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The understanding of the transition to chaotic behavior and turbulence in natural

flows has been and continues to be a great scientific challenge. Due to the complexity of

this general problem, there has been a need to seek more fundamental laboratory flows

from which the important physics can be extracted. The swirling flow between two

concentric cylinders, known as Taylor–Couette flow, has been used as canonical example

for centrifugal instability and transition to turbulence following a progression of flow

instabilities.

The aim of the thesis has been to provide a deeper understanding of several experi-

mental observations of spatio-temporally complex flows for which no theoretical picture

was available. In order to accomplish this goal, accurate spectral computations of the full

Navier–Stokes equations have been combined with equivariant bifurcation and normal

form theories. The coupling of these tools not only aids in understanding the nature of

the observed flows, but furnishes the setting to compare systems with distinct physical

instability mechanisms and geometry.

Different configurations of the classical Taylor–Couette apparatus have been consid-

ered in the thesis. First, competition between centrifugal instability and shear due to

an additional imposed axial pressure gradient is investigated. This competition results

in secondary spiral flows of different angles and propagation speeds that may coexist in

space and time. Temporal modulations of axial shear, in this case due to axial sliding of

the inner cylinder, lead to a great degree of stabilization of the basic steady flow. How-

ever, it is shown here that when transition occurs, the flow becomes highly disordered

due to a sequence of symmetry breaking bifurcations which cannot be detected in the

laboratory due to experimental uncertainty. Finally, temporal modulations of the inner

cylinder rotation are considered and competition between two cellular flows with same

spatial symmetries but different spatio-temporal symmetries is investigated. Agreement

is achieved with experiments except for the frequency band where these flows coexist.

In order to investigate these effects, a radical change in the numerical model is needed.

This will be addressed in future work.
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CHAPTER 1

INTRODUCTION

The flow of a viscous fluid contained between the gap of two rotating cylinders, known as

Taylor–Couette flow, has been a paradigm for the study of the transition from a simple

laminar flow to chaotic flow following a progression of instabilities to states with increas-

ing spatial and temporal complexity (Coles, 1965; Fenstermacher, Swinney & Gollub,

1979). Recent developments in dynamical systems theory, computational capabilities

and measurement techniques have led to a better understanding of the transition to

complex dynamics in fluid flow. Yet it is neither well defined nor understood how a fluid

becomes turbulent. In contrast to other flows, the Taylor–Couette system has already

proven very useful to elucidating transitions between laminar states, so it is thus well

suited to investigate the question of onset of turbulence.

Figure 1.1 shows a schematic of the Taylor–Couette apparatus. The geometry of the

system is defined by the radius of the inner and outer cylinders, ri and ro respectively,

and the length of the cylinders h. The relevant parameters are the aspect ratio Γ = h/d,

where d = ro − ri is the gap between cylinders, and radius ratio η = ri/ro. Most of

the theoretical and computational work on Taylor–Couette flow assumes that the aspect

ratio of the apparatus is infinite, i.e. Γ → ∞. This approach has rendered excellent

agreement with experiments in long cylinders that have been specifically designed in

order to minimize end-wall effects. For low angular speeds of the cylinders, the flow is

steady and purely azimuthal. This basic state is known as circular Couette flow (CCF).

When the outer cylinder is at rest and the angular velocity Ωi of the inner cylinder

exceeds a critical value Ωi,c, circular Couette flow becomes unstable and axisymmetric

meridional cells develop. The cells are separated by radial jets of angular momentum

emanating from the cylinders boundary layers. This flow pattern, known as Taylor

vortex flow (TVF), is steady and periodic in the axial direction. Each pair of cells

(vortices) has a wavelength λ (measured in d space units) which defines the wavenumber

k = 2π/λ of the pattern. Figure 1.2 shows a schematic of TVF.

The symmetries of the Taylor–Couette apparatus and its boundary conditions play a

crucial role on the rich nonlinear dynamics that has been observed. The study of bifur-

cations and symmetric flow patterns has contributed to the development of equivariant

bifurcation and normal form theories (Golubitsky, Stewart & Schaeffer, 1988; Chossat

& Iooss, 1994; Chossat & Lauterbach, 2000). The Taylor–Couette system is invariant

under arbitrary rotations about the cylinders axis and a reflection about the horizontal

mid-plane, which together generate an SO(2) × Z2 symmetry group. In the infinite-
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Figure 1.1: Schematic of the Taylor–Couette flow with stationary outer cylinder.
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Figure 1.2: Schematic of Taylor vortex flow with axial wavenumber k = 3.15. Contours
of the stream-function ψ and azimuthal vorticity ωθ are shown in a meridional cross-
section. Vortex lines (rvθ contours) show the outflow and inflow jets separating the
Taylor cells. Black (gray) contours correspond to positive (negative) values, showing
r ∈ [ri, ro] and z ∈ [0, 2λ].

cylinder model the system is also invariant under translations along the axis, generating

the SO(2) × E(1) non-compact group. Non-compact groups, specifically E(1), are quite

difficult to treat mathematically. For example, in the non-compact case, the spectrum

contains both a discrete part (eigenvalues) and a continuous part. However, in the case

where axial periodicity of the patterns is assumed, the symmetry group of the problem

becomes the G = SO(2) × O(2) compact group.
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Lord Rayleigh (1916) showed that an inviscid rotating flow is stable provided that

its angular momentum increases radially outwards

d

dr

(

r2Ω(r)
)

> 0 ∀ r. (1.1)

In the case of viscous circular Couette flow with rotating inner cylinder and station-

ary outer cylinder, angular momentum decreases outwards from r2
i Ωi to 0 due to the

no-slip boundary conditions. Therefore, according to Rayleigh’s invsicid criterion the

Couette profile is unstable at infinitesimally small Ωi. When viscosity is accounted for,

a non-dimensional flow Reynolds number associated to the inner cylinder rotation can

be defined as Rei = driΩi/ν, where ν is the kinematic viscosity of the working fluid.

In a ground-breaking experimental and theoretical work Taylor (1923) showed that vis-

cosity shifts the onset of secondary flow to finite Rei,c, defined as the critical Reynolds

number. He performed a linear stability analysis of the Navier–Stokes equations and ob-

tained the critical angular speed of the inner cylinder in remarkable agreement with his

own laboratory experiments. He also showed that at the bifurcation point, the emerg-

ing pattern consists of a pair of counter-rotating axisymmetric (Taylor) cells which are

approximately square, i.e. with critical axial wavenumber kc ≈ π.

1.1 Wavenumber selection: Eckhaus instability

The transition from a uniform state to a spatially periodic pattern, of wavenumber kc,

is common to many hydrodynamic systems. For Rei > Rei,c, a continuous wave-vector

band of solutions bifurcates from the basic state. The width of this band at a particular

Rei is given by the neutral stability curve shown in figure 1.3 (solid line). However, apart

from the solution with kc at Rei,c, the other solutions are born unstable and stabilize

for higher Rei upon crossing the so-called Eckhaus curve (dashed line). Therefore, at a

given Reynolds number only flow patterns with wavenumber inside the Eckhaus curve

are stable and compete. The bifurcation scenario leading to the stabilization of the

Eckhaus unstable solutions was elucidated by Tuckerman & Barkley (1990) using a

Ginzburg-Landau equation with periodic boundary conditions.

The threshold for Eckhaus instability in Taylor–Couette flow was determined ex-

perimentally by Dominguez-Lerma, Cannell & Ahlers (1986), who showed that for

Rei > Rei,c the preferred axial wavenumber deviates from the critical value kc. However,

it is not yet well understood how k is selected on the stable Eckhaus band depending

on initial and environmental conditions.
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Figure 1.3: Neutral stability curve (solid line) of CCF. The onset of instability is at Rei,c

with critical axial wavenumber kc. TVF with k 6= kc are unstable at the bifurcation point
and restibilize upon crossing the Eckhaus curve (dashed line). Depending on initial and
experimental conditions any wavenumber in the shaded region can be selected.

1.2 Flow regimes and transitions

The Eckhaus instability mechanism is not observable in narrow gap (η → 1) Taylor–

Couette flow due to a secondary Hopf bifurcation which occurs at Rei,w & Rei,c. The re-

sulting flow, referred to as wavy vortex flow (WVF), is characterized by azimuthal waves

that rotate around the cylinder at constant speed. Although WVF is time-periodic, the

motion becomes time-independent when observed in a co-rotating frame. Therefore,

WVF is a relative equilibrium of the Navier–Stokes equations. King, Li, Lee, Swin-

ney & Marcus (1984) performed laboratory experiments and numerical computations

to determine the wavespeed of WVF as a function of the aspect ratio Γ, the Reynolds

number Rei, the axial wavenumber of the underlying Taylor vortices k and the number

of azimuthal waves n. They found hat the wavespeed is robust with respect to the ge-

ometry and wavenumbers and essentially depends on Rei. Their experimental results,

extrapolated to the Γ → ∞ limit, were in excellent agreement with their axially periodic

simulations.

If the rotation rate of the inner cylinder is further increased, Fenstermacher et al.

(1979) showed that WVF undergoes another Hopf bifurcation to modulated wavy vortex

flow (MWVF). In MWVF, the motion is quasi-periodic; there are two rotating waves on

the Taylor vortices with different frequencies and azimuthal wavenumbers. In a frame

co-rotatinng with one of the waves, modulated wavy vortex flow is time-periodic, and

thus it is a relative periodic orbit. Upon increasing Rei the flow gradually loses its
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Figure 1.4: Regime diagram of flow between two independently rotating cylinders (An-
dereck et al., 1986). The rotation speeds of the cylinders are measured by the inner and
outer cylinder Reynolds numbers, Ri and Ro, which correspond to Rei and Reo in our
notation.

azimuthal and axial periodicity and becomes weakly turbulent (Brandstäter & Swinney,

1987).

Andereck, Liu & Swinney (1986) investigated the nonlinear dynamics of Taylor–

Couette flow with independently rotating cylinders. They mapped out the two-dimensional

parameter space spanned by the inner and outer cylinders Reynolds numbers, Rei and

Reo, and revealed a large variety of flow regimes. Figure 1.4 shows the regime dia-

gram they obtained by fixing Reo and slowly increasing Rei to detect transitions. The

flow regimes are distinguished by their spatio-temporal symmetries, frequencies and az-

imuthal and axial wavenumbers.

When the cylinders rotate in opposite directions, there exists a rotation rate µ =

Reo/Rei, with µ < 0, such that the primary bifurcation to TVF is replaced by a Hopf

bifurcation to non-axisymmetric spiral vortices. This was shown numerically by Krueger,

Gross & Di Prima (1966) and experimentally by Snyder (1968), who determined this

bicritical µ for several values of the radius ratio. Langford, Tagg, Kostelich, Swinney

& Golubitsky (1988) performed a comprehensive linear stability analysis of counter-

rotating circular Couette flow for a wide range of µ and η. They showed that for

fixed η and decreasing µ the azimuthal wavenumber of the bifurcating spiral vortices
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increases monotonically in steps of 1. In particular, they computed the bicritical curves

µc(η) where spiral vortices of different azimuthal wavenumber, n and n + 1, bifurcate

simultaneously. It is worth noting that care must be taken when performing nonlinear

computations of spiral vortices with periodic boundary conditions. The secondary spiral

vortices generate a weak axial flow which is not physically meaning in the case of an

experimental apparatus with end-walls. Edwards, Tagg, Dornblaser & Swinney (1991)

imposed a non-periodic pressure term in the Navier–Stokes equations which enforced

a zero net axial mass flow and obtained excellent agreeement with their experimental

observations.

1.3 Variations of the Taylor–Couette setting

Several variations of the Taylor–Couette problem have focused on the degree of stabi-

lization that can be achieved, i.e. on the degree to which the threshold for the onset of

Taylor vortex flow can be shifted to larger angular speeds of the inner cylinder. For ex-

ample, the superposition of an axial pressure-driven through-flow has been shown to be

an efficient mechanism to stabilize the basic flow (Snyder, 1962; Takeuchi & Jankowski,

1981; Meseguer & Marques, 2002). In this case, the basic flow is a combination of cir-

cular Couette flow and an axial parabolic profile, termed by Joseph (1976) as spiral

Poiseuille flow. For low values of the through-flow the transition is observed to axially

propagating Taylor vortices, which are superseded by spiral vortices for higher values of

the through-flow (Snyder, 1962; Takeuchi & Jankowski, 1981).

A most interesting feature of this flow was reported by Nagib (1972), who observed

secondary flows where two spiral structures coexist simultaneously in space and time

in the co-rotating regime. More recently, Lueptow, Docter & Min (1992); Tsameret

& Steinberg (1994) have observed several complex flow regimes of Taylor and spiral

vortices, including mixed modes, in the case of stationary outer cylinder.

The imposed through-flow generates an axial mass flow which advects perturbations

downstream. One must then distinguish between convective and absolute instabilities

(Huerre & Monkewitz, 1990). In the first case, perturbations are amplified while being

carried away with the through-flow. The system behaves like a noise amplifier and the

bifurcated propagating Taylor vortices feature a time-dependent irregular wavenumber

(Babcock, Ahlers & Cannell, 1994). In the absolutely unstable regime perturbations

grow until they fill the apparatus, resulting in a well defined spatially periodic flow.

Transition thresholds between these regimes have been recently determined numerically
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and experimentally (Pinter, Lücke & Hoffmann, 2003; Langenberg, Heise, Pfister &

Abshagen, 2004).

Axial sliding of the inner cylinder has also been investigated as a stabilization strat-

egy, beginning with the pioneering experimental and analytical work of Ludwieg (1964).

However, much less attention has been paid to this problem mainly due to the technical

difficulties in its experimental realization. This problem can be formulated either as an

open flow system or an enclosed system with end-walls. Ali & Weidman (1993) studied

the stability of the latter, and more recently Meseguer & Marques (2000) compared both

systems. They focused on the former and showed that stability is enhanced only for slow

axial sliding, but that the difference between both systems is small.

Hu & Kelly (1995) considered temporal modulations of both Poiseuille flow and axial

sliding in an open Taylor–Couette system and showed that both mechanisms are very

efficient in delaying transition. Their theoretical results motivated the experimental work

of Weisberg, Kevrekidis & Smits (1997) in order to verify this effect and devise transition

control mechanisms based on axial oscillations of the inner cylinder. However, there

was only qualitative agreement between experiments and theory due to endwall effects

which impose a zero mean axial flow (Marques & Lopez, 1997). Marques & Lopez (1997)

noted that for small frequencies and large amplitudes of the oscillations there are some

windows of parameter space where the transition is via a Neimark–Sacker bifurcation to

non-axisymmetric spiral modes. These windows of parameter space were investigated by

Marques & Lopez (2000) using Floquet analysis and Sinha, Kevrekidis & Smits (2006)

who experimentally identified regions of quasi-periodic motion and frequency-locking.

However, the results they obtained were noisy even very close to the onset of instability.

