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Several approaches to the relativistic dynamics of directly interacting particles are 
compared. The equivalence between constrained Hamiltonian relativistic systems and a priori 
Hamiltonian predictive ones is completely proved. Coordinate transformations are obtained to 
express these systems in the framework of noncovariant predictive mechanics. The world line 
condition for constrained Hamiltonian relativistic systems is analyzed and is proved to be also 
necessary in the predictive Hamiltonian framework. 

1. INTRODUCTION 

In the study of relativistic N particle systems with direct interaction, several 
methods have been proposed and throughly established by the corresponding streams 
of papers issued in the literature. The common aim of most of these approaches is to 
carry out the so-called Dirac program [ 11; i.e., to construct a symplectic realization 
of the Poinvark group 9 on a N x d dimensional phase space IY The scope of the 
present work will be restricted to spinless particles, so that we shall have d = 6. 

Among the different approaches appearing up to the present time we shall consider 
and compare here with some detail the following ones: 

(a) Predictive relativistic mechanics in the manifestly predictive formalism 12 1 
(PRM-3). 

(b) The manifestly covariant formulation of the predlc\lve relativistic 
mechanics [3] (PRM-4), restricting our study to the a priori Hamiltonian predictive 
systems [4] (HPS). 

(c) The constrained Hamiltonian systems (CHS) as have been used by 
Rohrlich and others [5]. 

Another approach which must be mentioned here is the singular Lagrangian 
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RELATIVISTIC DYNAMICS OF PARTICLES 11.5 

formalism [24]. However, we do not consider it in the present work because the 
equivalence between this approach and both formalisms of predictive relativistic 
mechanics and constrained Hamiltonian dynamics has been already established 
elsewhere [25 1. 

In Section 2 we present the main ideas and the general features of each framework. 
After that, in Section 3, the CHS formalism is developed in detail using the language 
of differential geometry. A derivation of the world line condition is presented there 
making clear the two different actions of the Poincare group on both the phase space 
of our dynamical system and the Minkowsky space where the world lines of particles 
occur. 

In Section 4 the HPS formalism is analized in detail and a kind of world line 
condition is proved to be necessary in this framework as well. In Section 5. the 
equivalence of CHS and HPS formalisms is proved, meaning that the same 
mathematical objects can be introduced and worked either in one framework or the 
other, yielding, at the end, the same world lines for the individual particles. 

In Section 6 (resp. 7) we show how a constrained relativistic Hamiltonian system 
(resp. a Hamiltonian predictive system) can be formulated in terms of noncovariant 
predictive relativistic mechanics. 

Finally, we want to warn the reader against the danger of assigning the results 
presented here to a range of validity beyond the purely local level (i.e.. some open 
neighborhood of each point in the respective domain). This limitation is due to the 
repeated use of the implicit function theorem all along the present paper. Although we 
have emphasized these limitations at some theorems, we have renounced to keep the 
mathematical rigour in this point (i.e., to formulate local statements for results which 
only hold locally) for simplicity and to not puzzler the reader with too many 
unessential details which would make the reading much harder and hide the intuitive 
geometrical ideas underlying the main stream of reasoning in the paper. 

Mention should also be made here of a related previous work Lusanna I26 1, where 
a review of several approaches to relativistic dynamics with direct interaction is 
presented. 

2. GENERAL FEATURES OF THE FRAMEWORKS 

2a. PRM-3 

This approach starts from the following two premises: 

(i) The equations of motion are *‘like Newton”: The phase is 7R2,’ labeled by 
the positions XL and velocities v$ of the particles and, in any inertial frame, the 
motion is described by a second-order differential system 

dx; I dv’ 
dt “’ dt 

-2 =p#, II;., t), a, b, c ,... = I ,..., N; i, j, I,... = 1, 2, 3. (2.1) 

We shall assume also that the accelerations ,uL depend on the masses of the 
particles (m, ,..., m,V). 
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The general solution of (2.1) will be written as vL(t, .9/‘/, u:), fulfilling the initial 
conditions 

l&o, 2;, v;> = x6, + (0, x’, 0;) = VA. (2.2) 

(ii) The equations of motion (2.1) hold in any inertial frame and the standard 
realization of ‘$3 on M, transforms the N world lines of the particles seen from an 
initial frame into the world lines observed from another. 

This means that, if 

Y, = {-$(4 = (f, v:(f xo, u,,)), t E R 1, a = l,..., N, 

is the world line of particle (a) seen by a given inertial observer G when the system 
starts from the initial state (x0, 0,) E 71R3”, then for another observer 6’ related to 6 
by the Poincart transformation (I,;, AU) E ‘Q, another set of initial data 
(x;, VA) E 71R3N must exist such that the world lines 

y:, = (x;“(P) = (t’, I/&‘, x6, v;)), t’ E R}, a = l,..., N, 

coincide with the former ones: v:, = ya, ~1 = l,..., N. 
Differentiating in respect to the parameters of the Poincare group in the 

neighbourhood of the identity, we obtain that the relativistic invariance of the world 
lines is equivalent to the three conditions 

(i) the acceleration functions ,LI~ do not depend on t explicitely, 

(ii) they are also invariant under space translations and behave like 
spacevectors under rotations, and 

(iii) satisfy the so called Currie-Hill equations 121: 

= 2/L; vt + l&p;. (2.3) 

Furthermore, conditions (ii) and (iii) are satisfied if, and only if, the vector fields 

J, = f cIik 
I 

a 
a 

a=1 
xZaxg+v$ 3 

I 

Kj= 5 
a=1 I I 

(2.4b) 

(2.4~) 

(2.4d) 

generate a realization of 9 on TR3N. 
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Up to this point, one step in the Dirac program has been attained but we have still 
to define a symplectic form on TlR3”, i.e., a nonsingular Poisson bracket 
w E /iZ(TIR3N), invariant under the realization of ‘Q. This is equivalent to 

f!(A,)w = 0, I= l...., IO, (2.5) 

where 2 is the Lie derivative and A, means anyone of the 10 vector fields (2.4). 
Thanks to the Poincare lemma [ 61 and to the fact that w will be a closed form 

(dw = 0), Eqs. (2.5) will guarantee the existence, at least locally, of 10 generating 
functions /1,, I= I,..., 10. such that 

d/i, = +(A,) w or A,= {A,, 1, 

where i( ) is the interior product and ( , ), the Poisson bracket associated to w. 
Moreover, in the spaial case of the Poincare group we shall be able to choose 17 1 

the generating functions /1, in such a way that 

{A,, AJ} = c;jn,, I, J, K = l,..., 10, 

where Cfi are the structure constants of !I3 in the corresponding parametrization 

IA,, A.,] = C;,A,. 

At this point the so called no-interaction theorems [ 81 state that, unless the 
accelerations ,LI~ vanish, there is no simplectic form o such that: 

(i) it is invariant under the ten vector fields (2.4) and 

(ii) the coordinates XL are canonical ones referred to w. 

Only free-particle systems can therefore be fitted in this framework if both 
conditions (i) and (ii) are required. This obstruction is commonly circumvented by 
dispensing condition (ii). Then the problem is that too many symplectic forms are 
permited by only the invariance condition (i); however, each physical problem 
suggests a suitable set of boundary conditions which selects a smaller family of 
solutions and, in some specially interesting cases, a unique result is obtained [9]. 

Summarizing, a PRM-3 is given by a symplectic realizations of !j3 on the 
symplectic manifold (TIR 3M, w) such that in a given coordinate frame (x, 2)) the 
infinitesimal generators of ‘Q have the simple shape (2.4). 

2b. PRM-4 

In this approach the phase space is TM: labelled by (xz, 7~:) where the Poincare 
group acts in the standard way. Hence the infinitesimal generators are 

p,=- \” a 
,:, ax;’ 

(2.6 1 
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where greek indices run from 0 to 3 and are raised and lowered by the Minkowsky 
metrics v,, = (-+++). 

It is then assumed as the fundamental hypothesis that for any initial state of the 
system, there exists one world line in M, for each particle. 

