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Summary. Subcritical instabilities in small gap Taylor-Couette (TCF) problem are studied
numerically when both cylinders rotate in opposite directions. The computations are carried
out for a radius ratio η = ri/ro = 0.883. A first exploration is focused on the study of spiral
flows originated from subcritical Hopf bifurcations of the basic circular Couette solution. The
second exploration addresses the transition from laminar flow to the usually termed as spiral
turbulence regime characterized by alternating laminar and turbulent spiral bands which co-
exist even in regions of the parameter space where the circular Couette flow is linearly stable.

1 Formulation

In TCF, an incompressible fluid of kinematic viscosity ν and density � is contained
between two concentric rotating cylinders whose inner and outer radii and angular
velocities are r∗i , r∗o and Ωi, Ωo respectively. The dimensionless parameters are the
radius ratio η = r∗i /r∗o and the inner and outer Reynolds numbers Ri = dr∗i Ωi/ν and
Ro = dr∗oΩo/ν of the cylinders. All variables are rendered dimensionless using the
gap d = r∗o − r∗i and viscous time d2/ν as units for space and time, respectively. The
dynamics of the flow is controlled by the incompressible Navier–Stokes equations

∂tv + (v · ∇)v = −∇p + Δv, ∇ · v = 0 . (1)

In nondimensional cylindrical coordinates (r, θ, z) , the basic circular Couette flow
(CCF) is vB = (uB , vB , wB) = (0, Ar + B/r, 0), with A = (Ro − ηRi)/(1 + η)
and B = η(Ri − ηRo)/(1 − η)(1 − η2). The flow is assumed to be L∗-periodic in
the axial direction so that the dimensionless domain is (r, θ, z) ∈ D = [ri, ro] ×
[0, 2π) × [0, Λ), where Λ = L∗/d is the aspect ratio of the computational box.
Arbitrary perturbations u of the base flow, v = vB +u, are expanded in a solenoidal
spectral Fourier-Galerkin basis

u(r, θ, z, t) =
∑

l,n,m

alnm(t)ei(lk0z+nθ)
vlnm(r), (2)

115B. Eckhardt (ed.), Advances in Turbulence XII, Springer Proceedings in Physics 132,  

© Springer-Verlag Berlin Heidelberg 2009 
DOI 10.1007/978-3-642-03085-7_27, 



for (l, n,m) ∈ [−L,L] × [−N,N ] × [0,M ] and k0 = 2π/Λ. The time integra-
tion is carried out with a 4th order linearly implicit time marching method [3].
Following former experimental works [1], the computations presented here were
obtained for η = 0.883, i.e., ri = 7.547 and ro = 8.547, with (Ro,Ri) ∈
[−3000,−1200] × [0, 1000] and Λ = 2π/k0 ∈ [1.23, 29.9]. The spectral resolu-
tion used for the computation of seceondary laminar regimes lies within the intervals
(Nr, Nθ, Nz) ∈ [28, 48] × [28, 48] × [16, 32] radial×azimuthal×axial grid points,
resulting in spectrally converged solutions. For the laminar-turbulent spiral patterns,
a resolution within (Nr, Nθ, Nz) ∈ 20× [100, 220]× [100, 220] was used, resulting
in a dynamical system with up to O(106) degrees of freedom.

2 Subcritical equilibria from modal instabilities of Couette flow

The first exploration has consisted of a comprehensive numerical exploration of sec-
ondary finite amplitude solutions using Newton-Krylov methods embedded within
arclength continuation schemes. Two different families of rotating waves have been
identified: short axial wavelength subcritical spirals ascribed to centrifugal mecha-
nisms and large axial scale supercritical spirals and ribbons associated with shear
dynamics in the outer linearly stable radial region.
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Fig. 1. (a) Norm of bifurcating spiral solutions of azimuthal wavenumbers n ∈ [1, 6] as a
function of Ri for Ro = −1200 and axial wavenumber k = 5.125. (b) Same as (a) showing a
disconnected ribbon solution branch (α) and a supercritical spiral branch (β) for k = 2.5. (c),
(d) and (e) show azimuthal vorticity distributions on a θ = cnst. section of regimes γ, α and
β shown in (a) and (b), respectively.