Donnelly (1964) experimentally investigated time-harmonic modulations of the inner

cylinder rotation and observed that modulations delayed the onset of sustained Taylor

vortices to higher mean rotation. His findings were contradicted by the theoretical work

of Hall (1975) and Floquet analysis of Riley & Laurence (1976), indicating that mod-

ulations had a destabilizing effect. The controversy was resolved by Barenghi & Jones

(1989), who introduced a low level of noise in nonlinear computations of the Navier–

Stokes equations and concluded that the discrepancies regarding stability limits were due

to noise-induced difficulties in experimentally determining the onset of instability. More

recently, the problem of modulations about a zero-mean has been investigated by Youd,

Willis & Barenghi (2003, 2005), who have found a class of Taylor vortex flows whose

meridional ciruclation is independent of the direction of rotation of the inner cylinder.
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1.4 End-wall effects

Cole (1976) investigated the effect of cylinders length on the Taylor vortex and secondary

wavy vortex instabilities. He observed that the critical Reynolds number for TVF is in

good agreement with theoretical predictions for infinite cylinders even for aspect ratios

as low as Γ = 8. However, he found that the transition to WVF is very sensitive to

aspect ratio. In particular, one needs Γ > 40 to obtain quantitative agreement with the

theory for infinite cylinders Γ → ∞.

The presence of end-walls destroys the translation invariance along the cylinders

axis. As a consequence, the fluid column admits only an integer number of Taylor

cells instead of the continuous axial wavenumber spectrum given by the Eckhaus band

of the Γ → ∞ limit. Most of the experimental studies of Taylor–Couette flow use

either stationary end-walls or end-walls attached to the outer cylinder. In these cases,

the discontinuous nature of the boundary conditions, where the inner cylinder meets the

end-walls, generates weak vortices for Reynolds numbers well below the critical Reynolds

number for Γ → ∞, Rei,c. As Rei is increased, the cellular pattern propagates towards

the center of the apparatus until it fills the column at about Rei,c (Cole, 1976; Benjamin,

1978). Therefore, the transition to cellular flow is not the result of a bifurcation but of

a continuous process.

For end-walls at rest, the end-wall boundary layer flow tends to be radially inward.

However, Benjamin (1978); Benjamin & Mullin (1981) found that cellular flows at low

aspect ratio could also have an outflow at one or both end-walls boundary layers. These

flows, termed as anomalous modes, are disconnected branches of the flow at Rei → 0 and

appear only at higher Rei. For Γ ∼ 1 competition between the two cell mode and the

one cell anomalous mode has been extensively investigated (Benjamin & Mullin, 1981;

Cliffe, 1983; Pfister, Schmidt, Cliffe & Mullin, 1988) and the bifurcation scenario has

recently been elucidated (Mullin, Toya & Tavener, 2002). Pfister, Buzug & Enge (1992)

showed that at higher Rei bifurcations to non-axisymmetric flows leading to chaotic

behavior occur. These are the subject of current numerical investigations to shed light

on the transition mechanisms and scenarios (Marques & Lopez, 2006).

1.5 Plan of the thesis

The results presented on this thesis are focused on the understanding of experimental

observations in long aspect ratio Taylor–Couette apparatuses. Complex flow transi-
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tions, occurring in a variety of situations, are carefully investigated to shed light on the

underlying bifurcation scenarios. Accurate spectral computations of the Navier–Stokes

equations are systematically combined with equivariant bifurcation and normal form

theories to precisely describe the spatio-temporal properties of the flows.

The infinite-cylinder approximation is used in linear stability analyses and axially

periodic boundary conditions are considered for nonlinear computations of the Navier–

Stokes equations. The approach is validated by the fact that the numerics and exper-

iments, of aspect ratio Γ > 100 in all cases investigated, have substantial agreement

in most observables. In annuli with such large aspect ratios, end effects are secondary

to mode competition between flows of different wavenumbers. Moreover, one has finite

computational resources and must decide how best to deploy them. Modeling rigid or

open end-walls in such long aspect ratio experiments is beyond current computational

resources.

The thesis is structured as follows. The governing equations and numerical methods

are presented in chapter 2. The numerical scheme is based on a solenoidal Petrov–

Galerkin approximation of the Navier–Stokes equations which has been developed from

previous spectral schemes recently formulated and extensively tested for cylindrical ge-

ometries (Meseguer & Mellibovsky, 2007; Meseguer, Avila, Mellibovsky & Marques,

2007). Convergence tests have been performed and results compared to published pa-

pers. In chapter 3, the bifurcation scenario leading to the coexistence of spiral waves

experimentally observed by Nagib (1972) in spiral Poiseuille flow is investigated. The

material corresponding to this chapter has been published in Avila, Meseguer & Mar-

ques (2006). In chapter 4, we consider temporal modulations of axial sliding of the inner

cylinder and study the transition to spatio-temporal complexity recently reported by

Sinha et al. (2006). The results have been disseminated in Avila, Marques, Lopez &

Meseguer (2007). Chapter 5 is devoted to the study of mode competition and wavenum-

ber selection that arises when the rotation of the inner cylinder is modulated in time

about a zero-mean. The numerical computations of chapter 5 are complemented with

experimental results of Mr. Michael Belisle and Prof. William S. Saric at the former

Taylor–Couette laboratory of the Department of Mechanical and Aerospace Engeneer-

ing, Arizona State University. These joint theoretical and experimental investigations

have been published in Avila, Belisle, Lopez, Marques & Saric (2008). The normal form

analyses corresponding to the different configurations and bifurcations investigated in

the thesis are given in Appendices B, C and D. Finally, a general overview of the main

results is given in chapter 6.
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CHAPTER 2

GOVERNING EQUATIONS AND NUMERICAL METHODS

We consider an incompressible fluid of kinematic viscosity ν and density ̺ which is

contained between two concentric rotating cylinders, whose radius and angular veloc-

ities are r∗i , r∗o and Ωi and Ωo, respectively. The dimensionless parameters governing

this problem are the ratio of inner to outer cylinder radius η = r∗i /r
∗
o, which fixes the

geometry of the annulus, and the Couette flow Reynolds numbers Rei = dr∗i Ωi/ν and

Reo = dr∗oΩo/ν, where d = r∗o − r∗i is the gap between cylinders. In the linear stability

analysis the cylinders are assumed to be infinite, whereas the nonlinear computations

are performed in a periodic annulus with axial wavelength Λd.

Henceforth, all variables will be rendered dimensionless using d, d2/ν, and ν2/d2 as

units for space, time and the reduced pressure (p = p∗/̺), respectively. The Navier–

Stokes equation and the incompressibility condition for this scaling become

∂tv + (v · ∇)v = −∇p + ∆v, ∇ · v = 0 . (2.1)

Let v = (vr, vθ, vz) be the physical components of the velocity field in cylindrical coor-

dinates (r, θ, z). In the infinite-cylinder idealization, the boundary conditions read

v(ri, θ, z, t) = (0, Rei, 0), v(ro, θ, z, t) = (0, Reo, 0). (2.2)

where ri = r∗i /d = η/(1− η), ro = r∗o/d = 1/(1− η) are the non-dimensional radii of the

cylinders. The purely rotary flow

vb(r) =
(

0, Ar +
B

r
, 0

)

(2.3)

where

A =
Reo − ηRei

1 + η
, B = η

Rei − ηReo

(1 − η)(1 − η2)
, (2.4)

is an exact solution to the Navier–Stokes equations (2.1) satisfying the no-slip boundary

conditions (2.2). This steady flow is known as circular Couette flow (CCF).

The governing equations and boundary conditions are invariant to the Kz reflection

z → −z and to translations Ta along the z-axis, which generate the Euclidean group of

symmetries E(1). However, in the nonlinear computations axial periodicity is imposed

and the symmetry group in the axial direction becomes O(2). Note that as Kz and Ta do

not commute (in fact KzTa = T−aKz), they together generate an O(2) symmetry group

which is not the direct product of SO(2) and Z2, but the semi-direct product O(2) =

SO(2) ⋊ Z2. The elements of Z2 are the identity and Kz. In the azimuthal direction
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the governing equations are invariant to arbitrary rotations Rα which generate another

SO(2) symmetry group. Since both Ta and Kz commute with Rα, these operations

generate the group G = SO(2) × O(2) of the spatial symmetries of the system. The

actions of these symmetries on the velocity field are:

Tav(r, θ, z, t) = v(r, θ, z + a, t), (2.5)

Kzv(r, θ, z, t) = (vr, vθ,−vz)(r, θ,−z, t), (2.6)

Rαv(r, θ, z, t) = v(r, θ + α, z, t). (2.7)

The basic state (2.3) is invariant under G.

The numerical method used for the results presented in this thesis is based on a

Petrov–Galerkin formulation (a comprehensive analysis of this type of formulation can

be found in Moser, Moin & Leonard, 1983). The linear stability results have been

obtained with a new implementation of the method used by Meseguer & Marques (2000)

to determine the stability of spiral Couette flow. Their numerical scheme has been used

as a starting point to develop the full three-dimensional unsteady Navier–Stokes solver.

Overall, the novel solenoidal scheme used for the nonlinear computations is mainly based

on previous spectral schemes recently formulated and extensively tested for cylindrical

geometries (Meseguer & Mellibovsky, 2007).

2.1 Linear stability analysis

We investigate the stability of CCF (2.3) to infinitesimal disturbances which are assumed

to be periodic in the azimuthal and axial directions:

v(r, θ, z, t) = vb(r) + ei(kz+nθ)+σt ukn(r),

p(r, θ, z, t) = pb(z) + ei(kz+nθ)+σt qkn(r).
(2.8)

On introducing this decomposition in the Navier–Stokes equations (2.1) and neglecting

the nonlinear term on the perturbation ukn, we obtain the eigenvalue problem

σukn + (vb · ∇)ukn + (ukn · ∇)vb = −∇pb + ∆ukn. (2.9)

The boundary conditions (2.2) and solenoidal condition in (2.1) are used to define the

space of vector fields of the problem

V = {ukn ∈ (L2(ri, ro))
3 |∇ · [ei(kz+nθ)ukn(r)] = 0, ukn(ri) = ukn(ro) = 0}, (2.10)

12



where (L2(ri, ro))
3 is the Hilbert space of square-integrable vectorial-functions defined

in the interval (ri, ro), with the inner product

〈u,v〉 =

∫ ri

ro

u∗ · v rdr. (2.11)

The spatial discretization to solve (2.9) numerically, is accomplished by projecting (2.9)

onto a suitable basis. Here ∗ denotes the complex conjugate. Note that for any u ∈ V

and any scalar function p, we have 〈u,∇p〉 = 0. Hence, when discretizing the problem

by expanding u in a suitable basis of V

ukn =
∑

m

aknm uknm uknm ∈ V, (2.12)

and projecting the linearized equations (2.9) onto V the pressure term disappears, and

we get a linear system for the coefficients aknm:

σ
∑

m

〈ũknβ,uknm〉aknm =
∑

m

〈ũknβ, ∆uknm − vb · ∇uknm − uknm · ∇vb〉aknm. (2.13)

A Petrov–Galerkin scheme is implemented, where the physical basis used to expand

the unknown velocity, uknm, differs from the projection basis, ũknm. Both sets of bases

are given in Appendix §A. Here it suffices to say that the bases uknm are chosen such

that uknm ∈ V and the radial direction is discretized using Chebyshev polynomials.

Therefore, all the inner products in (2.13) involve polynomials and can be computed

exactly using the Chebyshev Gauss–Lobatto quadrature (Canuto, Hussaini, Quarteroni

& Zang, 2006). The projection yields the generalized eigenvalue problem

σAknx = Bknx (2.14)

where the vector x contains the real and imaginary parts of the coefficients aknm in

(2.13), and Akn, Bkn are constant matrices, with Akn positive definite.

The stability of CCF is determined by the sign of the eigenvalue σ∗ of (2.14) with σ∗ =

maxσ ℜ(σ). For negative values of σ∗, CCF is stable under infinitesimal perturbations.

When σ∗ is positive, it becomes unstable and bifurcated secondary flows appear. Note

that σ∗(n, k, η, Rei, Reo) is a function of the physical parameters of the system. For fixed

η, Reo, and given n, k, the inner Reynolds number Rei such that

σ∗(n, k, η, Rei, Reo) = 0 (2.15)

is computed to obtain the neutral stability curve. The critical inner Reynolds number

is defined as

Rei,c = min
n,k

{Rei(n, k) |σ∗(Rei) = 0} (2.16)

and the corresponding values of n, k are the critical azimuthal and axial wavenumbers

nc, kc, which will dictate the geometrical shape of the critical eigenfunction.
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2.2 Nonlinear computations

In order to investigate the dynamics of the bifurcated flows beyond onset, nonlinear

computations of the Navier–Stokes equations are required. In this case, the perturbation

u is discretized as

u(r, θ, z, t) =
L

∑

l=−L

N
∑

n=−N

M
∑

m=0

alnm(t)ei(lk0z+nθ)ulnm(r), (2.17)

which is Λ-periodic, with Λ = 2π/k0, in the axial direction. The discrete set of axial

wavenumbers is of the form k = lk0 for l = [−L,L], i.e. they are all harmonics of the

fundamental axial wavenumber k0. Note that the expressions for ulnm are the same as

in the linear stability analysis and the convention ulnm = uknm, with k = l k0, has been

used.

The basic flow (2.3) can be used to simplify the numerical scheme by decomposing

the velocity field and pressure as

v(r, θ, z, t) = vb(r) + u(r, θ, z, t),

p(r, θ, z, t) = pb(z) + q(r, θ, z, t).
(2.18)

On introducing the perturbed fields in the Navier-Stokes equations, we obtain a nonlinear

initial-boundary problem for the perturbations u and q:

∂tu = −∇q + ∆u − (vb · ∇)u − (u · ∇)vb − (u · ∇)u, ∇ · u = 0, (2.19)

for (r, θ, z) ∈ D = [ri, ro]× [0, 2π]× [0, Λ] and t > 0. The boundary conditions are homo-

geneous for the radial coordinate and periodic for the azimuthal and axial coordinates

u(ri, θ, z, t) = 0, u(ro, θ, z, t) = 0,

u(r, θ + 2π, z, t) = u(r, θ, z, t), u(r, θ, z + Λ, t) = u(r, θ, z, t).
(2.20)

Finally, the initial condition at t = 0 is

u(r, θ, z, 0) = u0, ∇ · u0 = 0 in D. (2.21)

The spectral scheme is obtained when introducing expansion (2.17) in (2.19) and

projecting over a suitable set of test solenoidal fields

Ψlnm = ei(lk0z+nθ)ũlnm, (2.22)

where ũlnm are defined in (A.5) and (A.6). The projection is carried out via the standard

volume integral over the domain D,

(

Ψlnm, ∂tuS

)

D
=

(

Ψlnm, ∆uS − (vb · ∇)uS − (uS · ∇)vb − (uS · ∇)uS

)

D
, (2.23)
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for (l, n,m) ∈ [−L,L] × [−N,N ] × [0,M ], where

(a,b)D =

∫

D

a∗ · b dD. (2.24)

The pressure term is canceled in the projection, i.e., (Ψlnm , ∇q)
D

= 0, leading to a

dynamical system only involving the amplitudes almn(t) of the velocity approximation

(2.17), i.e,

Alnm
pqr

dapqr

dt
= Blnm

pqr apqr − Nlnm(a, a), (2.25)

where we have used the convention of summation with respect to repeated subscripts.

In (2.25), the matrices A and B stand for the projection of the time differentiation and

linear Laplacian-advection operators, whereas N is the projected nonlinear advective

term.

The system of ode’s (2.25) is integrated in time by means of a linearly implicit

method, where backwards differences are used for the linear part and polynomial ex-

trapolation is used for the nonlinear one.