Starting from a given set of initial data z = (x:, 71;) E TM:. the world line of (a) is 
given by ~0: (r,, z), where the parameter r, is the proper time along the world line of 
the particle (a) divided by its mass m, and the initial condition &(O, z) = x; is 
assumed. Furthermore, the four-velocity of (a) evolves according to (iip,U/&,)(r,, , z) 
with the initial condition 

~(o,z)=n~. 
u 

Also, since r, is an affme parameter and thanks to the initial condition 

Therefore, for each z E TM: we have a world submanifold 

where 
S(z) = (@(5, )...) r*,; z), (5, ,..., 7\,) E IR’% ), 

@CT * ,..., 7,&Z : z)= p:(r,,.z),$+r,.z) E TM;, 
b 

(2.7) 

(2.8) 

That is to say, @(t, ,..., r,v; z) is the state of the system after having moved each 
particle (a) an amount r, along its own world line. 

The assumed existence of well-behaved world lines implies that, if we take 

@CT , ,...; z) as new initial data, we must obtain the same world manifold 

S(z) = S(@(r, )...) 7,v ; z)) 

with the labeling shifted according to (r,,..., r,v): that is, 

@(r; ,...) 7,:; @(r, ,..., rJv ; z)} = qr, + 7; ,...) r,, + r,;,; z). (2.9) 

This is equivalent to require the map @: IR” x TM:+ Tl4: to define a realization 
of the abelian group R” on TM:. Furthermore, due to the well-known properties of 
the action of a Lie group on a manifold, the latter result occurs if, and only if, the 
infinitesimal generators H, commute 

IH,, Hb] = 0, a, b = 1,. . ., N. (2.10) 

Moreover, due to definition (2.8) these generators act on the coordinate functions 

(X,“- 77;) as 

H,x; = 6,, . T;, Han; = a,, . @, (2.11) 
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where the functions 0Jx, 7~) account for the four-accelerations of the particles and, 
due to the affine character of r,, satisfy 

e;(x, 7T) . Tc,, = 0. (2.12) 

The relativistic invariance obviously requires the accelerations 8: to behave as a 
translation invariant four-vector or, equivalently, 

IH, 3 A,]= 0, a = l,..., N; I = l,..., 10, (2.13) 

where A, represents any one of the generators of V. 
From the commutation relations (2.10) and (2.13) we have that the 10 + N vector 

fields H,, a = l,.,., N; il,, I = l,..., 10 generate a realization of the Lie group 
6, = IH’v @ !I3 on TM:. This is called the full symmetry group of the N-particle 
system. The action on TM: of a given (r,; F,) E 8, will be written as 

G(s, : E,) = @(T, ,..., rv) 0 g(e,) = g(e,) 0 @(r, ,.... r,). 

where g(s,) is the standard action of q on TM: and @(r, ,..., r,), which has been 
defined in (2.8), will be expressed in the following as 

@(r ,,...,r.J--xp (z, r,,H,,). 

Condition (2.12) guarantees that the mass shell 

Im(m, . . . . . m,v) = ((x,, r,,) E TMy/z$ 7chu = -mf . b = l...., N } 

is left invariant by this realization of 8,. 
Up to this point we have that a PRM-4 of an N-particle system is given by a 

realization of Gi, on TM: such that: 

(i) The N infinitesimal generators H, have the simple form 

(2.14) 

where the four-accelerations 0: satisfy the orthogonality condition (2.12) and 

(ii) the subgroup q c 0, acts on TM: in the standard way. 
If we now look for a symplectic form 0 E /i ‘(TM:) invariant under 8,, we find a 

covariant version of the no-interaction theorem [ 101. Unless the accelerations Qg(x, rr) 
vanish, there is no symplectic from R fulfilling the two requirements of: 

(i) being 0, invariant and 

(ii) the coordinates x,” being canonical ones. 
As in the case commented in Subsection (2a). condition (ii) is given up to 
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circunbent the no-interaction theorem and again too many symplectic forms 8,- 
invariant are permited. 

At this point, the approach which we have called PRM-4 splits in two different 
directions: 

(2b.l). The stream initiated by Be1 and Martin [ 111, which considers that, for 
most of the classical relativistic interactions which have been already formulated ] 12 ] 
in terms of PRM-4, the trivial symplectic form of free particle systems appears as a 
natural boundary condition when the distances between particles approach infinity. 

This fashion has the advantage that one is always sure of dealing with something 
which has to do with one of the classical relativistic interactions. However, it leads 
unfaillingly to intricated power expansions on some coupling constant. 

In the scope of this paper this approach will not be considered. 

(2b.2). The method proposed by Droz-Vincent [ 131, which assumes an a 
priori canonical realization of the full symmetry group on T*My, and then a PRM-4 
is obtained by finding out a suitable mapping into TM:. 

2.~. CHS 

Here we shall only consider this formalism as it has been presented in Ref. [ 5 ]. 
This approach starts from T*My endowed with the canonical symplectic form 

R = t dp; A dq:; 
a=1 

(2.15) 

i.e., the Poisson brackets are 

{q:, P%J=&q, Mtd?yIl=~P”u~P~l=o~ 

a, b = 1 ,..., N, p, v = 0, 1, 2, 3, 

and the standard action of 9 on T*My is defined by the generating functions 

(2.16) 

The mass shells of the particles are then defined by N Poincare invariant functions 
{K, a = l,..., NJ on T*MT. We shall assume besides that these functions contain the 
squared masses of the particles as parameters in such a way that det(X,/&~) # 0. 

So that when the masses are m, ,..., m,,, the mass shell is 

Wm, ,..., mN) = {z = (q, p) E T*MT/K,(z, mb) = 0). (2.17) 

Furthermore, the functions K,(z, mb) are required to be first class on the mass shell 
W(m, ,..., m,) for any fixed value of the mass parameters 

VW, mb), Kc@, me> I = 0 on Tm,>, (2.18) 
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and, since they are Poincare invariant, we also have 

{K,(z, m,), A, I = 0, (2.18’) 

where A, is any one of the generating functions (2.16). 
By means of the Poisson bracket, the functions K,(z, mh) define N vector fields 

K,(m,) = (K,(z, mh)’ } which, due to Eq. (2.18). are tangent to the mass shell !JJI(m,.) 
and commute with each other: 

IK,(m,), K,(m,) ] = 0 on !JJI(m,). 

They therefore generate a realization of IF” on YJI(m,). The orbits C(z) of the points 
z E W(m,) under the action of the group provide a foliation of the mass shell defining 
the restricted phase space 

!qm,., = rn(m,)/r;, 

the dimension of which is 6N. 
The latter can be represented by choosing a 6N-submanifold r,,(m,.) c YJI(m,.) such 

that V z,, z2 E r,(m,), z, # z2 3 C(Z,) n C(Z,) = 0. 

The submanifold ro(m,) is defined by introducing N “fixations” x,(z, VI,.), 
a=1 ,..., N, on T*iWy and the latter condition is guaranteed, at least locally, if and 
only if 

det(F,,&,l) f 0. (2.19) 

However, this framework does not seem to be suitable enough for the “time 
evolution” to be represented. Hence, the “fixations” are relaxed by allowing them to 
depend on a parameter 7 which will play the role of a “time.” This one-parameter 
family of fixations defines the set of 6N-submanifolds: 

fT(mc)= {z E T*M~/K,(z,m,) = O,~Jz,rn,, 7)= O,a,b,c = l,...,N}, 

each one being a “good” representative of Y(m,), at least locally, if and only if 
condition (2.19) holds for any value of 7. 

The extended phase space is the (6N + 1).submanifold 

which is locally defined by the N mass shell constraints K, and by the (N - 1) 
fixations which result after eliminating 7 from xu(z, mb. r) = 0, a = l...., N. 

Furthermore, as far as condition (2.19) is satisfied, there is a unique linear 
combination H of the vector fields K,(m,) such that it is tangent to P(m,.) and 
satisfies 

%+Hx,=O on P(m,). (2.20) 



122 IRANZO ET AL. 

This vector field is defined by 

where SbC is the inverse matrix of D,, = (K,, xb}, i.e., 

(2.21) 

(2.22) 

The vector field H generates the realization of the additive Lie group Ic on r’(m,.) 
defined by the exponential map exp(dH), 1 E R and it can be easily shown that 

exp(W: WT-) + C+,&%-). 
It is therefore said H generates the evolution associated to the time 7. 

