo = −124, Rei = 180 and b = 0.375 (see Fig. 1). The spirals in a couple
are of different size, in contrast with the Taylor-vortex flow. The difference is also
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Fig. 2. a) Torque exerted by the fluid on the outer cylinder. Projections of the velocity field
onto constant θ and r sections, b) and c).

reflected in Fig. 2.c, showing the velocity field on the cylinder r = ri+0.6d. This
is related to the breaking of the symmetry about a z-constant plane. A strong
outgoing jet appears between the spirals. This is due to the centrifugal instability
mechanism, as in the Taylor-vortex flow. Lid effects must be mentioned at this
point. The solutions calculated have a small net mean vertical flow due to non-
zero volume-average of g. A vertical pressure gradient has been added to the
equations in order to cancel it. The pressure head simulates the real laboratory
flows, with cylinders of finite length where a mean flow cannot exist, and the
lids may supply an axial pressure gradient. Solutions including the pressure head
are almost identical to the previously computed ones except for the mean flow.
We have also computed the torque exerted on the cylinders. Fig. 2.a shows the
torque exerted in the Couette flow, Spirals and Taylor-vortex cases. The results
show that the spiral flow transpors angular momentum more efficiently near the
bifurcation, but Taylor-vortex are more efficient for higher Reynolds numbers.
Fig. 3 shows two-dimensional projections of the phase portrait and power

spectra of solutions obtained by fixing Reo and increasing Rei. The onset of a
new frequency giving rise to a quasiperiodic flow corresponds to a secondary
bifurcation. This new regime appears in a region where two spiral flows with a
different slope b appear in the primary bifurcation.

5. Discussion

Some new important features have been obtained, such as the presence of a
weak axial flux and a secondary bifurcation to a quasiperiodic flow near the
primary instability. The weak axial flow is due to the symmetry breaking primary
bifurcation. The presence of a quasiperiodic flow near the instability is caused by
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Fig. 3. Transition from periodic to quasiperiodic orbits when Rei is increased. Frequency is
measured in Hz.

the competition between different spiral modes. The reliability of the computed
flows is being tested experimentally by using image processing techniques. The
results will be published elsewhere.
Our 2D model captures some relevant aspects of the bifurcations in the counter-

rotating case. Additional improvements would include a fully 3D code in order
to break the helical symmetry of the present model.
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