2.2.1 Modal kinetic energy of the solutions

It is convenient to consider the kinetic energy of the perturbation field u, E(u, t). Since

the basic flow has u = 0, a non-zero value of E(u, t) indicates that the basic state

has become unstable and a new state has bifurcated. However, the kinetic energy of

the perturbation field alone does not provide information on the dominant axial and

azimuthal wavenumbers of the bifurcated solutions. In order to characterize the spatial

complexity of these flows, we consider the kinetic energy associated with each Fourier

mode in the spectral approximation (2.17)

Eln(t) =
1

2V

∫ Λ

0

dz

∫ 2π

0

dθ

∫ ro

ri

u∗
ln · uln r dr, (2.26)

where uln is the (l, n) component of the perturbation field u

uln = ei(lk0z+nθ)

M
∑

m=0

alnm(t)vlnm(r). (2.27)
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L M ur

Rei =72.4569 106.066
4 8 4.23316438 17.832956

12 4.23319133 17.832834
16 4.23319131 17.8328605

6 8 4.23360501 17.9595509
12 4.23363199 17.9594085
16 4.23363197 17.959437

8 8 4.23360889 17.9697507
12 4.23363587 17.9696144
16 4.23363586 17.9696437

Table 2.1: Radial velocity ur at (r, θ, z) = ((ri+ro)/2, 0, 0), corresponding to the outflow
jet, for Taylor vortex flow at different Rei. The values reported by Jones (1985) are
4.23363 and 17.9705.

Sometimes it is more useful to consider the energy associated to each azimuthal or axial

mode

El(t) =
N

∑

n=−N

Eln(t), (2.28)

En(t) =
L

∑

l=−L

Eln(t). (2.29)

Note that due to the mutual orthogonality of the Fourier modes, this decomposition

yields

E(u, t) =
L

∑

l=−L

N
∑

n=−N

Eln(t). (2.30)

The changes in the distribution of modal energies of the solutions as the Reynolds

number is increased aids in identifying subsequent bifurcations and in elucidating the

increased complexity of the resulting flow patterns.

2.2.2 Validation of the scheme

Numerical computations have been performed in the axisymmetric steady Taylor vortex

flow regime for η = 0.5 and Reynolds numbers Rei = 72.4546 and Rei = 106.066 as in

Jones (1985). Table 2.1 shows the values of the radial velocity ur for different truncations

of the spectral approximation (2.17) at (r, θ, z) = ((ri + ro)/2, 0, 0), which corresponds

to the outflow jet separating the Taylor cells.
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Rei/Rei,c λ = 2π/k Computed King et al.
3.98 2.40 0.3343±0.0005 0.3343±0.0001
3.98 3.00 0.3340±0.0005 0.3340±0.0001

Table 2.2: Wavespeeds of the n = 6 wavy vortex flow for η = 0.868 and different axial
periodicities of the pattern. Onset of Taylor vortex flow is at Rei,c = 115.1.

The accuracy of the time-stepping scheme has been tested in the non-axisymmetric

unsteady wavy vortex flow regime. Wavespeeds have been computed and compared

to the experimental and numerical values obtained by King et al. (1984), who showed

that wavespeeds are very sensitive to numerical discretization and accuracy of the time-

stepping scheme. Table 2.2 shows their and our numerical results (within 0.1% of their

values).

2.3 Mode competition in axially periodic flows

In a linear stability analysis, the axial wavenumber of the perturbation u varies contin-

uously. However, in the nonlinear computations the axial direction is treated as being

periodic and a suitable fundamental axial wavenumber k0 in (2.17) has to be selected

such that the discretization resolves those axial modes responsible for the instability.

In order to illustrate how to choose k0, let us consider the infinite-cylinder case with

the inner cylinder rotating at a constant angular speed, Rei, and the outer cylinder

stationary. For η = 0.5, circular Couette flow becomes linearly unstable via a pitchfork-

of-revolution bifurcation to axisymmetric Taylor vortex flow (TVF) at Rei,c = 68.19,

with critical axial wavenumber kc = 3.162. For Rei > Rei,c a continuous wave-vector

band of TVF solutions bifurcates from circular Couette flow. The width of this band at

a particular Rei is given by the neutral stability curve of figure 2.1(a) (solid line). How-

ever, apart from the solution with kc, the other solutions are born unstable and stabilize

for higher Rei upon crossing the Eckhaus curve. Figure 2.1(a) shows the Eckhaus curve

as obtained by Riecke & Paap (1986) assuming continuous axial wavenumber k (dashed

curve), and its classic Ginzburg-Landau estimate (dotted curve).

In the nonlinear computations the spectrum of axial wavenumbers is discrete due

to the imposed periodic boundary conditions (2.20). Consider a small fundamental

axial wavenumber k0 = 0.15 which corresponds to a periodic annular domain of axial

wavelength Λ = 2π/k0 = 41.89. With this choice, the most unstable Fourier mode in

the spectral expansion (2.17) is l = 21, with an axial wavenumber k = l k0 = 3.15
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Figure 2.1: (a) Neutral (solid line) and Eckhaus (dashed line) stability curves for circular
Couette flow with η = 0.5 and stationary outer cylinder (computations by Riecke &
Paap, 1986). The open and filled circles correspond to the points in these curves with
axial wavenumbers k = l k0 with k0 = 0.15. The dotted line corresponds to the third-
order Ginzburg-Landau approximation of the Eckhaus curve. (b) Solid lines show the
kinetic energy time series of the l = 24, 29 axial Fourier modes, and their three first
harmonics, in the transition from the Eckhaus unstable TVF58 to TVF48 at Rei = 100.
The dashed line corresponds to the l = 0 mode.

very close to the critical value kc. The wavelength of the resulting periodic pattern is

λ = 2π/k = 1.995, which correponds to approximately square counter-rotating Taylor

cells (see figure 1.2). When considering the full axial domain, z ∈ [0, Λ], the flow spans

Λ/(λ/2) = 2l = 42 cells, henceforth TVF42.

For Rei > Rei,c a discrete family of Taylor vortex flows with different l bifurcate

supercritically from circular Couette flow at the open circles in figure 2.1(a). These

TVF are unstable at onset as circular Couette flow is already unstable to TVF42, and

they become stable at secondary bifurcations (Tuckerman & Barkley, 1990). These

secondary bifurcations are indicated by the filled circles in figure 2.1(a) and coincide very

well with the Eckhaus curves computed by Riecke & Paap (1986) and the large aspect

ratio experiments of Dominguez-Lerma et al. (1986). Here, the Eckhaus instability curve

has been determined using nonlinear computations. For example, starting at Rei = 100

with a random perturbation in the Fourier subspace spanned by mode l = 29, with

corresponding k = 4.35, the perturbation is evolved in time, resulting in steady TVF58.
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Then, a small perturbation to the modes l = 21, . . . , 28 is introduced and their kinetic

energy (2.29) is monitored in time. In this case, TVF58 is Eckhaus unstable and evolves

to TVF48, i.e. with l = 24 and k = 3.6. This transition is illustrated in figure 2.1(b),

showing the kinetic energy of the axial Fourier modes l = 24, 29 and their first three

harmonics. The process is repeated with increasing Rei in order to detect the point

of bifurcation. The use of a small fundamental axial wavenumber k0 is essential for

capturing the nonlinear competition between modes as the Eckhaus curve is crossed.
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CHAPTER 3

DOUBLE HOPF BIFURCATION IN SPIRAL POISEUILLE FLOW

The spiral Poiseuille problem deals with the behavior of an incompressible viscous fluid

confined between two coaxial cylinders independently rotating around their common

axis. In addition, the fluid is enforced to flow downstream by an imposed pressure

gradient in the axial direction. The resulting steady spiral flow is a combination of a ro-

tation due to the circular Couette flow and an axial parabolic profile, due to the pressure

gradient, also termed spiral Poiseuille flow by Joseph (1976). The spiral Poiseuille flow

(SPF) is subject to shear and centrifugal instability mechanisms, which can destabilize

the flow for sufficiently high values of the axial pressure gradient and angular speeds of

the cylinders.

The stability of SPF was studied experimentally by Snyder (1962) for narrow gap

geometry and fixed outer cylinder, showing that the primary transition leads to axially

propagating structures. For low values of the through-flow the transition is observed to

propagating Taylor vortices. For higher values of the through-flow the primary bifurca-

tion is to spiral vortices of increasing azimuthal and axial wavenumbers (Snyder, 1962;

Takeuchi & Jankowski, 1981). The systematic exploration of secondary flows for this

problem has also been studied more recently by Lueptow et al. (1992) and Tsameret &

Steinberg (1994), who have observed several flow regimes of toroidal and spiral vortices.

Wereley & Lueptow (1999) have experimentally characterized the velocity fields of some

of these regimes and compared them to the Taylor–Couette case. Their results have

been numerically reproduced by Hwang & Yang (2005).

Pinter et al. (2003) have performed a saddle-point analysis of counter-rotating SPF

and have provided the boundaries between convective and absolute instabilities for low

through-flow. Their results have been confirmed experimentally (Langenberg et al.,

2004). The nonlinear dynamics of SPF for moderate axial flow and counter-rotating

cylinders have been studied by Hoffmann, Lücke & Pinter (2004). They have used

a hybrid finite-difference-Galerkin method to investigate competition between spirals

vortices of opposite helical orientation and propagating Taylor vortices.

Former numerical linear stability analyses of the SPF were carried out in the ax-

isymmetric case (Chung & Astill, 1977; Hasoon & Martin, 1977) or for specific angular

rotation speed ratio values of the cylinders (Takeuchi & Jankowski, 1981; Cotrell &

Pearlstein, 2004). Meseguer & Marques (2002, 2005b) provided a first comprehensive

linear stability analysis for medium gap geometry which covered a wide range of inde-
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pendent co-rotating angular speeds of the cylinders as well as axial flow velocities. They

found a bicritical curve of coexistence of spiral waves of opposite helical orientation.

Over that curve, two, or even three, independent modes bifurcate simultaneously.

Experimental explorations of the co-rotating SPF carried out by Nagib (1972) for

small gap revealed the presence of secondary stable regimes consisting of a superposition

of traveling spiral waves of opposite helical orientation. The linear stability analysis by

Meseguer & Marques (2005b) suggested that these originate from the codimension two

bifurcation curve where both spiral waves bifurcate simultaneously. However, a nonlinear

analysis is required in order to determine the bifurcation scenario leading to the complex

flows observed by Nagib (1972). As noted by Joseph (1976), these flows are characterized

by very high axial and azimuthal wavenumbers, thus being unfeasible to reproduce them

numerically, due to the current computational limitations.

The results presented in this chapter provide numerical evidence of the existence

of these secondary regimes for much lower angular and stream-wise speeds of the flow,

where the spatial resolution required is less demanding. We combine equivariant bifur-

cation and normal form theories with numerical computations to elucidate the scenario

leading to the coexistence of spiral waves.

3.1 Basic flow and symmetries

We consider the Taylor–Couette system with co-rotating cylinders. In addition, the

fluid is driven by an imposed axial pressure gradient which generates a mean axial

flow. The non-dimensional dynamical parameters of the system are the inner and outer

cylinders Reynolds numbers, Rei and Reo, and the Poiseuille number P = ∂pb/∂z which

measures the applied pressure gradient. Figure 3.1 shows the geometry and parameters

of the spiral Poiseuille problem.

The steady velocity field satisfying the Navier–Stokes equations (2.1) with boundary

conditions (2.20) and imposed axial pressure gradient P is a superposition of circular

Couette flow and a logarithmic-parabolic profile in the axial direction

vb = (ub, vb, wb) =
(

0, Ar +
B

r
,C ln(r/ro) +

P

4
(r2 − r2

o)
)

, (3.1)

where

C =
P

4 ln η

1 + η

1 − η
, (3.2)
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Figure 3.1: Schematic of the spiral Poiseuille flow with co-rotating cylinders.

and A and B as given in (2.4). The mean axial flow generated by the pressure gradient

P can be used to define an axial Reynolds number

Reax =
2

r2
i − r2

o

∫ ro

ri

wbr dr =
η2 − (1 + η2) ln η − 1

8(1 − η2) ln η
P. (3.3)

The governing equations are invariant to rotations Rα about the cylinder axis and

to axial translations Ta:

Rα(v)(r, θ, z) = v(r, θ + α, z), (3.4)

Ta(v)(r, θ, z) = v(r, θ, z + a). (3.5)

Rotations generate the symmetry group SO(2), and due to the imposed axial periodicity,

axial translations generate another SO(2) symmetry group. As rotations and transla-

tions commute, the complete symmetry group of the problem is G = SO(2) × SO(2).

The steady basic flow (3.1) is invariant to G. Note that the imposed axial pressure

breaks the Z2 reflectional symmetry of classical Taylor–Couette flow.

3.2 Bifurcation scenario

Meseguer & Marques (2002, 2005b) have recently provided a linear stability analysis

of the steady SPF for η = 0.5 covering a wide range of independent angular speeds

of the cylinders and through-flow velocities. They have showed that in the co-rotating
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Figure 3.2: Projection of the critical surface Rec
i(Reax, Reo) on the (Reax, Reo)-plane

(Meseguer & Marques, 2005b). Boundary curves separate regions where modes of dif-
ferent azimuthal wavenumber n (included in the plot) bifurcate at lowest Rei. The bold
line represents the bicritical boundary crossed by dashed line at Reax = 33.

regime the interaction between shear and centrifugal instabilities leads to mode com-

petition. In particular, they found a bicritical Hopf curve where spiral waves of oppo-

site axial propagation compete. Figure 3.2 shows a projection of the critical surface

Rei = Rec
i(Reax, Reo) as computed by Meseguer & Marques (2005b), where the double

Hopf curve (bold line) is shown. In the white region below the bicritical curve, Left-

handed spiral waves (LSW) which propagate downstream, i.e in the direction of the

imposed through flow, are dominant. In contrast, upstream propagating Right-handed

spiral waves (RSW) are dominant in the gray region. LSW are characterized by positive

azimuthal wavenumbers n > 0, depicted in the figure, whereas RSW are characterized

by negative azimuthal wavenumbers.

In this chapter we present a study of the nonlinear dynamics arising in the neighbor-

hood of a double Hopf point of the bicritical curve. For computational reasons, Reax = 33

(dashed line in figure 3.2) has been chosen to perform a comprehensive bifurcation anal-

ysis, since the bifurcated spirals feature the lowest non-zero azimuthal wavenumbers

n = ±1. Figure 3.3(a) shows the neutral stability curves (k,Rei,c) provided by linear

stability analysis of SPF at Reax = 33 and Reo = 200.48. The curves associated with

the azimuthal modes n1 = −1 and n2 = 1 attain a common minimum Reynolds number

Rei = 413.02 at kc,1 = 3.343 and kc,2 = 4.56, respectively. This corresponds to the
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Figure 3.3: (a) Neutral stability curves of n = ±1 azimuthal modes at the bicritical point
(Reax, Reo) = (33, 200.48) for k varying continuously. The white circles are located at
the minima kc,1 and kc,2 of n1 = −1 and n2 = 1, respectively. (b) Same as (a) but for
the discretization k = lk0 with k0 = 0.35 and l ∈ [−66, 66]. In this case the bicritical
point is (Reax, Reo) = (33, 202.6).

double Hopf point

(Reax, Reo, Rei)
dH
∞ = (33, 200.48, 413.02), (3.6)

where ∞ sub-index refers to critical values computed assuming a continuous range of

axial wave numbers k. When considering nonlinear computations, the spectrum of axial

wave numbers becomes discrete (see §2.3), and it has to be fixed so that those modes

responsible for the instability, as well as their harmonics, are resolved. At this point,

a fundamental axial wavenumber k0 in (2.17) has to be fixed so that the discretization

covers the unstable dynamics.