Finally, the coordinates q;(z) are, by definition, identified with the position coor- 
dinates xg of the particle (a) when the state of the system is z E r’(m,.). Thus. when 
the system undergoes its time evolution starting from z E f’(m,) the world line of (a) 
is 

x;(r) = q,” (exp(rH)z). 

The relativistic invariance of the system requires these world lines to be Poincare 
invariant and this implies new conditions on the fixations x,,. which are commonly 
called world line condition (WLC) (141. (We shall come back to this point in the 
next section). 

3. THE CONSTRAINED HAMILTONIAN SYSTEMS 

3a. Equivalent Formulations of a Given CHS 

As has been seen in Section 2c, a CHS is characterized by 

(CHS-i) The mass shells !JJl(m, ,..., M,~) defined by N functions K,,(z. m,.) 
containing the masses (m,) as parameters, 

(CHS-ii) which are first class and Poincare invariant on YJI(m,,)-see Eqs. 
(2.18) and (2.18’), 

(CHS-iii) the (6N + 1).submanifold 

f’(m,) = (z E T*M~/K,(z, m,) = 0, ,yb(z, m,.. r) = 0, for some r E n }, 

where the fixations fulfill condition (2.19) and 

(CHS-iv) the vector field H given by Eq. (2.21), which is defined on r’(m,.), 
and tangent to it. 

The following theorem states what changes can be done in the constraints 
preserving these features (CHS-(i) to (iv)). 
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T.3.1. THEOREM. Let us consider a CHS defined by the constraints 

(K , . . . . . K,v; x, ,..., x,v). If we change them into 

i, = h,(K, ,..., K,); x;l = fh(K, ,... , K,y : x, ,.... x,,). (3.1) 

where (hoJhL.h=l,...., are 2N-independent functions such that 

h,(O,..., 0) = 0 and fb(O,.... 0) = 0, (3.2) 

then the CHS (g, ,..., l?,; i, ,..., fN) is equivalent to the former one, i.e., transfor- 
mation (3.1) preserves CHS-(1) to (iv). 

Proof. (i) and (iii) are obviously preserved since Eqs. (2.1) and (2.2) guarantee: 

(ii) 

%(mC) = ‘m(m,) and r”‘(m,) = F(m,.) 

{K,, Kc,) = 0 on Y.JI(m,) = @(m,). 

(iv) Let us consider the matrix 

.Y 
d,, = {i?,,x’,} = \‘ ah ;ifh a.--. D,,. 

,.;;‘=I a& %, 
(3.3) 

Since Vcdda.h-l,.....v is a set of 2N independent functions and h, does not depend 
on xc, neither (3fb/8xc)b ,‘,= ,,,,,., y nor (ah,/aK,),,,_ ,,,.,., y can be singular. Then, since 
d,, is a product of three nonsingular matrices, it is itself nondegenerate. 

From Eq. (3.3) we have that the inverse pb of bbr is related to Sab by 

and, consequently, we have for the vector field H that 

and the proof is over. 
As a consequence of this result, a given CHS parametrized by the masses can 

always be formulated in the following terms: 

(a) First, we find out the half square masses from the constraints K,(z, m,), 
a=1 ,..., N. This can be always be done, since we have assumed that 
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det(X,/&zi) # 0 and it is equivalent to combine them until obtaining the new 
constraints 

IZa(z, mb) = H,(z) + fmi. (3.5) 

Then the mass shell YJl(m,) is defined by the functions H,(z) (which do not depend 
on the masses anymore) according to 

YJl(m,) = {z E T*MT/H,(z) + $rni = 0, a = I,..., N}. (3.6) 

Furthermore, the vector field d, defined on and tangent to !Ul(m,) are given by 

R, = {K&, m,), 1 = {f&(z), 1 on Wm,), (3.7) 

which have the advantage of being independent of the masses and can be considered 
as the restriction to 9Jl(m,) of N other more general vector fields H, = (H, , } defined 
on the whole T*My. 

(b) Second, we combine the constraints K,(z, m,) and the fixations obtaining a 
new set of f(z, m,, r) that: 

(i) do not depend explicitely on the masses, 

(ii) the latter (N- 1) fixations do not depend on r: 

L(z), A = 2,.... N, (3.8a) 

(iii) the parameter r apears only in the first fixation: 

x’, (z, 7) = h(z) - 7. (3.8b) 

This is possible because at least one of the former fixations x,, a = l,..., N must 
depend on r explicitly. 

What we have reached up to this point is that any CHS parametrized by the 
masses can be always formulated in terms of 

k&, mJ=H&)+ fmi, a = l,..., N, z E T*A4;, 

17, (z, mb> = X:, (z>~ A = 2,..., N, (3.9) 

fl tz, mbl 5) = htz) - r 

(for the sake of simplicity the tildes will be omitted hereafter). 

3b. The Action of the Poincare’ Group on r, 

Most of the results presented in this subsection and in the next one have been 
already obtained by Sudarshan et al. [ 141. However, we are goind to give a slightly 
different presentation which, together with the one of Ref. [ 141, will provide a deeper 
insight into the way this formalism works. 
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Once the CHS is formulated in the simplest form (3.9) we realize that the vector 
fields 

“0 = {H,, }, p,=lp,, 1, Jw,= v,,, 1 

satisfy the commutation relations (2.10) and (2.13). Hence, they generate a 
realization of 6, on T*My: 

G(r,, E,): T*M: + T*M: 

(3.10) 

where r, E R, a = l,..., N, (e,) = (E, ,..., E,,) E ‘$3 and g(s,) is the standard action of 7, 
on T*My. 

Obviously, this action of 6, does not leave r’(m,) invariant, that is, for a given 

(70, E,) E @iv, G(7a, e,)r'(m,) z r'(q-1. 
However, the following two theorems state that this realization of 8, induces a 

realization of ?, on each slice rA(m,) c P(m,) defined by the constraints (3.9) for 
any chosen value of 2. 

T.3.2. THEOREM. Given z E r, and (E,) E $3, a unique N-tuple 
(7,k E , > ,..., r,,,(z, E,)) E RN exists such that 

G(T,(z, &,I, cJ) z E r., . (3.11) 

(Actually, this assertion holds in an open neighbourhood of the identity rather than on 
the whole Poincare’ group (see Fig. 1 ).) 

ProoJ The numbers rJz, E,), a = l,..., N, which we are looking for, are the roots 
of the N-equation system 

xJG(tb, c,)z, A) = 0, a = l,..., N, (3.12) 

where, since the particular formulation (3.9) has been adopted, the parameter L is 
given by A= h(z). 

A unique N-tuple solution will exist for system (3.12) as far as the implicit 
function theorem (IFT) can be applied. And this is the case since, due to the 
condition (2.19), the matrix 

is nondegenerate on P(m,), i.e., 7, = 0, E, = 0. 
Also, it obviously follows that r,(O ,..., 0; z) = 0, a = l,..., N. 
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FIG. 1. The Poincark transformation g(&,) takes z out from r’(m,.) and exp(z:,’ , r,,(~,. z)Hh) brings 
it back to r,(m,.). 

This result allows us to define the transformation 

g*(E,): r’(m,) + z-‘(WI,), 

z + g*(c,)z = G(T&,, z). eJ)z 

for any (Ed) E ‘p (or, at least, in a neighbourhood of (0) E $3). 

(3.14) 

T.3.3. THEOREM. Transformation (3.14) define a realization of ‘p on r’(m,) 
leaving each rA(m,) invariant (VA E R). 

Proof: The invariance of rA(m,) follows in an obvious way from the construction 
of r,(e,, z) in (T.3.2.). 