As shown in Fig. 1a, all the spiral regimes originate from the circular Couette
flow at Hopf bifurcations, some of them of subcritical nature. Their instability is
clearly related to centrifugal mechanisms and their axial wavelength is consistent
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with the characteristic width of the inner centrifugally unstable region. Spiral flows
with higher azimuthal and axial wave numbers tend to be less subcritical whereas
spirals with lower azimuthal and axial wavenumbers, although not dominant at tran-
sition, clearly show more pronounced subcriticality. This motivated further explo-
ration for lower values of k0 in order to find the large-scale axial dynamics typical of
spiral turbulence. However, straightforward continuation of the spirals for lower val-
ues of k0 was unsuccessful, exhibiting turning points before k reaches lower values.
The computation of these new spiral shear modes required two different techniques,
based on artificially cutting off high axial modes in the time evolution and quasistatic
homotopy transformation in η, combined with an axial forcing. By including axial
advection and reducing η it was possible to find new spirals of larger wavelength. A
very careful variation of these two combined effects sometimes succedeed in recov-
ering low axial wavenumber rotating waves for our original problem. However, the
described procedures have only been successful for n0 = 2 and n0 = 3 cases. Two
families of new solutions have been found; one of them are spirals that bifurcate su-
percritically from the Couette flow. The other family consists of ribbons, apparently
disconnected from the basic flow. Figure 1b shows both families for k0 = 2.5. The
inner structures of the aforementioned equilibria are shown in Fig. 1c-f.

3 Intermittent regimes from nonmodal instabilities

The second exploration has consisted in triggering transition within the linearly sta-
ble region of the parameter space. This has been done for values of Ri and Ro for
which experiments reported laminar-turbulent spiral coherence, also termed as spiral
turbulence [2, 5, 4]. Numerical simulation with moderate resolution have managed to
reproduce such a flow (see Fig. 2) within an axially periodic domain, thus confirming
that this pattern is not necessarily induced by top or bottom lid effects. Figures 2a
and 2b show typical snapshots of computed SPT, conspicuously resembling the ex-
perimental results. The exploration reported here is summarized in Fig. 2c, where
two parametric paths for Ro = −3000 and Ro = −1200 (labelled as Γ1 and Γ2,
respectively) were followed. Both paths start within the shadowed region of Fig. 2c,
where experiments [1] reported supercritical SPT regimes when increasing Ri from
below. Starting with a random perturbation at (Ro,Ri) = (−3000, 900) in Γ1 and
(Ro,Ri) = (−1200, 640) in Γ2, the time integrations drove the flow towards SPT
patterns in less than one viscous time unit. From those starting points, Ri was qua-
sistatically decreased and the time evolution of the flow was monitored for more than
6 viscous time units afterwards. Over Γ2, SPT regimes followed exactly the same
supercritical behaviour as the one observed in the experiments [1], where smooth
decreasing of Ri led to intermittency regimes (INT, characterized by localized tur-
bulent spots), interpenetrating spirals (ISP) and relaminarization to the basic CCF
profile. However, over Γ1, the SPT flow was found to be sustained even below the
linear stability boundary of the CCF, labelled as LSB in Fig. 2c. The H1 and H2 bul-
leted curves shown in Fig. 2c correspond to experimental hysteretic SPT boundaries
when decreasing Ri from above in [2] and [1], respectively. In particular, we found
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Fig. 2. Angular momentum L = rv isosurfaces of typical SPT flows (L > 0 and L < 0
in white and blue, respectively). (a) Subcritical SPT at (Ro, Ri) = (−3000, 650) showing
L = ±1900. (b) Supercritical SPT at (Ro, Ri) = (−1200, 600) showing L = ±950. (c)
Explored regions in (Ro, Ri)-parameter space. Black triangles, gray triangles, gray squares
and white triangles correspond to SPT, INT, ISP and CCF flows, respectively.
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Fig. 3. Radial vorticity (∇× u)r of SPT flows on the intermediate radial surface rm = 8.21.
(a) (Ro, Ri) = (−3000, 650), with (∇×u)r ∈ [−1.3× 104, 1.4× 104]. and (b) (Ro, Ri) =
(−1200, 600), with (∇× u)r ∈ [−6.6 × 103, 6.1 × 103]. Dark and light regions represent
negative and positive radial vorticity, respectively.

our computations to agree with the H1 boundary found by Coles. This work was sup-
ported by the Spanish Government grants FIS2007-61585 & AP-2004-2235, and the
Catalonian Government grant SGR-00024.
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