In this chapter we use a spectral resolution consisting of (L,M,N) = (66, 24, 8) modes

along with k0 = 0.35, leading to a periodic annulus of wavelength Λ ∼ 18. The value of k0

has been suitably chosen in order to capture the two values kc,1 = 3.343 and kc,2 = 4.56.

This is accomplished by the axial discretization used, where the Fourier modes (l1, n1) =

(10,−1) and (l2, n2) = (13, 1), rendering k1 = 10k0 = 3.5 and k2 = 13k0 = 4.55,

consistently reproduce the nearby critical values of the continuum case. In addition, up

to four harmonics of the two previous modes are also included in the dynamical system of

amplitudes. Nevertheless, the resulting equispaced set of discretized axial wave numbers
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the Hopf (Neimark–Sacker) bifurcation curves. The double Hopf point (3.7) is indicated
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lk0 leads to minor discrepancies when trying to reproduce the instability mechanisms.

This is mainly due to the fact that the critical Reynolds number Reo at which these

modes bifurcate simultaneously is slightly different from the ideal value Reo = 200.48.

This small discrepancy can be spotted from figure 3.3(b), where the neutral stability

points (lk0, Ric)n=±1 attain a common critical value Rei,c = 417.15 for Reo = 202.6. As

a result, the coordinates of the double Hopf bifurcation point based on our discretization

are

(Reax, Reo, Rei)
dH = (33, 202.6, 417.15). (3.7)

Overall, the critical values of the spectral approximation differ nearly by 1% from the

values obtained by linear stability computations using a continuous range of k.

Figure 3.4 shows the regime diagram of the competition between n1 = −1 RSW

and n2 = 1 LSW in the neighborhood of the double Hopf point (3.7). The bifurcation

curves in figure 3.4 are very close together. For clarity, these have been represented in

figure 3.5 in (Reo, ǫ)-space, where ǫ = Rei − H2(Reo) and H2 corresponds to the linear

stability curve of the n2 = 1 spiral mode. For Rei and Reo in region 1 the basic state

SPF is the only flow that exists. Crossing the Hopf bifurcation curve H1 into region 2,

SPF become unstable and RSW emerge. Upon crossing into region 3, RSW become

unstable via a Neimark–Sacker bifurcation N1 to a regime of interpenetrating spirals
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Figure 3.5: Loci of solutions type in (Reo, ǫ)-space (ǫ = Rei − H2). Filled squares
and circles are LSW and RSW, respectively, and diamonds are IPS. Solid (dashed)
lines correspond to the Hopf (Neimark–Sacker) bifurcation curves. The double Hopf
point (3.7) is indicated with a filled triangle. Bracketed numbers correspond to regions
in parameter space with qualitatively different dynamics. A schematic of their phase
portraits are shown in figure 3.6.

(1) (2) (3) (4) (5) (6)

Figure 3.6: Generic phase portraits corresponding to the six different regions of the
regime diagram in figures 3.4 and 3.5. Solid (open) circles are stable (unstable) states.
See Appendix B for details.

(IPS). These consist of the superposition of RSW and LSW. The latter bifurcate at H2

but are unstable in region 4. The situation is analogous when starting from region 1 and

crossing H2, N2 and H1 to reach region 4. The detailed analysis of this bifurcation is

presented in Appendix B in terms of equivariant normal form theory. Figure 3.6 shows

a schematic of the phase portraits in the six regions of parameter space indicating the

stability of the flows, summarizing the results in the Appendix. The Hopf bifurcation

curves H1 and H2 have been obtained with linear stability analysis of SPF for the

discrete axial wavenumbers k = lk0 in the nonlinear computations. Their intersection

renders the double Hopf point (3.7). The Neimark-Sacker bifurcation curves N1 and N2
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Figure 3.7: (a) Time evolution of the energy of the azimuthal Fourier modes, measured
according to (2.28), during transition from SPF to LSW at (Reo, Rei) = (190, 392.85).
The solid upper line corresponds to the n = 1 mode generating the LSW, whereas the
stagnated curves below En(t) correspond to harmonics of the leading unstable mode. (b)
Same as (a) during transition from LSW to IPS at (Reo, Rei) = (190, 393.5).

in figures 3.4 and 3.5 have been computed by time evolution, using the 3D Navier-Stokes

solver. The stability of any solution is monitored in time through the measurement of the

kinetic energy density associated with each azimuthal Fourier mode En(t) as defined in

(2.28). Figure 3.7(a) shows an energy-time plot of the transition from SPF to LSW when

crossing H2 from below. In order to detect the Neimark-Sacker boundary N2, the LSW

were continued by subsequently increasing Rei until they eventually became unstable,

as shown in its energy-time evolution, see figure 3.7(b). In this case, the instability

leads to quasi-periodic IPS. As shown in figure 3.4, the regions where LSW or RSW are

stable are very narrow, whereas the IPS are stable in a much wider region of parameter

space. Note that region 6, where LSW are stable, is slightly wider than region 2 where

RSW are stable (figure 3.5). In addition, all the bifurcations observed were found to be

supercritical.

28



(a) (b)

Figure 3.8: Isosurfaces of the azimuthal vorticity of the perturbation over two axial
wavelengths of the patterns: (a) LSW at (Reo, Rei) = (190, 392.8), ωθ = ±23. (b) RSW
at (Reo, Rei) = (210, 431.5), ωθ = ±9.5.

3.3 Characterization of the bifurcated flows

3.3.1 Left and Right spiral waves

The spiral patterns arising from Hopf bifurcations H1 (RSW) and H2 (LSW) break the

rotational and translational symmetries of the problem. However, these solutions are

time-periodic and, essentially, one-dimensional, since their dependence on t, z and θ

occurs through the phase variable (Hoffmann et al., 2004)

φ = ωt + lk0z + nθ, (3.8)

Therefore, these patterns rotate with angular speed wp = −ω/n and propagate axially

with phase speed c = −ω/(lk0), so that the symmetries have become spatio-temporal, see

Appendix B equations (B.28)–(B.29). These solutions retain a purely spatial symmetry,

a combination of an axial translation Ta and a rotation Rα such that

lk0z + nθ = 0, (3.9)

corresponding to helical motion. Therefore the symmetry Hα = RαT−nα/(lk0) generates a

subgroup SO(2)H of G, see Appendix B for details. These spiral patterns are simultane-

ously rotating and traveling waves, resembling a barber pole, and for this reason we use

the term spiral waves for them. The geometrical shape of these solutions can be seen in

figure 3.8, showing isosurfaces of azimuthal vorticity. Each spiral wave is composed of

two spiral vortices with opposite vorticity (light and dark in the figure), within an axial

wavelength.
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LSW Reo Rei ωp c/Reax

195 402.5 397.7 2.65
196 404.4 398.9 2.66
197 406.3 400.0 2.66
198 408.25 401.2 2.67
199 410.2 402.4 2.68
200 412.1 403.5 2.69

RSW Reo Rei ωp c/Reax

205 421.8 27.53 -0.24
206 423.7 28.24 -0.24
207 425.65 28.99 -0.25
208 427.6 29.72 -0.26
209 429.55 30.45 -0.26
210 431.5 31.19 -0.27

Table 3.1: Angular and axial speeds of LSW and RSW measured at points located within
the boundaries H2-N2 and H1-N1 of figure 3.4. The axial speed c of the patterns has
been normalized with respect to the axial Reynolds number Reax.

(a) (b) (c) (d)
ωθ u

Figure 3.9: (a) and (b) show contours of azimuthal vorticity of the perturbation ωθ

evaluated over a θ-constant cross section for (r, z) ∈ [ri, ro] × [0, hL,R] for LSW at
(Reo, Rei) = (190, 392.85) and RSW at (Reo, Rei) = (210, 431.5), respectively. (c) and
(d) correspond to perturbation vector field components (ur, uz). For clarity, the original
aspect ratio has been preserved in the plots.

Within the explored regions between H1-N1 and H2-N2, the RSW and LSW are found

to co-rotate with the cylinders, precessing with angular speeds of order ωL
p ∼ 400 and

ωR
p ∼ 30, respectively. However, the LSW pattern exhibits a downstream phase speed c

faster than the basic state axial mean velocity (measured by Reax), whereas the RSW

slowly propagate upstream. It is shown in the Appendix that opposite axial propagation

is a sufficient condition to inhibit resonances, thus the case of study is non-resonant.

Accurate angular and axial speeds of these described patterns within their domains of

stability are reported in Table 3.1. The LSW have an axial wavelength of hL = 1.38

and are mainly concentrated on the inner cylinder wall, where strong azimuthal vorticity

spots are generated, as shown in figure 3.9(a). On the other hand, the RSW have an axial
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(a) (b) (c)
ur uθ uz

Figure 3.10: Contours of the perturbation field u evaluated over a θ-constant cross
section for (r, z) ∈ [ri, ro] × [0, hL,R]. Top, LSW at (Reo, Rei) = (190, 392.85) and
bottom, RSW at (Reo, Rei) = (210, 431.5). From left to right: (a) ur, (b) uθ and (c)
uz components. Gray and white regions stand for negative and positive or zero values,
respectively.

wavelength of hR = 1.8 but are mainly concentrated on the outer cylinder wall, where

similar azimuthal vorticity spots are produced, as shown in figure 3.9(b). However, for

the LSW the azimuthal vorticity is confined within a region close to the inner cylinder,

whereas the RSW feature high values of the azimuthal vorticity along all the radial

domain. Figures 3.9(c) and (d) show their perturbation velocity field u on a θ-constant

cross section. The center of the vortices is slightly displaced towards the inner (outer)

cylinder for the LSW (RSW). Figure 3.10 shows contours of the components of the

perturbation velocity u for both solutions. Their maxima and minima are also located

near the inner (LSW) or outer (RSW) cylinders, as happens with the azimuthal vorticity.
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Figure 3.11: dssf experimental flow found by Nagib (1972) for Reax = 120, Reo = 898,
Rei = 835, and for small gap geometry with η = 0.77.
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Figure 3.12: (a) Power spectral density of the IPS solution at (Reo, Rei) = (201, 414.3).
The two independent frequencies are very close to the frequencies of the unstable RSW
(ωR = 24.82) and LSW (ωL = −404.6) solutions, respectively. (b) Time series of ur for
the IPS solution in (a).

3.3.2 Interpenetrating spirals

The interpenetrating spirals (IPS) consist of quasi-periodic regimes exhibiting the main

features of the two limit cycles corresponding to LSW and RSW. Similar interpenetrating

spirals regimes were found experimentally in the past by Nagib (1972), who termed

them as Double Spiral Secondary Flows (dssf). The experiments were carried out at

higher Reynolds numbers Reax, Reo, Rei than our computations, and with a smaller gap

η = 0.77. Figure 3.11 shows a photograph of the aforementioned dssf found by Nagib

(1972). Recent linear stability results Meseguer & Marques (2005a) suggest that these

solutions come from a similar instability mechanism, although much higher azimuthal

modes (typically within the range 13 ≤ |n| ≤ 15) are responsible for the transition,

rendering nonlinear computations unaffordable. The dependence of the IPS on t, z and
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IPS Ro Ri ωL
p cL/Re ωR

p cR/Re

195 402.65 397.7 2.65 20.42 -0.18
198 408.5 401.2 2.67 22.62 -0.20
201 414.3 404.6 2.69 24.82 -0.21
204 422 408.7 2.72 28.27 -0.24
207 426.5 411.9 2.74 29.53 -0.26
210 432 415.3 2.77 31.73 -0.27

Table 3.2: Angular and axial speeds of the IPS measured at some points located over
N1 and N2 curves of figure 3.4.

θ happens through the two independent phase variables

φL = ωLt + kLz + θ, (3.10)

φR = ωRt + kRz − θ, (3.11)

corresponding to the unstable LSW and RSW. This fact, predicted in Appendix B

using normal form theory, is confirmed by the good agreement between the frequencies

observed in the IPS regime and the eigenfunctions of the linear stability problem that

generate LSW and RSW (disagreement below a 0.5%). The power spectral density of

the IPS is plotted in figure 3.12(a), where the associated LSW and RSW frequencies and

their harmonics are clearly observed. The two frequencies differ in more than one order

of magnitude, being ωR about 16 times larger than ωL. They can be clearly observed

in the time series of the radial velocity at a convenient point, shown in figure 3.12(b).

The IPS regime can be interpreted as a superposition of two waves, with phases φL and

φR, corresponding to LSW and RSW respectively, but precessing with different angular

speeds while propagating downstream and upstream respectively. Angular and axial

speeds of both waves are also provided in Table 3.2. Figure 3.13 shows isosurfaces of

the azimuthal vorticity and helicity of the perturbation velocity field u, illustrating

that the waves associated with the LSW and RSW are clustered on the inner and

outer cylinder, respectively. In order to illustrate the opposite axial propagation of

the LSW and RSW components of the interpenetrating spirals IPS, several snapshots

of the azimuthal vorticity at different times are shown in Fig. 3.14, where the two

periods TL = 2π/ωL ≃ 0.016 and TR = 2π/ωR ≃ 0.25 have been considered. In the

first row, covering one TL period, we observe the downstream propagation associated

with the LSW, clearly concentrated on the inner cylinder. In the second row, covering

one TR period, the upstream propagation associated with the RSW is observed on the

outer cylinder (note that downstream propagation corresponds to motion on the positive

axial direction in the plots). The interaction of the two spiral waves, RSW and LSW,
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(a) (b)

Figure 3.13: Isosurfaces of the IPS solution at (Reo, Rei) = (201, 414.3), z ∈ [0, Λ/3].
(a) Azimuthal vorticity of the perturbation at level ωθ = −10. (b) Helicity of the
perturbation H = u · (∇× u) at level H = 0.2.

with different periods and axial wavelengths, makes it difficult to analyze the resultant

pattern, except where one of the spiral waves is clearly dominant, i.e., close to the inner

or the outer cylinder. The interpenetrating spirals IPS are quasi-periodic both in space

and time. Quasi-periodicity in time is clearly manifested in figure 3.12(b). Figure 3.15

shows the vector field u and contours of its components on a θ-constant section for the

IPS regime. The radial-azimuthal velocity field clearly shows a non uniform cell-height

throughout the cross section, as a result of the incommensurate wavelengths of the RSW

and LSW spiral waves. The superposition of the two coexisting solutions is better seen

in the azimuthal velocity contours (third column of figure 3.15), where a Λ-shape is

identified close to the mean radius. The axial wavelengths corresponding to the LSW

(RSW) can still be identified close to the inner (outer) cylinder in the contours for ur

(compare with figure 3.10).
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t = 0 t = 1/4TL t = 1/2TL t = 3/4TL t = TL

t = 0 t = 1/4TR t = 1/2TR t = 3/4TR t = TR

Figure 3.14: Contours of the azimuthal vorticity of the perturbation, ωθ, for the IPS
at (Reo, Rei) = (201, 414.3) evaluated over a θ-constant cross section for (r, z) ∈
[ri, ro] × [0, 2hR]. The first (second) row illustrates the upward (downward) propaga-
tion associated to the LSW (RSW), indicated with N (H).
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(a) (b) (c) (d)

Figure 3.15: Perturbation vector field u corresponding to the IPS solution at
(Reo, Rei) = (201, 414.3) evaluated on a θ-constant cross section for (r, z) ∈ [ri, ro] ×
[0, Λ/2]. (a) Vector field (ur, uz), (b) contours of ur, (c) contours of uθ, (d) contours of
uz.
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3.4 Conclusions

Nonlinear dynamics of the co-rotating spiral Poiseuille flow have been investigated. The

explorations have been focused on a neighborhood of a double Hopf point where low

azimuthal modes compete. Numerical simulations confirm that spiral waves of oppo-

site wave number n = ±1 and a mixed mode of interpenetrating spirals are born at

the double Hopf bifurcation. All these flows break both SO(2) symmetries, though in

the case of the spiral waves, the symmetries become spatio-temporal. The numerical

exploration for different inner/outer cylinder velocities has been combined with Normal

form analysis with the symmetry group G = SO(2)× SO(2), allowing the identification

of the bifurcation scenario corresponding to this problem. This analysis, presented in

Appendix B, shows that the symmetry group G does not alter the generic normal form

but imposes a stronger constraint for resonance, rendering the present case of study

non-resonant.