Let us now consider two elements (E:), (E:) E ‘p and let (Ed) be its product: 
(5J = (4) o (4 

According to definitions (3.10) and (3.14) for a given z E I’, c F(m,), we shall 
have 

and 
/I = h(z) 

g*(&:) o g*(e:)z = exp x 7b(tz:, 2) . H, 
I 

o g(c:) 
b I 

0 exp 
I 

2 7&j, z) . H, o g($)z, (3.15) 
L1 

where Z’E g*(s$z. 
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Then, thanks to the commutation relations (2.13), we can commute the exponential 
maps and the Poincark transformation g(E:) appearing in the right-hand side of Eq. 
(3.15), obtaining 

g*(E:) 0 g*($) = exp 
i 
\‘ [r,(&:, 3 + T,(E:, z>\ . H, I 
a 

\ O d%)Z E r,(m,). 

The uniqueness theorem (T.3.2.) then implies that 

T,(d 3 f) + S&j, Z) = Tu(Eh, Z), (3.16) 

where Z= g*(Ej)z and (cR) = (6:) o (cj) E $J. 
Finally, introducing (3.16) into (3.15) and taking (3.14) into account we have 

g*(E:) 0 g*(E:)Z = g*(&,)z, v z E r’(m,.) 

and the theorem is proved. 
If we now look for the infinitesimal generators A; for this realization of ?, on 

T’(m,), we have that 

m-(z) = $3 s*(F.,)z) 1 J F.,,- 0 

= A,f(z) + <;, $’ (0, z) . H,,f(z) (3.17) 
I 

for any function f on T’(m,) and any z E T’(m,.). 
That is. the generator A,? on r’(m,.) can be obtained by adding a suitable linear 

combination of H,, u = l,..., N, to the corresponding A,. 
The following result, which was already pointed out by Sudarshan ef al. [ 14 1. 

permits one to obtain A: without working out the partial derivatives &,/iic,. 

P.3.4. PROPOSITION. For each infinitesimal generator of ‘Q (A,. I= I,..., 10) a 
unique linear combination Cz-, by H, exists such that A, + Cp , bj’ H, is tarlgerlt to 
r’(m,). 

The proof is very easy, the uniqueness is again based on condition (2.19) and the 
result is 

b; = - \’ (A,xr)S”“. 
c- I 

(3.18) 

Hence, substituting this result into Eq. (3.17) we obtain 

A,?(z) = 
i 
A, - 2 (A,x,) S”“H, j (z), vz E rp72,.). (3.19) 

a.<‘- I 
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which can be written as A.?= {A.?, } on Z’(m,), where /if = 
A, - C a,,“= i (A,, x,} F*H, (i.e., the “star” variable [ 151 associated to A,). 

Since the structure constants of a Lie group depend only on parametrization I16 1, 
the commutation relations between the generators A;“, Z= l...., 10, are obviously the 
same as those between the corresponding generators A,, Z= l,..., 10. So that in the 
standard parametrization of ?, 

(E,) = (ofi”, A”), w”U = -w”“,p, It = 0. 1, 2, 3, 

the infinitesimal generators are those P,, J,, defined at the beginning of the present 
subsection and their commutation relations are 

The corresponding generators P,* and JzV on Z”(m,) satisfy the same commutation 
relations. 

We can also look for the Lie brackets IA:, H 1, Z = l,..., 10, where H is defined by 
Eq. (2.21), obtaining 

IA,*.H]=O, z= l,..., 10. (3.21) 

The derivation of this result is rather intricate and use must be made of the formula 

H,Sb = - \” 2Fd{K,, (K,,,x,}} S” 
d,l- I 

on Z’(m,.). (3.22) 

which can be easily obtained from the Eq. (2.22). 
The commutation relation (3.2 1) is the local expression for the following: 

C.3.5. COROLLARY. The local one-parameter group exp(aH) (0 E R) 011 Z’ 
transforms the realization g* of v on r,,(m,) into the realization on r, + ,(m,.). 

3x. The World Line Condition (WLC) [ 141 

In order to describe the dynamics of a N-particle system by means of a CHS we 
must previously state what is the position of each particle when the system is 
represented by the phase space point z E Z’. Thus, 4N functions qt on f’(m,) must 
be given defining the N position four-vectors. What is commonly taken in the CHS 
appeared in the literature as cp; = qz on P(m,). Nevertheless we are not going to 
consider this restriction here in order to have a little more general result. 

If we let the N-particle system start from z C r’(m,) then the world line of (a) in 
the Minkowsky space will be given by 

y,(z) = ix:@, z) = cp:((exp(d-Qz), 0 E R 1. (3.23) 
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Thus, if we want the N-particle system to be relativistic invariant, we must require 
the action of ‘p on F(m,) to leave the world lines (3.23) invariant. That is, given 
z E P(m,) and (E,) E 9, the kworld lines obtained, either from z or g*(c,)z, must be 
the same apart from the coordinates transformation on M, defined by (E,) E V. This 
is equivalent to requiring that V z E P(m,), V (E,) E q, V r~ E R there exist u”(u, z, c,), 
a = I,..., N. such that 

L;(E,)(X:(u, z) -A”(&,)) = xg(a,, g*(E,)z) (3.24) 

or, equivalently, 

W~,KcoXexp(Wz) -A”(&,)) = d(exp(o,,W 0 g*(e,)z). 

We obviously have that 

(3.25) 

UJU, z, 0) = (3. (3.26) 

Due to the group property, condition (3.25) is equivalent to the one obtained by 
taking the derivative with respect to F, at (E[ = 0). 

where 

and (3.28) 

Then, taking into account that exp(uH)z E r’, we can write Eq. (3.27) as 

C; + C&. q; - A;qz = ua, . HqE on r’(m,), a = l,..., N, I= l,..., 10. (3.29) 

where 

r 

Uol(Z) = 2 (0, z, 0). 
i 1 

What we have proved at this point is stated in the following: 

T.3.6. THEOREM. Given a CHS and 4N functions C+Y: on T’(m,.) defining the 
positions of the individual particles, the world lines (3.23) are PoincarP invariant in 
the sense of (3.24) if, and only if, 10 x N functions un, exist such that condition 
(3.29) is satisfied. 

As we have commented before, the CHS appearing in the literature commonly take 
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9,” = q& on P(m,). In that case, since the realization of V on Th4: is the one 
generated by the functions P, and J,,,,-see Eq. (2.16)--we have that 

Thus, introducing it into Eq. (3.29) yields 

(A& - 4%:) = (J,[ . I-W on P(m,), a = l,..., N. (3.30) 

And, taking (3.19) into account, it is finally equivalent to 

.v 
L‘ 

b,zl 

(A,x,) . S” e (Hbq;) = (T,, . Hq; onf’(m,) a = l,.... N. (3.31) 

It must be stressed that conditions (3.29)-and also (3.31)---only consist of 
3 x 10 X N equations instead of 4 X 10 x N as it could seem, because the remaining 
10 X N equations must be used to eliminate the undetermined functions u,,, . 
a = l,..., N, I = l,..., 10. 

Since the world line (3.23) must be time like and pointing to the future, we have to 
require the 9:‘s to satisfy Hqj: > 0 on f’(m,). So that, we can obtain the u,,,‘s from 
the 10 x N zero components of the equations (3.29) and, substituting them into the 
3 x 10 x N spatial ones, we have 

Cj + C”;, . (p,” - AFq(, = (C,” + Cy, . 9: - AFcpi) . (HpS) . (Hqi) ’ on f’ (3.32) 

and a similar expression for Eqs. (3.3 1). 
It could seem at this point that the WLC (3.29) depends on all the fixations 

x,(z, r), a = l...., N. However, if the fixations are taken in the simple form (3.9) then. 
the WLC does not restrict the fixation x,(z, r) = h(z) - r, but only the remaining 
ones: xA(z), A = 2 ,..., N. 

Indeed, let us consider the set of fixations 

X](Z, 5) = h(z) - r, x,(z). A = 2,.... N, 

which will provide the extended phase space T’(m,,) and the vector field H. Let us 
now consider another set: 

x’, (z, 5) = K(z) - 5, x.4 (z 13 A = 2,.... N, 

so that Hg# 0 on F(m,). This new set of fixations will provide the same extended 
phase space but a different tangent vector fi. However, since the latter fi will be 
proportional to the former H, the set of world lines for particles defined by (3.23) 
with any one of these two sets of fixations will be the same apart from a 
reparametrization. 

Hence, it is obvious that if the first set of fixations satisfies the WLC then, the 
second will too. 
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A rather tedious calculation yields 

a’,, = u,, . (Hh) - \‘ 
b.Tl 

(A,xh) . Sh’ . H,(h - l-f) (3.33) 

for the relationship between the functions oa, and I?~,, appearing in both cases on the 
right-hand side of (3.29). 

Thus, it is clear the unessential role of the clock fixation x,(z, r) = h(z) - r in the 
WLC and it should be therefore a desirable formulation only in terms of the xl(z), 
A = 2,..., N. We shall do it here for the case q: = qg on Y(m,.). 

From Eq. (3.3 1) and taking (2.2 1) into account, we have 

t <’ (A,~,). SRh . (H,q;) = U;,, . ;‘- (H/,q;) . Slh, (3.34) 
H -2 byI b-l 

where a;, = o,, - A,x, . 
The latter expression for the WLC must be understood as follows: “For any 

nonsingular Sab solution of the linear system 

6 
\‘ Sab . (HhxD) = 6;) 

h-l 

on r’(m,.), a = l,..., N, D = 2 ,..., N. 

Eqs. (3.34) must be satisfied.” 
It is finally interesting to realize that, when the fixations xi. A = 2,..., N, are 

Poincare invariant and the positions coordinates q: = qz on T’(m,.) are taken, then 
the WLC automatically holds good. 

3d. Svmplectic Structure 

In order to carry through the Dirac program we need to endow r.l(m,) 
(resp. r’(m,)) with a symplectic structure (resp. a contact structure) which must be 
invariant under the realization of $3 defined in Subsection 3.b. 

When we consider the injection mappings 

r’h) J T*wy 

it Ti j.1 j, = j 0 i., , (3.35) 

C&d 

we can use the respective pull-back maps to relate the exterior algebras on each one 
of these manifolds in the oposite direction: 

A(F(m,)) t-“A(T*My) 
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Thus, the former symplectic form Q E A*(T*MT) given by Eq. (2.15) defines the 2- 
differential forms 

0 = j*a E n”(r’(m,)), w.1 = j~:fl E ‘4 *(r.,) (3.36) 

in an unambiguous way. 
The commutating between the pull-back map and the exterior derivative is a well- 

known result of differential geometry [ 171, namely, 

d(j*")l, = j*(da)lj(r) =zY V z E I-‘(in,) c T*My, 

d(Xa>12 = j,*(dQlj,~Cz)=z 5 V z E r,,(q) c T*M;. 
(3.37) 

Therefore, since 0 is closed (i.e., d.C! = 0), w and o.~ are too: 

do = 0 on P(m,) and do, = 0 on r.,(m,). (3.38) 

It must be realized that in Eqs. (3.37) and (3.38) the same symbol “8’ has been 
used to denote the three different exterior derivatives, on T*Mf, P(m,) and rl(m,), 
respectively. We have taken, however, this freedom of notation to avoid a too 
sophisticated notation since no confusion can arise from it. 

If we ask for the ranks of w and oA, then the following lemma is needed: 

L.3.7. LEMMA. Let (!W, Q) be a symplectic 2n-manifold and Y-3 5 1132 a 
submanifold defined by k constraints (q,, a = l,..., k] such that the rank of the 
Poisson brackets matrix (q,, r],} is 2r < k}. Thus, it turns out that 

rankj*R=2.(n-k+r). (3.39) 

The proof is given in Ref. [20). 
Considering then the differential forms w E /i’(r’(m,)) and w,, E A 2(r.l(m,)), the 

sets of constraints defining their respective manifolds and taking condition (2.19) into 
account, an immediate application of this lemma yields 

rank cc) = rank wI = 6N. (3.40) 

Thus, it turns out from Eqs. (3.38) and (3.40) that w,, is a symplectic form on 

CA>. 
Furthermore, the symplectic form CL)~ E A’(r,(m,)) is left invariant by the 

realization g* of ?, on r*(m,). Indeed, for any infinitesimal generator A:, 
I = l,..., 10, of g* and taking (3.18) and (3.19) into account, we have that 

i(A;“)w* = jz =j,*{-d/i,-b,“dH,} 
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and, since j;(dH,) = d(H, o j,) = 0, we obtain 

i(Al*) oA = -j~((dA,) = 4(/i, 0 jA), (3.41) 

which implies 

(i) !$(A:) w., = 0, I = l,..., 10, 

(ii) the generating function on r.l(m,) for the infinitesimal Poincare transfor- 
mation associated to E, is /i, o j,. 

4. A PRIORI HAMILTONIAN PREDICTIVE SYSTEMS 

This framework corresponds to a special attempt to construct some Hamiltonian 
and covariant predictive relativistic mechanics (i.e., a realization of the full symmetry 
group (5, on TM:, the generators of which having the standard shape (2.6) and 
(2.14), plus a B,-invariant symplectic form). 

The HPS procedure consists of two steps: first, working out a canonical realization 
of 8,V on the cotangent space T*My endowed with the natural symplectic form 
(2.15): Q = XI=, dqg A dp;, and second, to find out a diffeomorphism 
Z: T*My + TM; such that the jacobian map Zr transforms the infinitesimal 
generators of 8, on T*My into the vector fields (2.6) and (2.14) on TIM:. The 
inverse pull-back (Z-l)* h t en maps R into a @,-invariant symplectic form on TM:. 

Nevertheless, as we shall see later, this approach presents the very unpleasant 
feature that the final action of 05, on TM:, namely, the dynamics, is not visualized 
until the end of the process and is critically determined by both steps. Thus, it will be 
rather impossible to formulate any known physical interaction into this framework. 

We start from the phase space T*My with the symplectic form Q = 
Ct=, dq: A dp: and the standard action of $I generated by the functions P, and J,,, 
defined in Eq. (2.16). 

Then, N Poincare invariant functions H, on T*My are provided such that 

{H,, ffb) = 0. a. b = 1 ,..., N. 

The 10 + N vector fields: 

H,= {Ho, I, P,- (P,, 1, J,,- V,v 1 (4.1) 

obviously generate a realization of 8, on T*My leaving 0 invariant. 
As we shall see immediately the problem of finding out the above-mentioned 

diffeomorphism from T*My into TM: can be solved by giving the position x:(z) and 
velocity n;(z) of each particle, a = l,..., N, when the state of the system is z E T*kfy. 

In this approach the position functions xz are required to satisfy: 

(i) H,,xE = 0, Vu’ #a, (4.2) 

(ii) P, XL = -8: , J,, x; = 8; . .x,.~ - 8; . x,, , (4.3) 
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which, for the sake of brevity, will be written hereafter as 

A,# = c; + c;” . xl, z= l,..., 10. (4.4) 

The latter condition guarantees the good behaviour of x; under the action of ‘$3 and 
the former one states that the position of particle (a) is “moved” by the action of H, 
only. That is, 

xz (exp [$r,H,Irj=x:(exp[r,H.]1), zET*My, 

which means that the evolution of the system starting from some initial state 
z E T*My yields a world line for each particle. 

Assuming that Eqs. (4.2) and (4.3) have been solved and the position functions .uE 
are known, we then define the velocities by 

7y E 
2H, ‘I2 

0 
i i 
--T- * H&, where 

u, 
11; = H,x,~ . H,x; 

and the accelerations by 

112 
. H,~c;. (4.6’) 

Provided that the functions x: have been properly chosen, the jacobian matrix 
WI 3 $JP(s:: 5 P,“, is nonsingular on T*My (or, at least in an open subset of it) and 
we can then define the 1 to 1 mapping: 

Z: T*My + TM; 

z + 2(z) = (x::(z), 7rI(Z)). 

Its jacobian map ZT applies the vector fields H,, J,, and P, into: 

(4.7) 

(43) 

which yields a covaritant predictive relativistic mechanics on TM:, since the 
generators .Z’rHz, .Z’P,,, S’J,, have the right shape (2.6), (2.14) and the 
orthogonality of f?: and rrg follows immediately from their definitions (4.6) and 
(4.6’). 
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Going back to the problem of finding out solutions to Eqs. (4.2) and (4.3) we shall 
carry through the integration in two steps: 

(i) We shall first integrate Eqs. (4.2) for a suitable set of Cauchy data, 
namely, a submanifold C and 4N function I& E ll’(C), requiring 

xfxzo) = P:(zo>~ vz, E c. 