The dominant flow is the quasi-periodic state IPS, which is stable in a wide region

of parameter space, confining the periodic spiral waves to very narrow parameter re-

gions. LSW and RSW can be viewed as rotating and traveling waves which precess

with independent angular speeds, co-rotating with the cylinders, but exhibit opposite

stream-wise phase propagation. The stability region for the downstream traveling LSW

is slightly wider than the upstream RSW, as observed in the counter-rotating case by

Hoffmann et al. (2004). The stable IPS can be regarded as the superposition of both

pure mode solutions. The features of the LSW and RSW regimes can be observed close

to the inner and outer cylinder respectively, where one or the other are dominant. The

spatio-temporal properties of the computed solutions are in very good agreement with

bifurcation theory predictions provided.

The coexistence of spiral patterns of opposite helical orientation and stream-wise

propagation had been formerly observed experimentally in this problem for much higher

angular speeds of the cylinders and also for narrow gap geometries, where the dominant

azimuthal modes at transition are one order of magnitude larger than in the present

study, thus being extremely expensive a well-resolved computation with current compu-

tational capabilities.

Above the studied range of inner and outer angular speeds, additional bifurcations

take place, and the dynamics may exhibit more complex mode interactions. These issues

will be addressed in future works.

37



38



CHAPTER 4

AXIALLY OSCILLATING TAYLOR–COUETTE FLOWS

Hu & Kelly (1995) first considered temporal modulations of both Poiseuille flow and

axial sliding in the open Taylor–Couette system. They performed a Floquet analysis of

the resulting periodic basic states and showed that both mechanisms are more efficient

in delaying transition than the corresponding steady flows. Their results motivated

the experimental work of Weisberg, Kevrekidis & Smits (1997), who investigated axial

oscillations of the inner cylinder to verify the theoretical predictions of Hu & Kelly

(1995). However, the agreement between the experiments and the numerical Floquet

analysis was only qualitative. Marques & Lopez (1997) showed that the discrepancy was

due to the presence of endwalls in the experimental apparatus in contrast to the open flow

system considered by Hu & Kelly (1995), where mass is conserved only after a forcing

period. Following Edwards et al. (1991), the Floquet analysis by Marques & Lopez

(1997) accounted for the leading order effects of the presence of endwalls by imposing a

zero axial mass flow, and despite the fact that their model retained the idealization of

infinitely long cylinders, the agreement with the experiments was excellent.

Although the transition when the inner cylinder is forced to oscillate harmonically

in the axial direction is generally via a synchronous bifurcation to axisymmetric cells,

Marques & Lopez (1997) noted that for small frequencies and large amplitudes of the

axial oscillations there are some windows of parameter space where the transition is

via a Neimark–Sacker bifurcation (a Hopf bifurcation from a periodic orbit) to non-

axisymmetric spiral flow. In this case, the time periodic basic state bifurcates to a

quasi-periodic torus featuring the forcing frequency, ωf , and the frequency of the spiral

mode, ωs. These windows of parameter space were investigated by Marques & Lopez

(2000) using Floquet analysis to identify the presence of several strong resonances, i.e.

ωs/ωf = p/q with q ≤ 4. That linear analysis motivated the recent experiments by

Sinha et al. (2006) who investigated the associated nonlinear dynamics and identified

regions of quasi-periodic motion and frequency-locking, as well as observing the torus

to break up for higher post-critical values of the Reynolds number. However, the results

they obtained were noisy even for Reynolds numbers very close to critical. The signals

they analyzed contained additional frequencies which were not a linear combination of

ωf and ωs, and were attributed to background noise.

In order to shed light on the transition to complex behavior in periodically forced

systems and clarify the results of Sinha et al. (2006), we have numerically solved the un-

steady Navier–Stokes equations. We have found that subsequent bifurcations occurring
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Figure 4.1: Schematic of Taylor–Couette flow with axial oscillations of the inner cylinder.

very close to onset of the first instability of the basic state, which are not detectable in

the experiments due to the precision that can be achieved, destroy the torus and intro-

duce additional independent frequencies into the solutions. Moreover, our theoretical

analysis, presented in Appendix C, shows that due to the symmetries of the system un-

der consideration, frequency-locking is not possible until the bifurcating flow has broken

the translational and rotational symmetries. As this happens by the introduction of

new independent frequencies, any observed frequency-locking must be only partial and

therefore does not involve periodic flow.

4.1 Numerical methods and symmetries

We consider the Taylor–Couette system with rotating inner cylinder and stationary

outer cylinder. In addition, the inner cylinder executes harmonic oscillations in the

axial direction. The dimensionless dynamical parameters governing this system are the

inner cylinder Reynolds number Rei and the amplitude and frequency of the oscillations,

A and ωf , respectively.

Figure 4.1 shows a schematic of the flow. The experimental apparatus of Sinha

et al. (2006) had a radius ratio of η = 0.905, and we have used the same value in

our computations. Moreover, in the experiment the amplitude and frequency of the

axial motion were mechanically coupled such that ωf = A/9.525; we have used this

relationship in our computations presented here.

The boundary conditions of the axially oscillating Taylor–Couette system in cylin-
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drical coordinates read

v(ri, θ, z, t) = (0, Rei,A sin ωf t) v(ro, θ, z, t) = 0. (4.1)

In the experiments of Sinha et al. (2006), the aspect ratio of the annulus is very large,

h/d = 152. We assume periodicity in the axial direction and account for the leading

order effects of the presence of endwalls by imposing a zero net axial mass flow at every

instant in time (enclosed flow condition),

ṁ(v) = ρ

∫

S

v · n dS = ρ

∫ ro

ri

∫ 2π

0

w r dθ dr = 0, (4.2)

where S is any constant z-section. This is accomplisehd by imposing an axial pressure

gradient which includes a linear term on z, i.e. p = p0z + p1(r, θ, z, t).

4.1.1 Basic flow

We look for a basic flow independent of the axial and azimuthal directions, vb(r, t) =

(0, vb, wb). In this case, the Navier–Stokes equations (2.1) reduce to

∂tvb =
(

∂rr +
1

r
∂r −

1

r2

)

vb (4.3)

∂twb =
(

∂rr +
1

r
∂r

)

wb − p0 (4.4)

with boundary conditions (4.1) and w satisfying the enclosed flow condition (4.2). The

resulting basic flow is Tf = 2π/ωf periodic and consists of the superposition of circular

Couette flow and an axial annular Stokes flow,

vb =
(

0,
ηRei

1 − η2

(ro

r
− r

ro

)

,Aℑ(f(r) eiωf t)
)

. (4.5)

Here f(r) is the solution of a second order ODE satisfying the boundary conditions of

the problem and the enclosed flow condition,

i ωff = f ′′ +
1

r
f ′ − p0, (4.6)

f(ri) = 1, f(ro) = 0, (4.7)
∫ ro

ri

f(r) dr = 0. (4.8)

An explicit solution involving modified Bessel functions is given in Marques & Lopez

(1997), along with asymptotic expansions and other properties of f , but it is more con-

venient to numerically compute f by solving (4.6)–(4.8) with efficient spectral methods.
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We have used collocation at Gauss-Lobatto points as in the nonlinear Petrov–Galerkin

scheme of chapter 2. Equation (4.6)–(4.8) are solved by writing f = g + i h and dis-

cretising the resulting equations for g and h in the Gauss–Lobatto points rj

(D2
ij +

1

rj

Dij)gj + ωfhj −ℜ(p0) = 0, (4.9)

(D2
ij +

1

rj

Dij)hj − ωfgj −ℑ(p0) = 0, (4.10)

∑

j

wj gj = 0,
∑

j

wj hj = 0, (4.11)

where Dij and D2
ij are the associated Chebyshev differentiation matrices of first and

second order, and wj are the Clenshaw–Curtis quadrature weights (Trefethen, 2000).

4.1.2 Zero mass flow perturbations

In order to perform nonlinear computations using the Petrov–Galerkin scheme, one

has to enforce the zero net axial mass flow not only on the basic flow vb, but also on

the perturbation u, so that the full velocity field v = vb + u satisfies the enclosed flow

condition (4.2). Let us recall the form of the spectral approximation for the perturbation

u

u(r, θ, z, t) =
L

∑

l=−L

N
∑

n=−N

M
∑

m=0

alnm(t)ei(lk0z+nθ)ulnm(r). (4.12)

Since
∫ 2π

0
einθdθ = 0, the modes with n 6= 0 do not contribute to (4.2). Moreover, as the

net axial mass flow must be independent of the section S, the modes with l 6= 0 do not

contribute to (4.2). This may be rewritten as

ṁ(u) = 2πρ

M
∑

m=0

a
(2)
00m(t)

∫ ro

ri

hm(r) r dr = 0. (4.13)

In order to enforce equation (4.13) we use the technique in the previous section and

introduce a time dependent constant axial pressure gradient p′0(t) in the Navier–Stokes

equations for the perturbation (2.19)

∂tu = −∇q + ∆u − (vB · ∇)u − (u · ∇)vB − (u · ∇)u − p′0(t) ez. (4.14)

After introducing the physical basis in (4.14) and projecting over the test basis, the

pressure term p′0(t)ez only appers in the equation for the (l, n) = (0, 0) compoment of
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Figure 4.2: Kinetic energy time series of basic flow (4.5) over a forcing period. The
parameter values are Rei = 200, A = 79.6.

the physical basis. Therefore the dynamical system involving the amplitudes (2.25) is

modified only in the equation for a00m,

A00m
00r

da00r

dt
= B00m

00r a00r − N00m(a, a) − p′0(t). (4.15)

Equation (4.13) is discretized using the Clenshaw–Curtis quadrature and added to sys-

tem (4.15). Together they are solved for p′0(t) and a00m at each time step.

4.1.3 Symmetries and axial periodicity

The governing equations and boundary conditions are invariant under rotations Rα

about and translations Ta along the common axis of the cylinders. Rotations generate

the symmetry group SO(2), and due to the imposed axial periodicity, axial translations

generate another SO(2) symmetry group. As both actions commute, the group of spatial

symmetries of the system is G0 = SO(2)×SO(2). There is an additional spatio-temporal

symmetry S, which consists of a time translation of half a period, φT/2, followed by a

reflection about a plane orthogonal to the cylinder axis Kz (acting as z → −z). The

actions of these on the velocity are:

Rα(v)(r, θ, z) = v(r, θ + α, z), (4.16)

Ta(v)(r, θ, z) = v(r, θ, z + a), (4.17)

Kz(v)(r, θ, z) = (vr, vθ,−vz)(r, θ,−z), (4.18)

φT/2(v)(r, θ, z, t) = v(r, θ, z, t + T/2). (4.19)

S = Kz◦φT/2 commutes with rotations but not with translations: STa = T−aS. If S were

purely spatial, i.e. the reflection Kz, then S and Ta would generate the orthogonal group,
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Figure 4.3: Neutral stability curve of the azimuthal modes n = ±1 for A = 79.25 as
computed with Floquet analysis. The circles are the discrete set of axial wavenumbers
corresponding to the Fourier modes used in the nonlinear computations (4.12). The first
Fourier mode (l, n) = (1, 1), with smallest axial wavenumber k = k0 = 0.196, is not
shown as the corresponding Rei,c = 16 256 is off the scale of the plot. The most unstable
mode is (l, n) = (12, 1), with axial wavenumber k = 12k0 = 2.35, which is very close to
the critical axial wavenumber of the infinite case kc = 2.36.

O(2) = SO(2) ⋊ Z2 (semidirect product), where the elements of Z2 would be Kz and

the identity. As S is a space-time symmetry, S and Ta generate a space-time symmetry

group isomorphic to O(2), O(2)ST = SO(2) ⋊ Z2, where now the elements of Z2 are S

and the identity. The complete symmetry group of the problem is G = SO(2)×O(2)ST .

The basic flow (4.5) is invariant under G. Figure 4.2 shows a kinetic energy time series

of the basic flow over a forcing period Tf . Due to the spatio-temporal symmetry S, the

time series is Tf/2 periodic, the two peaks corresponding to the forcing at maximum

amplitude and opposite axial directions of the motion of the inner cylinder.

It is important to note that in many studies of flows in long cylinders, a spatial

periodicity of wavelength λc = 2π/kc in the axial direction is assumed (where kc is the

critical axial wavenumber obtained from linear stability analysis). This assumption,

which corresponds to fixing k0 = kc in (4.12), renders the l = 1 axial mode as the only

one unstable in the parameter regime of study and results in the computations being

unable to investigate the competition between different spatial modes (except in the

exceptional cases that their wavelengths are in simple rational ratios). If this imposed

axial periodicity is destroyed in subsequent bifurcations due to mode competition, as
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is the case in the present problem, a larger axial periodicity Λ = 2π/k0, with kc < k0

must be considered instead. Here, we have used a fundamental axial wavenumber of

k0 = 0.196, leading to periodic cylinders of wavelength Λ ∼ 32. This value of k0 has

been chosen in order to capture the dynamics arising in the neighborhood of the resonant

point A = 79.25, Rei,c = 244.74 (identified in the Floquet analysis). In particular, the

(l, n) = (12,±1) Fourier modes in the expansion (2.17) have an axial wavenumber of

k = 12k0 = 2.35, which is very close to the critical axial wavenumber of the infinite

case kc = 2.36. Overall, with a spectral resolution consisting of (L,M,N) = (65, 16, 20)

modes our discretizaion includes up to four harmonics of the most dangerous modes

(l = 11, 12, 13). Figure 4.3 shows the neutral stability curve of the azimuthal modes

n = ±1 for A = 79.25, found using Floquet analysis. The discrete axial wavenumbers

considered in the nonlinear computations are shown as filled symbols on the curve. The

discretization of the problem is still periodic, so the wavenumber ratio between different

competing modes is rational, but our discretization allows for rational ratios with large

denominators. The interaction of these modes is practically indistinguishable from truly

quasi-periodic solutions.

4.2 Transition to complex spatio-temporal dynamics

The experiments of Weisberg et al. (1997) and the Floquet analysis of Marques & Lopez

(1997) showed that the stability of Couette flow can be greatly enhanced by harmonic

axial motion of the inner cylinder. Although this forcing stabilizes both axisymmetric

and non-axisymmetric modes, there are windows in parameter space where the onset

of instability is to spiral modes via a Neimark–Sacker bifurcation (a Hopf bifurcation

from a periodic orbit). Marques & Lopez (2000) showed that in these windows strong

resonances between the Neimark–Sacker frequency ωs and the forcing frequency ωf oc-

cur, motivating the recent experiments by Sinha et al. (2006) who studied the complex

nonlinear dynamics subsequent to the Neimark–Sacker bifurcation. Nevertheless, their

results contained additional frequencies which could not be identified and were attributed

to background noise.

We show that these additional frequencies are due to subsequent bifurcations taking

place very close to the first onset of instability. The increments in Rei at which these

additional bifurcations occur are so small (about 0.4%) that they cannot be detected with

the precision that could be achieved in the experiments (the experimental uncertainty

in Rei was about 3%). A consequence of this rapid succession of bifurcations following
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Figure 4.4: (a) Planar (θ, z) rendering of a gray-scale snapshot of the azimuthal vorticity
of the perturbation u at the outer cylinder r = ro, where black (white) corresponds to
positive (negative) values. In (b) a snapshot of the kinetic energies of the Fourier modes
Eln(t) is shown in a logarithmic gray-scale map, where black corresponds to the energy
of the leading mode and white to a level seven orders of magnitude lower. The flow is
M1 at A = 79.6 and Rei = 246.32.

the loss of stability of the temporally forced Couette flow is that the resulting state

has much greater spatio-temporal complexity than the unforced state at the same Rei

(which is the wavy vortex flow). Therefore, there is a trade-off between the enhanced

stability and the spatio-temporal complexity of the flows once instability has arisen.

For the axial forcing amplitudes considered in the experiments and here (A ∼ 80), the

critical Reynolds number Rei,c for instability of Couette flow is about 80% higher than

in the unforced case. Nevertheless, for the axially forced case the flow begins to lose

regularity in axial and azimuthal wavenumber for Rei,c about 2% above criticality due

to the sequence of bifurcations.

4.2.1 Onset of instability

The spiral modes predicted by the Floquet analysis of Marques & Lopez (2000), from

now on are referred to as Mode 1 (M1), bifurcate supercritically from the oscillating basic

state (4.5) in a Neimark–Sacker bifurcation. They are characterized by their axial and

azimuthal wavenumbers (k, n) which define a constant spiral angle β = tan−1(−n/k). In

particular, the full nonlinear solution is of the form f(r, t, ωst+kz +nθ); f is Tf -periodic

in the second argument and 2π-periodic in the third argument. Figure 4.4(a) shows a

gray-scale snapshot of the azimuthal vorticity at the outer cylinder, in a (θ, z) planar

rendering of the cylinder surface for M1 at A = 79.6 and Rei = 246.32. Note that
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Figure 4.5: Time series of the radial velocity ur at (r, θ, z) = ((ri + ro)/2, 0, 0) and the
kinetic energy E(u, t), together with the corresponding power spectra, for the spiral
waves (M1) shown in figure 4.4.

the azimuthal vorticity is constant over straight lines of angle β. Figure 4.4(b) shows a

gray-scale snapshot of the kinetic energy of the Fourier modes Eln(t). The leading mode

is (l, n) = (12, 1), i.e. with axial wavenumber k = 12k0 = 2.35, which renders a spiral

angle of β ∼ −23◦.

The translational and rotational symmetries of the basic flow are broken, but M1

retains a helical symmetry Hα = RαT−nα/k, which consists of an arbitrary rotation

Rα composed with an axial translation T−nα/k, leaving the phase kz + nθ invariant;

the bifurcated solution is a spiral wave that is modulated by the harmonic forcing.

However, due to the helical symmetry, strobing the solution at the forcing frequency

renders the second argument in f constant and the strobed spiral pattern then precesses

in the azimuthal direction with precession frequency −ωs/n. This azimuthal rotation

can also be interpreted as an axial translation (barber-pole effect), with axial velocity

−ωs/k. Therefore, M1 is a relative periodic orbit, in exactly the same way as rotating and

traveling waves are relative equilibria (Rand, 1982; Wulff, Lamb & Melbourne, 2001).
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(a) (b)

Figure 4.6: Perspective view (parallel projection of the cylinder). The gray-scale snap-
shot shows the intensity of azimuthal vorticity of the perturbation u at r = ro. The
flows are: (a) a left-handed upward propagating M1 and (b) a right-handed downward
propagating M1, both at A = 79.6 and Rei = 246.32.

For the M1 case shown in figure 4.4, its radial velocity time series at the point

(r, θ, z) = ((ri + ro)/2, 0, 0) along with the time series of its kinetic energy and the

corresponding power spectra are shown in figure 4.5. The velocity time series and cor-

responding spectra indicate that M1 is quasi-periodic. However, as M1 is a relative

periodic orbit, its kinetic energy has the form g(r, t, ωst + kz + nθ) and is not modified

by the presence of the spiral frequency ωs. Integrating g over the whole domain, the ωst

term is just a phase shift of the third argument; integrating over a complete period, the

shift does not modify the result and the dependence on ωst disappears, leaving only the

Tf -periodic time dependence of the second argument (the periodic forcing), as shown in

figures 4.5(c) and (d).

The Neimark–Sacker bifurcation also breaks the spatio-temporal symmetry S, re-

sulting in two different M1, corresponding to left-handed (n = 1) and right-handed

(n = −1) spirals related by the action of S. As in chapter 3, the right-handed spirals

propagate in the negative axial direction whereas the left-handed spirals propagate in

the positive axial direction. Figure 4.6 shows a gray-scale snapshot of the azimuthal

vorticity at the outer cylinder (as would be seen by an observer situated opposite the

apparatus; note that due to the parallel projection used in this rendering, distances are

not preserved and the angle of the spirals appears distorted towards the sides of the

image) of (a) left-handed and (b) right-handed M1 at A = 79.6 and Rei = 246.32 (onset

of instability is at Rei,c = 245.42). Since the imposed periodic Stokes flow reverses its

direction after half a forcing period, these solutions spend half the time traveling with

and the other half traveling against the imposed flow. This behavior is manifested in the

kinetic energy time series of figure 4.5(c), which shows two peaks of different intensity

at t and t + Tf/2 corresponding to propagation with (higher peak) and against (lower

peak) the imposed Stokes flow, indicating that the S symmetry is broken by the bifur-
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t = 0 Tf/4 Tf/2 3Tf/4

Figure 4.7: Snapshots of a perspective view (parallel projection of the cylinder). The
gray-scale map shows the intensity of azimuthal vorticity of the perturbation u at r = ro,
where black (white) corresponds to positive (negative) values. The flow corresponds to
M2 at A = 79.6 and Rei = 247 at 4 phases over one forcing period.

cation to M1. Note that for the S-symmetric basic flow the two peaks are identical (see

figure 4.2). Therefore, the symmetry group of M1 is purely spatial, and its elements are

the aforementioned helical motions Hα, generating a group isomorphic to SO(2).

4.2.2 Secondary bifurcations

The M1 spiral waves that bifurcate from the basic flow are only stable in a very small

region of parameter space, becoming unstable to a wavy spiral mode, M2. In particular,

this secondary bifurcation occurs precisely at ǫ = (Rei − Rei,c)/Rei,c = 0.0039 which

is an order of magnitude smaller than the experimental uncertainty in Rei. Therefore,

the M1 spiral waves born at onset are not observable in the experiments of Sinha et al.

(2006). The M2 state is characterized by the axial and azimuthal wavenumbers (k, n)

of the underlying spiral wave (M1), and the wavy azimuthal wavenumber nw, which is

typically 3 ≤ |nw| ≤ 5 depending on the parameter values and the initial conditions. In

contrast to the constant spiral angle β characteristic of M1, the M2 wavy spirals have a

time-dependent inclination, as illustrated in the flow snapshots in figure 4.7.

The bifurcation leading to M2 is not synchronous with the imposed Stokes flow,

so that the wavy spirals have a new independent frequency ωw which corresponds to

a secondary Hopf bifurcation from the quasi-periodic M1 to the three-torus state M2.

Nevertheless, as the spiral wave M1 is a relative periodic orbit with symmetry group

SO(2), the bifurcation to M2 is effectively a Neimark-Sacker bifurcation with SO(2)

symmetry (Wulff et al., 2001). The breaking of this symmetry results in a wavy flow

with a discrete helical symmetry, as evident in figure 4.8(a). Instead of the straight lines

of M1 in figure 4.4(a), the lines are modulated by the wavy azimuthal wave number

nw = 5. This can also be seen in the kinetic energies of the Fourier modes shown in the
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Figure 4.8: As figure 4.4 for M2 at A = 79.6 and Rei = 247.

gray-scale snapshot in figure 4.8(b). M2 features an axial wavenumber of k = 12k0 = 2.35

and an azimuthal wavenumber of n = ±1. Moreover, an additional mode (0, nw) = (0, 5)

appears, along with all the linear combinations between (k, n) and (0, nw). Therefore,

the (θ, z)-dependence of M2 is of the form f(r, t, ωst + kz + nθ, ωwt + nwθ), where ωw

is the precession frequency associated to the wavy motion along the spiral pattern.

The symmetry group of M2 is the discrete subgroup of SO(2) generated by the helical

symmetry Hλ/nw
= R2π/nw

Tλ/nw
and their integer multiples, leaving both phases in f

invariant; λ = 2π/k is the axial wavelength of the spiral pattern. Due to the periodicity

of the boundary conditions, this group is isomorphic to Zlnw
.

Figure 4.9 shows the time series of the radial velocity and kinetic energy, as well as

the corresponding power spectra, of M2 at the same parameter values as in figures 4.7

and 4.8. In contrast to M1 in figure 4.9, an additional high frequency modulation ωw is

evident in the radial velocity. Since ωw is only associated with the precession speed of

the wavy mode, it is not present in the kinetic energy time series, which has the form

g(r, t, ωst + kz + nθ, ωwt + nwθ). The base state has two periodic directions θ and z,

and the two Hopf bifurcations correspond to time dependent shifts in these directions.

Integrating with respect to θ and z, the two frequencies ωs and ωw disappear, and the

kinetic energy is simply Tf -periodic. In fact, in an appropriate rotating and axially

translating reference frame, M2 is purely periodic and synchronous with the forcing.

Although in the laboratory M2 has three independent frequencies and therefore lives on

a three-torus, the two frequencies ωs and ωw are of a kinematic nature, so that the M2

wavy spirals are also relative periodic orbits.

M2 becomes unstable at a third bifurcation at ǫ = (Rei − Rei,c)/Rei,c = 0.011,

evolving to a secondary wavy spiral state, termed M3. The visual differences between
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Figure 4.9: Time series of the radial velocity ur at (r, θ, z) = ((ri + ro)/2, 0, 0), and
the kinetic energy E, together with the corresponding power spectra, for the M2 wavy
spirals shown in figures 4.7 and 4.8.

t = 0 Tf/4 Tf/2 3Tf/4

Figure 4.10: As figure 4.7. The flow corresponds to M3 at A = 79.6 and Rei = 249.
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Figure 4.11: As figure 4.4 for M3 at A = 79.6 and Rei = 249.

the wavy spirals M2 before and M3 after this bifurcation are difficult to discern in the

laboratory frame (snapshots of M3 are shown in figure 4.10, and should be compared with

the corresponding snapshots of M2 in figure 4.7. However, the (θ, z)-planar rendering

of the cylinder surface in figure 4.11(a) reveals that the azimuthal periodicity of M2 has

been lost, and M3 has defects in the azimuthal wavenumber. In particular, the kinetic

energy of the Fourier modes shown in the gray-scale map of figure 4.11(b) elucidates

that the spectrum in azimuthal wavenumbers is now full due to competition between

different wavy modes. Therefore, the helical motion (Hλ/nw
generating Zlnw

) is no longer

a symmetry of the pattern. Nevertheless, M3 still preserves the axial periodicity given

by the axial wavenumber k = 12k0 = 2.35, so that the subgroup of Zlnw
generated by

Tλ remains. This symmetry group contains only axial translations of a multiple of the

axial wavelength of the pattern and it is isomorphic to Zl.

The time series and corresponding power spectra of the radial velocity and kinetic

energy just beyond this third bifurcation at A = 79.6 and Rei = 248.5 are shown in

figure 4.12. The characteristics of the radial velocity are very similar to those before the

bifurcation (compare with figure 4.9), although the irregularities in azimuthal wavenum-

ber result in a higher degree of irregularity in the signal. Moreover, the kinetic energy

is no longer Tf -periodic. It is now quasi-periodic, modulated by the spiral frequency ωs.

A very small further increase in Rei results in the loss of the axial periodicity present

in M3 (i.e. the remaining translational symmetry Zl is broken). As a result of com-

petition between different axial modes, a non-constant axial wavelength is evident in

figure 4.13(a), showing a gray-scale snapshot of the azimuthal vorticity at the outer

cylinder in a (z, θ) planar rendering of the cylinder surface over the whole axial do-

main. At this bifurcation, the defective wavy spiral states, termed M4, emerge. These
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Figure 4.12: Time series of the radial velocity ur at (r, θ, z) = ((ri + ro)/2, 0, 0), and the
kinetic energy E, together with the corresponding power spectra, for M3 at A = 79.6
and Rei = 248.5.

are characterized by a broadband in k. Figure 4.13(b) shows a snapshot of the kinetic

energy of the Fourier modes for M4. The spectrum is full in both axial and azimuthal

wavenumbers, illustrating the spatial complexity of this non-symmetric flow. The in-

creased temporal complexity of M4 is clear in the radial velocity and kinetic energy

time series and corresponding power spectra shown in figure 4.14. The defects in the

axial and azimuthal wavenumbers lead to broadbands in both the spatial and temporal

spectra.

We note that in order to detect this bifurcation, occurring only 1.8% above the

first onset of instability, spectral computations considering a small fundamental axial

wavenumber k0, as in the present work, are required. To the authors knowledge, this is

the first time that such an approach is used in the Taylor–Couette problem. In previous

works, the fundamental axial wavenumber was set to k0 = kc, so that defects in the axial

wavenumber were not observable due to the imposed periodicity. The flow snapshots of

figure 4.15 have been computed at A = 79 and Rei = 250, the same point in parameter
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Figure 4.13: (a) Planar (z, θ) rendering of a gray-scale map of the azimuthal vorticity
of the perturbation u at the outer cylinder r = ro. The flow is M4 at A = 79 and
Rei = 250. In (b) the kinetic energy of the Fourier modes of this state is shown in a
logarithmic gray-scale map.

space as in figure 8 of Sinha et al. (2006). Although these parameter values correspond to

the lowest post-critical value of their published data, Rei is already 2.4% above the first

onset of instability. As the bifurcation from M3 to the non-symmetric M4 occurs before

(1.8% above Rei,c), we can conclude that M4 corresponds to the wavy spiral states that

are observed in the experiments just following onset. As noted in Sinha et al. (2006), the

pattern loses spatial regularity very fast, becoming chaotic for higher Rei. At this point,

the spectral resolution demanded by these states renders our computations impractical,

and so we do not pursue them further.