(ii) Second, we shall use Eqs. (4.3) as conditions on the Cauchy data. 

Since Eqs. (4.2) can be solved separately for each particle (a) and component (B), 
and since the (N - 1) vector fields H,, , a’ #a, commute with each other, we have 
that 

dimC=7N+ 1 

and also that for any given a = l,..., N, Z must not be a characteristic submanifold of 
the remaining fields H,,, a’ # a. The latter implies that, if Z is defined by the (N - 1) 
independent functions Y,,, , A = 2 ,..., N, then the N X (N - 1) matrix (H, u/,),_ , ,,, , 

n-2:...:.\ 
has no vanishing (N - 1) x (N - 1) minors: 

Va = l,..., N, WH,. uk),,,, # 0 on C. (4.9) 
R- 2.....2’ 

This condition guarantees that, for any z (at least in the neighbourhood of Z where 
the condition holds), the implicit function theorem can be applied and determines 
N - 1 real numbers %h(z) such that 

‘&(z) H,, z E z. (4.10) 

Then, it immediately comes out that the solution of Eqs. (4.2) for the Cauchy data 
(Z ~$1 is 

(4.11) 

As has been mentioned before, Eqs. (4.3) are to be understood as condition on the 
initial data (Z, q,“). The right behaviour of xz under Poincare transformations 
requires that 

x:(d&,)z) = LX&,) . (x:(z) -A YE,)) (4.12) 

for any (E,) E !&or, at least, in a neighborhood of the identity (E,) = (0). 
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Introducing expression (4.11) into Eq. (4.12), we obtain 

(4.13) 

where %b ,(E~, z) = ‘Sk ,( g(a,)z). 
Then, since Z satisfies condition (4.9), we have that, for any z,, E C, there exists a 

linear combination of Hb(zo), b = l,..., N, being tangent to Z, which is unique appart 
from a multiplicative coefficient. Thus, we choose any function Y, on Z such that 

WH, ybL,b= I.....M # 0 on C. (4.14) 

This chosen function Y, defines the following one-parameter family of 
submanifolds 

The mathematical objects which we are now dealing with are pretty similar to 
those considered in Subsections 3b and 3c. Like there we shall also have in the 
present case: 

(i) a realization g*(s,) of ‘p on Z leaving Z, invariant and 

(ii) a unique vector field H = CT=, b’ . H, tangent to C such that H Y, = 1. 
Considering now the arguments of rpz on the left-hand side of Eq. (4.13), we shall 

have that 

will not lay in the same submanifold Z, as 

z, = exp 

i.e., 

Y,(z,) - Y,(z,) E A”(Z,) E,) # 0. (4.15) 

(Note that the latter difference should apparently depend on how far from .Z the point 
z is, however, it follows from the commutativity between exp(a, . Hb) and the 
Poincart transformation g(s,) that 1” only depends on E, and zl, i.e., the “trace” of z 
on Z.) 
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The vector field H then permits bringing zz into zAZ E C,, (A, = Y,(zl)) via its 
exponential map 

2, = exp(A”(z,, E) . H)z, (4.16) 

or, writing zz in terms of z, , 

i, = exp(A”(z,, E) . H) 0 exp(Z’ ‘G~,(E, z) . H,,) 0 g(s,) 

o exp(-C’ ‘$,(z) 1 H,,)z,, 

where Z’ stands for the summation over all indices a’ # a. (See Fig. 2.) 
Taking then into account the commutativity between the different mappings 

appearing on the right of the latter equation, it can be expressed as 

z2 = exp G ib . Hb) 0 g@,)z,, 
b:, 

which, by the uniqueness theorem (T.3.2), implies that i, = g*(s,)z, or equivalently, 
using Eq. (4.16), 

z2 = exp(-A”(z,, E,) . H) o g*(r:,)z,. (4.17) 

FIG. 2. The relationship between the pointk z, g(.s,)z, zI. z2 and i, occurring in Eqs. (4.16). (4.17) 
and (4.18). 
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Using this expression together with the above definition for .z2 and z, , Eq. (4.13) 
can be written as 

~:{exp(-Jn(zl 9 ~1 . W 0 g*(&I)zll = LX&) . ~JXZJ -A”(&)h vz, E z, (4.18) 

which, derived relatively to cJ at (E,) = (0), yields the equivalent condition 

C” + C” J p” = ($ Jv’ u J. Hrp:: + A;,’ on Z, (4.19) 

where C$‘ and CT” are defined in (3.28) and %~(z,) = -&a/&JI(Z,,O). 
So far we have proved that a set of Cauchy data (Z, os) yields a solution of the 

position equations (4.2) which is well behaved under Poincare transformations if, and 

only if, there exist 10 x N functions ‘$ on C such that conditions (4.19) are satisfied. 
Realize that this result is quite similar to the world line condition for CHS. Indeed, 
Eq. (4.19) is identical to (3.29). Hence, the consequences commented there also hold 
in the present case. 

5. EQUIVALENCE OF BOTH FORMALISMS: CHS AND HPS 

In the CHS framework a given N-particle relativistic system can be always 
formulated in terms of (2N - 1) functions, on the phase space T*My : 

&(z, m,) = H,(z) + imfi, xB(z), a = l,.,., N, B = 2 ,..., N, 

such that 

6) {H,, HbJ = 0, 
(ii) rang((H,,X,}),=,,...,,= N- 1 on the submanifold defined by 

B=Z,....,N 
H, + frni = 0, xB = 0, and 

(iii) the world line condition (3.30) is fulfilled. 

Given these mathematical objects, we choose a suitable clock constant x,(z) = r. 
we then work the formalism getting, at the end, a set of N world lines-defined by 
Eq. (3.23)---for each initial state z,, on the extended phase space T'(m,). 

On the other hand, a HPS is also formulated in terms of (2N - 1) functions on 
T*My: Ha, xe, a = l,..., N, B = 2 ,..., N such that 

6’) {Ha, HbJ = 0, 

(ii’) ({fG7x 1) = B a I ,..., N,B=2 ,..., N does not have any vanishing (N - 1) x 
(N - 1) minors, and 

(iii’) the word line condition is fulfilled. 

Working then all these objects in the HPS formalism we also obtain, at the end, a 
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set of N world lines for each initial state .z belonging to the whole phase space T*iWy. 
(Realize that the Cauchy data qz = q: are assumed in both cases, i.e., HPS and 
CHS.) 

Thus, the same ensemble of mathematical objects (see footnote 1211) can be used 
in two different manners, namely, CHS and HPS, to obtain one relativistically 
invariant world line for each particle. What we are going to show throughout this 
section is that the same world lines are obtained in both frameworks. 

T.5.1. THEOREM. For anv z E T*M’I, the N-submanifold 

S(z)- /exp (~T,,.H,)z,T,,ER/ 

cuts r’(m,) on one orbit of H (the masses appearing as parameters in T’(m,) are to 
be determined by rnz = -2H,(z), c = l,..., N). 

Proof. Since the matrix (H,x~)~= ,.,.,, N,ApZ ,,,,, N satisfies Eq. (4.9), it is always 

possible, for any fixed value of (a), to find out (N - 1) unique functions Ga(r,. z), 
a’ # a, such that 

K‘ gb(r,, z) . H, B = 2,..., N, 
b=l 

where ga(r,. z) = t,. It obviously comes out that G,(O. z) = ‘Gb,(z), given by 
Eq. (4.10). 

Thus, the curve 

is the intersection of S(z) with f’(m,), and its tangent vector at any point ;(7,, Z) 
can be written as 

(5.3) 

The uniqueness condition (2.19) then implies that this tangent vector is proportional 

to H at any point :(7,, z). Hence, curve (5.2) is an orbit of H apart from a 
reparametrization. 