Figure 4.16 is a schematic of the various solutions obtained, and the bifurcations

between them. The starting point is the base state, which is invariant under the full

symmetry group of the problem, G = SO(2) × O(2)ST , leaving the governing equations

invariant. Below each stable solution found is the symmetry subgroup leaving the solu-

tion invariant, its generators, and the temporal character of the corresponding kinetic

energy. The arrows correspond to the different bifurcations we have found in the present

study, and each arrow is labeled with the type of bifurcation involved. This sequence

of symmetry-breaking bifurcations occurs over about a 2% variation in Rei (between
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Figure 4.14: Time series of the radial velocity ur at (r, θ, z) = ((ri + ro)/2, 0, 0), and the
kinetic energy E, together with the corresponding power spectra, for M4 in figure 4.13.

t = 0 Tf/8 Tf/4 3Tf/8

t = Tf/2 5Tf/8 3Tf/4 7Tf/8

Figure 4.15: Same as figure 4.7. The flow corresponds to M4 at A = 79 and Rei = 250
shown at 8 phases over one forcing period.
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Figure 4.16: Diagram showing the successive bifurcations from the base state to M4
defective wavy spirals. For each solution the symmetry group, its generators and the
form of E(t) is indicated. Hn is a Hopf bifurcation to an n-dimensional torus (a relative
periodic orbit), and SB is a symmetry breaking bifurcation of a three torus; the ǫ =
(Rei − Rei,c)/Rei,c at which each of these bifurcations take place are also indicated
(Rei,c = 245.42).
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Figure 4.17: Loci of computed solutions for η = 0.905 and ωf = A/9.525, as in Sinha
et al. (2006). Above the solid line Rei = Rei,c(A) the basic flow is unstable and evolves
to a M1 spiral wave (♦) and to M2 wavy spirals (◦) and M3 secondary wavy spirals (△)
for higher values of Rei. The N indicate M4 defective wavy spirals. The dashed line is
the resonance 7/4 curve originating at A/9.525 = 79.25, Rei = 244.74, and ¨ are M1
on the resonance line.
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Figure 4.18: Poincaré maps for two M1 solutions, computed with the axial and azimuthal
components of the perturbation at (r, θ, z) = ((ri+ro)/2, 0, 0) over several forcing cycles.
In (a) the solution is very close to the 7/4 resonance at A = 79.6 and Rei = 246.32,
whereas in (b) at A = 79.6 and Rei = 246.35, the flow is quasi-periodic, as is indicated
by the slight shifts in subsequent iterates of the map in the close-up (both close-ups are
at the same scale).

about Rei = 245 and 250), which is about 2/3 of the experimental uncertainty in Rei.

Figure 4.17 shows the loci of computed solutions, where the subsequent bifurcations

from the basic flow leading to the defective wavy spirals observed in the experiments are

detailed in the parameter space.

4.3 Periodic flow and partial frequency-locking

In the previous section we described the transition scenario that leads from the simple

time-periodic oscillating flow to complex dynamics following several symmetry-breaking

bifurcations. When the oscillating basic flow (a periodic orbit) is destabilized via a

Neimark–Sacker bifurcation, the flow becomes quasi-periodic, except for the cases where

the bifurcating spiral frequency ωs is resonant with the forcing frequency ωf , i.e. the

rotation number is rational ωs/ωf ∈ Q, and then the flow remains periodic. In generic

systems, nonlinear behavior in the neighborhood of such resonances typically manifests

frequency-locking, i.e. there are regions of parameter space where the solution trajectory

corresponds to a closed orbit on a 2-torus. These regions of frequency-locking typically

are shaped like a horn whose tip is a cusp point on the bifurcation curve at which the

rotation number is rational (Arnold et al., 1999). However, the normal form analysis
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presented in Appendix C shows that due to the symmetries of the problem, the dynamics

of the bifurcated M1 spiral waves are the same regardless of whether ωs/ωf is rational or

irrational. There is no distinction between strong resonances, weak resonances (ωs/ωf =

ℓ/m, with m > 4), or no resonances (ωs/ωf 6∈ Q). Therefore, the resonance horns

collapse to one-dimensional resonance curves. This is a consequence of the rotational

and translational symmetries of the system. Moreover, we show in §C.4 of Appendix C

that due to the helical symmetry of M1, frequency-locking is also absent following the

secondary bifurcation to M2.

In order to detect resonances, we strobe the phase trajectory once every forcing

period to produce accurate global Poincaré maps. If the points in the map lie in a set

of q clusters then the flow is periodic, whereas a densely filled orbit indicates that the

flow is quasi-periodic. Figure 4.18(a) shows the Poincaré map for a M1 spiral wave at

A = 79.6 and Rei = 246.32 using the phase trajectory given by the axial and azimuthal

components of the perturbation (uz(t), uθ(t)) recorded at (r, θ, z) = ((ri + ro)/2, 0, 0).

Four clusters can be clearly observed. Since ωf = 79.6/9.525 = 8.357 and the computed

value of the spiral frequency at criticality is ωs = 14.61, then the spiral wave is very

close to the ωs/ωf = 7/4 resonance. The presence of a high peak at ω = 14.62 in the

power spectra of figure 4.5(b) together with the 4 distinct clusters of iterations in the

Poincaré map (the close-up of one cluster shows that the iterates are slightly displaced)

confirms this hypothesis. When Rei is slightly increased by 0.03 to 246.35, the Poincaré

map shown in figure 4.18(b) is very similar, with the small shifts in the iterates of the

4 clusters more pronounced. We have varied Rei in very small increments about this

region of parameter space and found no evidence of frequency-locking, in agreement with

the equivariant theory in Appendix C. The flow is quasi-periodic and very close to the

7/4 resonance curve (the dashed line in figure 4.17).

In the previous section it was shown that due to uncertainty in the experiments

(about 3% in Rei), the states observed in the experiments are in the regime where the

flow has no symmetries left. For these M4 states, there is no symmetry restriction on

the development of resonance horns, but now the frequency-locking within these horns

must be partial, i.e. only between two of the multiple frequencies that such a complex

flow possesses. Figure 4.19 shows the Poincaré map for secondary wavy spirals M3 at

A = 79.6 and Rei = 248.5 computed from both the azimuthal and axial components of

the perturbation and the kinetic energy time series. Due to the multiple independent

frequencies that this flow possesses (ωf , ωs, ωw), and the irregularities due to defects in

azimuthal wavenumber, there is no identifiable structure in the Poincaré map produced

using the velocity. However, the Poincaré map based on the kinetic energy indicates
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Figure 4.19: Poincaré maps for a secondary wavy spiral M3 at A = 79.6 and Rei = 248.5
over several forcing cycles. In (a) the axial and azimuthal components of the perturbation
at (r, θ, z) = ((ri+ro)/2, 0, 0) are used for the phase trajectory, whereas in (b) the kinetic
energy of the perturbation E(t) and the delayed signal E(t − τ). The time delay is
τ = 0.452.

that the solution is close to the 7/4 partial-locking horn. In this case, the kinetic

energy acts as a natural filter for some of the frequencies in the flow, in particular

those due to the kinematic frequencies associated with the rotation and axial translation

of the spiral pattern. In fact, figure 4.19(b) is similar to the frequency-locking plots

reported in the experiments of Sinha et al. (2006). This sheds some light on the apparent

discrepancy between the frequency-locking observations reported in these experiments

and our theoretical analysis which shows that the symmetries of the basic flow and M1

inhibit frequency-locking. The sequence of symmetry-breaking bifurcations over a very

small range in Rei removes this restriction and the partial locking is then observable in

our nonlinear computations as it is in the experiments.

4.4 Discussion and Conclusions

Nonlinear dynamics of an axially forced Taylor–Couette system has been investigated

numerically by solving the unsteady three-dimensional Navier–Stokes equations. In ear-

lier studies, it was shown experimentally (Weisberg et al., 1997) and numerically with

Floquet analysis of the basic flow (Marques & Lopez, 1997) that a high degree of stabi-

lization could be achieved for low frequencies and large amplitudes of the forcing. More
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recently, the nonlinear dynamics beyond onset of instability was experimentally investi-

gated (Sinha et al., 2006), focusing on regions of parameter space where transition is to

a spiral mode following a Neimark–Sacker bifurcation.

Our nonlinear numerical explorations have been focused on the same parameter

regime as in the experiments by Sinha et al. (2006). The flows they observed appeared

to contain a high degree of noise, i.e. the signals contained a number of frequencies that

could not be identified. Here, using precise spectral computations, we have shown that

this apparent noise is due to a sequence of symmetry-breaking bifurcations occurring

very close to the primary onset of instability introducing additional independent fre-

quencies. For Rei only 0.39% above critical, a secondary bifurcation renders the spiral

mode into a wavy spiral mode and introduces a third independent frequency. For slightly

higher Rei, the wavy spirals develop defects in the azimuthal and axial wavenumbers,

resulting in spatial and temporal broadband spectra; this is commonly referred to as

the onset of soft turbulence. Overall, for Re just 2% above the instability threshold

for the basic state, the flow is spatio-temporally very complex. The fine discretization

in wavenumber used in the nonlinear computations, combined with careful considera-

tion of the symmetries of the bifurcated flows, is essential to understand the sequence

of symmetry-breaking bifurcations that leads from a simple symmetric flow to a very

complex pattern.

The experiments reported bands of frequency-locking between the frequency of the

forcing and the spiral frequency stemming from the Neimark–Sacker bifurcation. Our

theoretical work in Appendix C shows that frequency-locking leading to periodic flow is

not possible in the system under consideration. The rotational and translational SO(2)

symmetries of the oscillating basic flow annihilate the resonant terms in the normal

form of the Neimark–Sacker bifurcation, rendering the dynamics independent of the ratio

between frequencies and preventing the formation of resonance horns. However, once the

continuous SO(2) symmetries are broken, frequency-locking is permitted. Since there

are more than two independent frequencies in this parameter regime, a one-parameter

variation will generically only detect regions of partial frequency-locking between two of

the frequencies. This partial frequency-locking is very likely the phenomena observed in

the experiments, since in the regimes where locking was detected the flow is extremely

complex featuring various frequencies and defects in the axial and azimuthal periodicity.

Moreover, these additional frequencies account for the noisy Poincaré maps which were

used experimentally to identify the regions of locking. This highlights the care that needs

to be taken in distinguishing between extraneous noise and the effects of deterministic

bifurcations in accounting for spatio-temporal complex dynamics.
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CHAPTER 5

MODULATED TAYLOR–COUETTE FLOWS

Time-harmonic modulations of the inner cylinder rotation in Taylor–Couette flows have

been and continue to be of much interest. The original motivation for studying the effects

of modulations was the experimentally observed threshold shift to higher mean rotation

for the onset of sustained Taylor vortices (Donnelly, 1964). Hall (1975), neglecting

curvature effects by taking the small gap limit η = ri/ro → 1, performed a perturbation

analysis for small modulation amplitudes and frequencies, showing that in this limit

the modulations slightly destabilize the basic state. His results were confirmed by the

Floquet analysis (also in the narrow gap limit) of Riley & Laurence (1976), contradicting

the experimental results of Donnelly (1964). In an attempt to shed light on the nature of

this discrepancy, Carmi & Tustaniwskyj (1981) extended the Floquet analysis to finite

values of the radius ratio, i.e. including curvature effects. However, their results showed

a much larger degree of destabilization than the previous theoretical and computational

studies of Hall (1975) and Riley & Laurence (1976), contradicting all of the previous

experimental and theoretical work on the problem.

Barenghi & Jones (1989) performed nonlinear computations of the Navier–Stokes

equations for finite gap and confirmed the results of Hall (1975) and Riley & Laurence

(1976). They noted that the computations of Carmi & Tustaniwskyj (1981) were per-

formed with too large a time-step, so that in the low-frequency limit they were unable

to properly reproduce the exponential growth and decay of the perturbations during a

modulation period. Following Hall (1983), who showed that in the low-frequency limit

the most relevant perturbations are not periodic solutions of the equations of motion,

Barenghi & Jones (1989) introduced a low level of noise in their computations and ob-

tained qualitative agreement with Ahlers’ experimental results which were published as

an appendix to Barenghi & Jones (1989). They concluded that the discrepancies regard-

ing stability limits were due to noise-induced difficulties in experimentally determining

the onset of instability.

The Floquet analysis in the narrow gap limit of Riley & Laurence (1976) showed

that for zero-mean modulations of the inner cylinder, two different time-periodic Taylor

vortex flows compete. For low frequencies the flow is characterized by a reversal of the

sign of the radial and axial velocities every half-period, whereas for higher frequencies the

radial and axial velocities pulse twice during a cycle without changing sign. Nevertheless,

none of the subsequent Floquet analyses for finite values of the radius ratio (Carmi

& Tustaniwskyj, 1981; Barenghi & Jones, 1989) detected competition between the two
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different modes. This was attributed to a failure of the narrow gap limit in the modulated

Taylor–Couette system (Carmi & Tustaniwskyj, 1981). More recently, Youd, Willis &

Barenghi (2003) performed nonlinear computations for a medium gap (η = 0.75) and

confirmed the existence of these modes, terming them reversing and non-reversing Taylor

vortex flow, respectively. Consequently, it was not clear whether the linear stability

results of Riley & Laurence (1976) extended to the case of finite radius ratio η or if one

or both modes were due to nonlinear growth of finite-amplitude perturbations.

We have performed a Floquet analysis of the basic state and found that both reversing

and non-reversing flows are due to linear instabilities of the basic state, confirming the

results of Riley & Laurence (1976). In fact, the instabilities are pitchfork-of-revolution

bifurcations in which the axial translation invariance is broken. For non-reversing flow

this is the only symmetry which is broken, whereas the pitchfork-of-revolution bifurcation

leading to reversing flow also breaks the half-period-flip spatio-temporal symmetry under

which the basic state is invariant. Hydrodynamic systems with the same symmetries that

bifurcate to two different competing periodic modes have also been found numerically

and experimentally in periodically driven cavity flow (Marques, Lopez & Blackburn,

2004; Vogel, Hirsa & Lopez, 2003) and in the wake of a circular cylinder (Barkley &

Henderson, 1996; Williamson, 1996). In those problems, the bifurcating states were

named modes A and B, and we shall adopt this nomenclature as well in the present

problem, rather than using the terms reversing and non-reversing. Here, we not only

characterize the spatio-temporal properties of the bifurcated flows, but also investigate

mode competition in a neighborhood of the codimension-two point where they bifurcate

simultaneously using both nonlinear simulations and laboratory experiments.

5.1 Symmetries

We consider the TaylorCouette system with stationary outer cylinder and inner cylinder

rotating at angular velocity which is modulated harmonically in time about a zero mean

Rea sin(ωt), (5.1)

where Rea and ω are the non-dimensional amplitude and frequency of the modulations,

respectively. Figure 5.1 is a schematic of the system. The geometry of the annulus is

defined by the radius ratio η = ri/ro, which we fix at η = 0.5 in the computations to

match that of the experimental apparatus. For the Floquet analysis, the cylinders are

assumed to be infinite, whereas the nonlinear computations are performed in a long pe-

riodic annulus with axial period Λ = 41.89 times the annular gap. This corresponds to a
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Figure 5.1: Schematic of modulated Taylor–Couette flow.

fundamental wavenumber k0 = 0.15 in (2.17) as in the Eckhaus instability computations

of §2.3. In the physical apparatus, whose details can be found in Belisle (2007), the

aspect ratio of the annulus is Γ = h/d = 115.

The boundary conditions are

v(ri, θ, z, t) = (0, Rei(t), 0), v(ro, θ, z, t) = 0, (5.2)

where Rei(t) = Rea sin(ωt) is the instantaneous Reynolds number. The resulting modu-

lated Couette flow (mC) is purely azimuthal and synchronous with the imposed harmonic

oscillations

vmC =
(

0, Rea ℑ(f(r) eiωt), 0
)

, (5.3)

where f(r) is the solution of a second order ODE; f can be expressed in terms of

modified Bessel functions, but here it has been computed using collocation at Gauss–

Lobatto points, as in the previous chapter. The linear stability of mC (5.3) has been

determined by Floquet analysis following Lopez & Marques (2002).