It could still happen that each chosen value of (a) yields a different line ;(r,, 7) on 
r’(m,). However, condition (4.9) again guarantees that all the coefficients on the 

right of Eq. (5.3) do not vanish and, therefore, all the different curves ;(rar z): 
a= 1 ,..., N, are equivalent (i.e., can be reparametrized into one another). Thus, we 

shall take a common parameter p, writing hereafter y@, z) = y (F @), z). 



140 IRANZO ET AL. 

At this point everything is ready to compare both formalisms. For any given 
z E T*My, the world line {xE(exp[t, H,]z), r, E R} is assigned to the particle (a) by 
the HPS formalism. Then, since xf is a solution of Eq. (4.2), we have that 

x:(ewb,@)H,lz) = x::W9 zN1 

which, since $(rnr z) lays on r’(m,), can also be written as 

xZ(exp]r,@) H,lz) = W@. z)). 

Finally, taking into account that y@, z) is an orbit of H on r’(m,) appart from a 
reparametrization p = p(A), we have 

xSwl~,Wl4 = qfXexpl~Hlzd5 AE iI?, 

r,(n) = r,@(n)> and zo = y(0, z) E I-‘(WI,.), 
(5.4) 

which proves that any N-tuple of world lines derived by the HPS formalism can be 
also obtained in the CHS framework. 

That the converse (namely, that any N-tuple of world lines yielded by the CHS 
formalism can be derived as well by the HPS one) is also true follows immediately 
from Eq. (4.2) and from the fact that r’(m,) is a submanifold of the whole phase 
space T*My. 

6. CONSTRAINED HAMILTONIAN SYSTEMS CHS AND 

NONCOVARIANT PREDICTIVE RELATIVISTIC MECHANICS PRM-3 

Let a certain CHS be defined by the 2N constraints: 

&(z, ml = ff,(z) + frnf,4&),X,(Z, 5) = n(z) - 5. 
a = l,..., N. A = 2 . . . . . N. z E T”M;\, 

and let the particle positions in M, be given by some functions o; on r(m,.). Besides, 
since each (oi (b = l,..., N) means a time and the vector field H generates the “r-time 
evolution” on r’(mc), the assumption that HP: > 0 on r(m,) is implicit in any CHS. 

Then, the implicit function theorem can be applied and the equation 

rpi(exp[rH]z) = h(z), z E T’(m,), r E R, a = l,..., N, 

can be solved in r (at least for z belonging to a neighborhood of r,(m,)). Thus, for 
any z, there exists n,(z) E IR such that 

d(expP,(z)Hlz) = W), a = l,..., N. 
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Using these N functions A, we can label r’(m,) by the coordinates 

5 = h(z), 

Ye = d(explM)H 1~1, 

w;(z) = 
The “velocities” w:(z) so defined can also be expressed as 

w;, = H y;, . 

Indeed, deriving along H Eq. (6.1) we obtain 

W)(z) = H{d(exp[&(z)Hlz)J = (1 + (H~,)(z)J(H~~)(expI~,Hlz). 

Then, since, by definition of H. Hh = 1, we have that 

Wdi)(expkHlz) = (1 t WJ(z)I-‘. 

which can be used to calculate the derivative of ~11, yielding (6.3). 
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(6.2a) 

(6.2b) 

(6.2~) 

(6.3) 

(6.4) 

We can now express the eleven generators H, AT, I = l..... 10, in terms of these 
(6N + 1) coordinates obtaining 

A,*h=O and Hh= 1 (6.5) 

Il,*4’; = c; - cy w; + JJ(c;j - c$v;, + SC;“, (6.6) 

HJJ; = w;, (6.3) 

ii.,*w; = wj,(c;j - cyjw;, + cl, - (C,” t y;,cgp;, (6.7) 

Hw; =& (6.8) 

where the constants Cy and C,U, are given by Eqs. (3.28), and Eq. (6.7) defines the 
“acceleration” functions pub. (In the derivation of Eq. (6.6), the world line condition 
(3.29) and Eqs. (6.1) and (6.5) have been used, Afterwards, since H commutes with 
any Poincare generator A,*, Eq. (6.7) has been obtained by deriving both sides of 
(6.6) along H.) 

In the standard parametrization of CQ, the constants C; and Cy, are given by (4.3) 
and (4.4). So that, we can write 

(6.9b) 
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.v 
K:=J,*,=-zP:+ 1 I 

a a 

a=, L 
v,, w; x - (Sf - w,,w; - y,,p;> - 

L’Y u I aw:, ’ 
(6.9d) 

(6.9e) 

Furthermore, the commutation relation 
depend on r explicitely, i.e., 

1 = 0 implies that pi, does not 

We realize that expressions (6.9) for the Poincare generators are almost identical 
to those given by Eqs. (2.4), which would be obtained for the noncovariant predictive 
relativistic system 

The only discordant thing is the term -rP,? appearing on the right-hand side of 
(6.9d). It is not surprising, in any case, that some disagreements arise between both 
sets of generators, respective (2.4) and (6.9). Because, whereas the former set acts on 
a 6N-dimensional phase space (i.e., 71R3”v), the latter acts on the (6N + l)- 
dimensional extended phase space r’(m,). Thus, to compare them on equal footing 
we need either (i) to consider the restricted phase space r,(m,) c r’(m,) for the CHS 
(i.e., by making r = 0), where expressions (6.9) become fully equivalent to (2.4). or 
(ii) to implement 71R 3N by one more variable (t E R) and extend the predictive 
relativistic system (2.4) to the whole extended phase space ilR3*” X R. 

In the latter case, a t-time variation generator T, commuting with the action of ‘Q 
on 77F?3JV x R, must be added and then many possibilities arise depending on how this 
T is defined. For instance, if T = a/& is chosen, then the extension of the Poincare 
generators (2.4) to the whole 71R3’ x IF? is obtained by merely taking 

A;(& y: 1 I+$, = A,( y; , wb 1, I = l,..., 10. (6.11) 

However, this trivial choice for the eleventh generator T is dynamically meaningless, 
since it does not contain any dynamical information at all. 

If, on the contrary, we want the dynamical evolution of the system to be involved 
in the time generator T, the choice must be 

T(f, Y, w) = $ + P,(y. w). (6.12) 

The commutation relations [T, A;] = 0, I = l,..., 10, then provide the way to pull the 
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10 Poincare generators A;(& y, W) out from the 6N-dimensional phase space (t = 0). 
where the Af(0, y, w) are equal to the A;(y, W) given by (2.4). Doing this, we obtain 
that 

P;(t, x, 21) = P,(x, u), 

J;k -Y, 0) = J,(x, u), 

Pl(t, x, u) = P,(x, Zl), 

K;(t, x, o) = -tP,(.u, v) + K,(x, v), 
(6.13) 

which is in full agreement with Eqs. (6.9). 
Another interesting method to check the equivalence between CHS and PRM-3 

would have consisted of labeling r’(m,) by the coordinates 

t = h(z), (6.14a) 

F:(z) = q$(exp[&(z)H jz), (6.14b) 

#b(Z) = (6.14~) 

where j,(z) is defined by 

q~(exp[~,(z)H lz) = 0, a = l,..., N, (6.15) 

instead of Eq. (6.1) in the case considered before. 
Then, expressing the Poincare generators in terms of these coordinates, we obtain 

(6.16a) 

(6.16b) 

(6.16c) 

which coincide with Eqs. (2.4). 
In coordinates (6.14) we also have 

H = a/at. (6.17) 

Thus, the vector field H (which generates the variations of the time t) has been 
emptied from any dynamical contents by merely choosing a suitable set of coor- 
dinates. Therefore, H does not represent anything dynamically new which has not yet 
been introduced by the Poincare generator of time translations P$. The same also 
holds for the time parameter t. 

595/150/l-10 
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Our claim is that all the dynamical features represented via the usual CHS method 
on the (6N + 1)dimensional extended phase space r’(m,) can be pictured on the 6N- 
dimensional phase space r,,(m,) as well the time evolution and the world lines would 
be obtained by the action of PO*. The relationship between both pictures would be 
analogous to the one between the well-known Heisenberg and Schrodinger pictures in 
quantum mechanics. 

Furthermore, what has been commented above can be used as an argument against 
a conjecture of Sudarshan, Mukunda, Goldberg [ 141, where an important role is 
assigned to the “eleventh generator” H in the circumvention of the no-interaction 
theorems ]8] by the CHS formalism since, as has been here shown, nothing new is 
introduced by this generator. Although we agree with these authors that constrained 
Hamiltonian dynamics goes beyond the Dirac’s program, meaning that. if the 10 
Poincare generating functions are written in terms of a set of canonical variables 
relatively to the Dirac bracket on r’(m,), then their expression will depend critically 
on the constraints, and presumably none of the three forms proposed by Dirac ] 1 ] 
will be recovered. We shall devote a forthcoming paper to discussing in detail how 
and why no-interaction is circunvented by the constrained Hamiltonian formalisms. 

7. PREDICTIVE HAMILTONIAN SYSTEMS AND 
NONCOVARIANT PREDICTIVE RELATIVISTIC MECHANICS 

For any fixed values of the masses (m, ,..., m,.), let us now consider the 6N- 
submanifold Z,(m,) c T*II~‘~ defined by 

2H,(z) = 7c:(z) = -mfi ; xi(z) = 0; a, b = 1 ,..., N, (7.1) 

where x,“(z) and rc,“(z) have been defined in (4.11) and (4.6). 
We then label Z,(m,) by the following 6N coordinates: (i) the 3N positions X:(Z) 

defined by (4.11) and (ii) the 3N “velocities”: 

(7.2) 

where u,” stands for H,x;. 
The 6N submanifold Z,,(m,) is not preserved by the action of the full symmetry 

group 8, on T*M’y, however, in a similar way to the one discussed in Section 3b we 
can derive 

(A) A realization of ‘p on Z,(m,) 

For any (E,) E ‘p we consider: g’(s,): Lo + 2Y0 defined by 

g’(cI)z = exp x u,(z, ~1 - H, 0 g(e,)z, 
a=1 i 

(7.3) 
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where the u~(z, e) can be obtained by solving the equations 

b = I,..., N. (7.4) 

The uniqueness of these solutions (T,. a = l,..., N, is guaranteed by the implicit 
function theorem because 

det(H,xi) = det(6,, . ~4:) = r.4: . . . U: f 0. (7.5) 

Now, using fixations (7.1) and taking into account that the inverse matrix of 
H,.xi = U: . 6,, is 

S rch = dhc . L 

11; ’ (7.6) 

we have that the Poincare generators (3.19) are 

or, using Eqs. (4.4) and constraints (7.1). 

(7.7) 

which, expressed in terms of coordinates (7.2), read 

(7.8a) 

(7.8b) 

(7.8~) -g-g+oi:.$ , 
a a 1 

. $ + (vaj . 111 + xoj . at - s,;, . $j , (7.8d) 
0 n 

a=1 

K/z ;’ 
- 
a=1 

where 

(7.9) 

That is, the realization of the Poincare group on C, (which is locally isomorphic to 
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iTIF’.” via coordinates (7.2)) associated to the noncovariant predictive relativistic 
system 

dx’ 
a=v 
dt ” 

dv’ 
2 = c&(x, v). 
dt 

(7.10) 

It is interesting to realize that this predictive relativistic system is quite equivalent 
to that obtained from the CHS framework, i.e., (6.10). The proof is sketched by the 
following reflexions: for any z E Z,(m,), let us consider the state z,, determined by the 
intersection of r,,(m,) with the world submanifold S(z+see (T.5.1). The coordinates 
-v~(z,,) assigned by (6.2) correspond to the space coordinates of particle (a) in M, 
when its time coordinate is made zero by going forwards or backwards along its own 
world line (recall that the right-hand side of Eq. (6.1) is h(z,) = 0, and that cpz and xP, 
coincide on r’(m,)). On the other hand, the coordinates (7.2), X:(Z) give. by 
definition, the space position of (a) on its world line when the time is X:(Z) = 0 (since 
z E Z,(m,) and the constraints (7.1) then apply). Finally, since the same world lines 
are assigned either to z by the PHS formalism or to z0 in the CHS framework, as has 
been proved in Section 5, we can conclude 

XL(Z) = yb(zJ. (7.1 la) 

For the same reasons, we can also state for the velocities and accelerations that 

vi(z) = we and c&z) = &(z,). (7.1 lb) 

(B) A symplectic Form on Z,(m,) 

Indeed, if we call r: Z,(m,) + T*My the natural injection, then its pull-back 
mapping provides a differential 2-form, 

w; = <*a E A ‘(C,), (7.12) 

which is symplectic, since the Poisson brackets matrix {H,, x:} = S,, . U: is non- 
singular. 

Furthermore, as has been discussed above in a similar situation (see Subsections 
3b and 3d), oh is invariant under the realization of ‘Q on Z,(m,) generated by (7.9). 
Moreover, as has been also commented there, the Poisson bracket associated to WA on 
Z:,(m,) is the Dirac bracket relative to the second class constraints (7.1). 

Thus, a predictive Hamiltonian system provides a canonical noncovariant 
predictive relativistic mechanics by the following rule: 

(i) Solve the constraint equations (7.1) to obtain 2N among the variables in 
terms of the remaining 6N and substitute them into the standard expression (2.16) for 
the Poincare generating functions. 

(ii) The action of q on Z,(m,)--which is locally isomorphic to 71R”‘v--is 
generated by the resulting functions on .Zc,(m,) via the corresponding Dirac bracket. 
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8. CONCLUSION 

The main result achieved in the present article has been the proof of the complete 
dynamical equivalence between the a priori Hamiltonian predictive relativistic 
systems and the constrained Hamiltonian relativistic ones, meaning that, to describe a 
N particle relativistic system, both formalisms start from the same mathematical 
objects, fulfilling the same requirements-although assigning them different 
meanings: mass shells or Hamiltonian functions and fixations or Cauchy data. 
respectively- and, after working them by different methods and from clearly 
differentiated standpoints, the same world lines are obtained in both frameworks. As 
far as the CHS formalism deals with a (6N + I)-dimensional phase space whereas the 
HPS framework does with the 8N-dimensional TM:, it could be said that the latter is 
a predictive extension of the former. 

We have also proved that a given constrained Hamiltonian relativistic system can 
be formulated in terms of noncovariant predictive relativistic mechanics, by merely 
choosing a suitable set of coordinates in the (6N + I)-dimensional extended phase 
space. 

There has clearly appeared that the “eleventh generator” H does not contain any 
dynamical information which has not been previously introduced by the 10 Poincare 
generators. Hence, there seems to be no conceptual need for introducing either an 
eleventh generator (H) or a strange “time parameter” (r) as a phase space variable. 
although both of them may be useful to simplify the calculations. 

Our conjecture is that an equivalent framework could be established by fixing 2N 
second class constrains, with no dependence on any extra parameter r there. The time 
evolution, and hence the world lines, would be provided by the time translation 
generator P,,. The relationship between this viewpoint and the usual one in the CHS 
formalism would be similar to the relationship between the Heisenberg and 
Schrodinger pictures in quantum mechanics. 

We have also studied the world line condition and further analyzed its content, 
following from there that it must be understood as 30 x N conditions on the N mass 
shell constraints and the (N - 1) r-independent fixations, regardless of the clock fix- 
ation. 

In our opinion, the WLC is something previous to the no Interaction theorems 
arising in other approaches to the relativistic dynamics of particles. We mean by this 
that a too restrictive choice for the fixations x~(z),....x~(z), could forbide, via the 
WLC, any interaction to occur. For instance, if the fixations x4 = s’i - 4:. 
A = 2,..., N, are taken, the WLC then implies that no interaction is possible (this has 
been proved in Ref. [ 23 ] for the special case of two particles with some specific mass 
shall constraints, and we shall prove it for the general case in a forthcoming paper). 

It is finally interesting to point out that, thanks to the comparison of both 
formalisms (i.e., CHS and HPS), we have found out and proved that the world line 
condition of CHS is also needed in the HPS framework. having here a different 
meaning-recall that it has appeared aa a condition on the Cauchy data for the 
particle positions to guarantee their good behaviour under Poincare transformations. 
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