The governing equations and boundary conditions are invariant to Kz reflection

z → −z and to translations Ta along the z-axis. In the azimuthal direction they are

invariant to arbitrary rotations Rα. Together, these symmetries generate the group of

spatial symmetries of the classical Taylor–Couette system G0 = SO(2) × O(2). Their

actions on the velocity field are given in (2.5)–(2.7). The basic state (4.5) is invariant

under G0. Moreover, when modulations about a zero mean are considered, there is an

additional spatio-temporal symmetry S, which consists of a time evolution of a half

modulation period followed by the reflection Kθ on the meridional plane θ = 0 (acting
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as θ → −θ), whose action on the velocity is:

S(v)(r, θ, z, t) = Kθ(v)(r, θ, z, t + T/2) = (vr,−vθ, vz)(r,−θ, z, t + T/2), (5.4)

where T = 2π/ω. If S were purely spatial, i.e. the reflection Kθ, then S and Rα would

generate the orthogonal group, O(2) = SO(2) ⋊ Z2, where the elements of Z2 would be

Kθ and the identity. Since S is a space-time symmetry, S and Rα generate a space-time

symmetry group isomorphic to O(2), which we term O(2)ST = SO(2)⋊ZST
2 , where now

the elements of Z2 are S and the identity. Therefore, the complete symmetry group of

the system modulated about a zero mean is G = O(2)ST × O(2) and the basic state

(4.5) is invariant under G. When the dynamics preserve the axisymmetry, as is the case

over large regions in parameter space, the rotations Rα do not play any dynamic role

(they act trivially on the solutions of the governing equations), and in the axisymmetric

subspace the symmetry group of the problem reduces to G = ZST
2 × O(2).

Generally, the stability of T -periodic flows is determined by Floquet analysis consid-

ering their Poincaré map

x0 7−→ P(x0) = φ(t0 + T ; x0, t0), (5.5)

where φ(t0 + t; x0, t0) is the solution of the governing equations at time t with initial

conditions (x0, t0) in a neighborhood of the periodic orbit. However, for systems with Z2

spatio-temporal symmetry, the Poincaré map is the square of the half-period-flip map

x0 7−→ H(x0) = Kθφ(t0 + T/2; x0, t0). (5.6)

In these cases, the eigenvalues of P are µP = µ2
H, where µH is the corresponding eigen-

value of H. The action of S has important implications on the dynamics of the bifurcated

solutions which cannot be detected by studying the stability of P alone. Marques et al.

(2004) derived normal forms for codimension-one and two bifurcations in systems with

G = ZST
2 × O(2), for both H and P .

5.2 Types A (reversing) and B (non-reversing) modulated

Taylor vortex flows

5.2.1 Floquet analysis of the modulated Couette flow

Codimension-one bifurcations are generically obtained when a single parameter is var-

ied. For modulated Couette flow (mC), the possible codimension-one bifurcations cor-

respond to Floquet multipliers of the Poincaré map µP = 1 or the complex conjugate
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Figure 5.2: (a) Regime diagram obtained via Floquet analysis of the modulated Couette
flow (5.3) using the half-period-flip map H. The circle denotes the bicritical point
(ω,Rea,c) = (3.936, 119.4). (b) Corresponding axial wavenumber kc(ω) at criticality.
The vertical dotted lines are the frequencies ω at which the marginal stability curves are
shown in figure 5.3.

pair µP = exp(±iθ). The case of µP = −1 is the period-doubling bifurcation which is

inhibited by the space-time Z2 symmetry S (Swift & Wiesenfeld, 1984). Furthermore,

the synchronous case µP = 1 actually comes in two flavors, one which breaks the sym-

metry S and another which preserves it. These two cases are readily distinguished by

using the half-period-flip map H for the Floquet analysis, where µP = µ2
H and µH = +1

is the S-preserving synchronous bifurcation and µH = −1 is the S-breaking synchronous

bifurcation. The quasi-periodic case µP = exp(±iθ), while also being generic, has not

been observed for modulated Taylor–Couette flow in the parameter regimes studied so

far. However, when the outer cylinder is modulated, Lopez & Marques (2002) found

some parameter regimes where the quasi-periodic case leads to modulated spiral flows.

Figure 5.2 shows the results of the Floquet analysis of the basic state mC, using the

half-period-flip map H. The bifurcation curves Rea = Rea,c(ω) are shown in part (a)

of the figure. The solid curve is a pitchfork-of-revolution bifurcation corresponding to

µH = +1, where mode B bifurcates from mC, and the dashed curve is also a pitchfork-

of-revolution bifurcation corresponding to µH = −1, where mode A bifurcates. These

bifurcations break the continuous translational symmetry Ta, which is replaced by a

discrete translational symmetry T2π/kc
, where kc(ω) is the critical wavenumber at the
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Figure 5.3: Neutral stability curves as computed with Floquet analysis for (a) ω = 2.5,
(b) ω = 3.936 and (c) ω = 6. The circles correspond to the discrete set of wavenumbers
k considered in the nonlinear computations such that k ∈ [0.75, 4.95].

bifurcation (see figure 5.2b). The two modes remain T -periodic but mode A breaks the

S-symmetry and mode B preserves it.

The four regions in figure 5.2(a) are labeled with the states that exist in them (note

that mC exists everywhere but is only stable in the region where it is labeled). Be-

low both the A and B curves only the basic state mC exists and is stable. In the

region above both the A and B curves, modes A and B coexist. At low modulation

frequencies, mode A is the primary bifurcation (i.e. for a given ω, A bifurcates from

mC first as Rea is increased), and at large frequencies, mode B is primary. The point

(ω,Rea) = (3.936, 119.4) is a codimension-two point where the two bifurcations occur

simultaneously. Figure 5.3 shows neutral stability curves for modulation frequencies

ω = 2.5, 3.936 and 6. At ω = 2.5, the bifurcation to A is primary, occurring for a

wide range of wavenumbers. At ω = 3.936, both neutral stability curves have minima

at Rea,c = 119.4, giving rise to the codimension-two bifurcation point. At ω = 6 the

bifurcation to A is confined to a small range of wavenumbers and the bifurcation to B

is primary. These linear stability results have the same features as the nonlinear com-

putations of Youd et al. (2003) for η = 0.75. Note that the neutral stability curves for

A and B do not cross, so that at given (ω,Rea) the wavenumber of the flow suffices to

determine which state is realized in the nonlinear computations and experiments. How-

ever, comparing figures 5.3(a) and 5.3(c), it is clear that by changing either Rea or ω it

is possible to obtain A and B with the same wavenumber.
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Figure 5.4: Type B (non-reversing) Taylor vortex flow at ω = 6.1 and Rea = 240
with wavenumber kB = 3.4. Quadratically spaced contours of angular momentum (top
row) and azimuthal vorticity (bottom row) are shown in a meridional cross-section over
a period T = 2π/ω. Black (gray) contours correspond to positive (negative) values,
showing r ∈ [1, 2] and z ∈ [0, 4π/kB]. The snapshots have been taken after transients
have vanished. In particular, a time shift of several periods t → t−NT has been applied.

5.2.2 Numerical characterization of the flows

The Taylor–Couette system with modulations about a zero mean is characterized by

two distinct phases, depending on the instantaneous value of Rei(t) = Rea sin ωt. When

Rei(t) < Rei,c (the critical Reynolds number of steady Couette flow), the motion of the

cylinder is subcritical and therefore all the perturbations decay. For Rei(t) > Rei,c per-

turbations are amplified and vortices (Taylor cells) develop. Figure 5.4 shows contours of

angular momentum rvθ (top row) and azimuthal vorticity ωθ (bottom row) over a modu-

lation period for state B at ω = 6.1 and Rea = 240 with wavenumber kB = 3.4. At t = 0,

which corresponds to Rei(t) = 0, weak pairs of Taylor cells remain from the previous
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Figure 5.5: Evolutions over two periods of (a) the radial velocity and (b) the az-
imuthal velocity components of the perturbation field (2.18) recorded at (r, θ, z) =
((ri + ro)/2, 0, π/kB) (solid lines) and (r, θ, z) = ((ri + ro)/2, 0, 0) (dashed lines) for
state B in figure 5.4. Note that the time axes have been normalized by the period T .

modulation cycle. At t = T/8 the distribution of angular momentum is almost uniform

as the Taylor cells from the previous cycle have almost completely decayed, but they

soon re-develop and reach maximum amplitude at about t = T/4 with a strong outflow

jet of angular momentum erupting from the inner cylinder boundary layer at z = π/kB,

and a weaker inflow jet from the outer cylinder boundary layer at z = 0. Subsequently,

the cells decay until the rotation of the inner cylinder becomes supercritical in the oppo-

site direction and the Taylor cells reappear at the same axial locations at t = 3T/4. This

indicates that a time evolution of T/2 leaves the azimuthal vorticity invariant, with the

axial locations of the inflow and outflow jets remaining unchanged. The time evolution

of a half-period corresponds to a change of sign in the angular momentum, as it does

for the basic state. It is therefore evident that the bifurcation to B preserves the spatio-

temporal symmetry S. This can also be seen in figure 5.5, showing the time series of

the radial and azimuthal perturbation velocities, ur and uθ, at (r, θ, z) = (1.5, 0, π/kB)

(solid lines) and (r, θ, z) = (1.5, 0, 0) (dashed lines). The radial velocity time series are

T/2-periodic, so that there is no reversal in the sense of circulation in the Taylor cells.

However, the azimuthal velocity is T -periodic, with symmetrically opposed maxima and

minima at t and t + T/2, i.e. uθ(r, θ, z, t) = −uθ(r, θ, z, t + T/2), and S is preserved.

The time evolution of state A over a modulation period is illustrated in figure 5.6,

showing contours of angular momentum and azimuthal vorticity. The behavior is similar

to that of B, although in this case it is clear that a time evolution of T/2 does not leave
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Figure 5.6: Type A (reversing) Taylor vortex flow at ω = 1 and Rea = 240 with
wavenumber kA = 3.0. Quadratically spaced contours of angular momentum (top row)
and azimuthal vorticity (bottom row) are shown in a meridional cross-section over a
period T . Black (gray) contours correspond to positive (negative) values, showing r ∈
[1, 2] and z ∈ [0, 4π/kA].

the azimuthal vorticity invariant; the locations of the inflow and outflow jets are shifted

by half and axial wavelength π/kA each half-period (compare snapshots at t = T/4 and

t = 3T/4, for example). Note that this does not correspond to a reflection but to an

axial shift of the pattern

Tπ/kAv(r, θ, z, t) = v(r, θ, z + π/kA, t). (5.7)

The change in sign of angular momentum together with this half wavelength axial shift

indicates that the spatio-temporal symmetry S has been broken. Nevertheless, A is

invariant under a new Z2 spatio-temporal symmetry S ′, consisting of S composed with
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Figure 5.7: Evolutions over two periods of (a) the radial velocity and (b) the az-
imuthal velocity components of the perturbation field (2.18) recorded at (r, θ, z) =
((ri + ro)/2, 0, π/kA) (solid lines) and (r, θ, z) = ((ri + ro)/2, 0, 0) (dashed lines) for
state A in figure 5.6.

the axial translation Tπ/kA . Its action on the velocity field is:

S ′(v)(r, θ, z, t) = (vr,−vθ, vz)(r,−θ, z + π/kA, t + T/2). (5.8)

The replacement of S by S ′ in the bifurcation to A is manifest in the time-series of the

radial and azimuthal perturbation components shown in figure 5.7. A time evolution of

half a period changes the sign of the radial velocity, illustrating the exchange between

outflow and inflow boundaries as a result of the axial shift. If this time evolution is

composed with Tπ/kA , which corresponds to swapping from solid to dashed line or vice-

versa, then the radial velocity is unchanged. The azimuthal component is only invariant

after further applying the reflection Kθ. These symmetry considerations fully agree with

the results from equivariant normal form theory presented in Appendix D.

5.2.3 Experimental characterization of the flows

The critical Rea,c from the Floquet analysis corresponds to the Rea at which the net

growth of the most dangerous perturbation over a period is zero. For Rea & Rea,c, the

fraction of the period during which the motion of the cylinder is subcritical (Rei(t) =

Rea sin ωt < Rei,c) is large, and the vortices decay to energy levels which are limited

by the level of background noise (Hall, 1983; Barenghi & Jones, 1989). For larger Rea,

the signal-to-noise ratio is increased, and so the experimental results of Mr. Michael
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Figure 5.8: Experimental space-time diagrams of the time evolution at Rea = 240 of
(a) state A at ω = 1 with kA = 3.0 and (b) state B at ω = 6.1 with kB = 3.4; the
corresponding computed kinetic energies of the perturbation field u are shown in (c)
and (d), and the corresponding instantaneous Reynolds numbers Rei(t) = Rea sin ωt
(solid curve) are given in (e) and (f) which also include Rei,c = ±68.19 (dashed lines).

Belisle reported in this chapter have been performed at Rea = 240, well beyond onset

at Rea,c ≈ 110. At Rea = 240, the motion of the cylinder is subcritical only 18.3% of

the period, giving an acceptable signal-to-noise ratio which results in clean synchronous

secondary flows. The experimental characterizations at Rea = 240 of A at ω = 1.0 and

B at ω = 6.1 are shown as space-time diagrams in figures 5.8(a) and 5.8(b). A and B

can be clearly distinguished by the behavior of the jets separating the Taylor cells. In

figure 5.8(a) the jets of A shift half a wavelength every half period, and in figure 5.8(b) the

jets of B do not shift. The corresponding wavenumbers for these particular experimental

71



runs are kA = 3.0 and kB = 3.4, consistent with the nonlinear computations.

Youd et al. (2003) noted that the most striking feature of A is the exponential growth

and decay that the vortices experience every half-period. This behavior is manifest in the

computed kinetic energy time series of A at Rea = 240 and ω = 1 shown in figure 5.8(c).

At this low frequency, the response is quasi-steady to the continuous but slow change in

Rei(t). At t = 0, corresponding to Rei(t) = 0, the vortices are decaying exponentially

and reach a minimum of kinetic energy shortly after the motion of the cylinder becomes

supercritical (Rei(t) = Rei,c). The instantaneous Rei(t) is shown in figure 5.8(e) (and

in figure 5.8(f) for the ω = 6.1 case) as a solid line together with ±Rei,c (dashed lines)

so as to clearly identify the phases of the cycle during which the cylinder motion is

super- and sub-critical. The decay of the vortices can also be seen in the experimental

space-time diagram of figure 5.8(a), where the vortices are observed to fade away (the

intensity tends to an axially uniform shade of grey). Subsequently, the vortices grow

exponentially until the flow saturates nonlinearly at t/T = 0.133 and algebraic growth

follows. The algebraic growth continues to t/T = 0.25, when the maximum amplitude

of the modulations Rei(t) = 240 is achieved, and it is followed by algebraic decay as

the cylinder slows down. In the experiments, this long phase of algebraic behavior is

distinguished by a greater contrast in the reflected light across the vortices. When the

rotation of the cylinder again becomes subcritical, the vortices decay exponentially. Due

to the spatio-temporal symmetry S ′, this sequence is repeated every half period, i.e. the

kinetic energy time series is T/2 periodic.

The behavior of B at a higher frequency ω = 6.1 is qualitatively different. In this

case, the flow does not have time to adjust quasi-steadily to the rapidly changing Rei(t).

This results in a delay of the response as can be seen in the kinetic energy time series of

figure 5.8(d), and also in the space-time diagram of figure 5.8(b). In particular, the flow

saturates nonlinearly at t/T = 0.215, in comparison to A at ω = 1 which saturates at

t/T = 0.133. Although the flow is subcritical the same fraction of the period in the two

cases, since the period is six times shorter in viscous time units for B at ω = 6.1, and

the growth rates for A and B in viscous time units are comparable (e−22.9t and e−23.4t,

respectively), the exponential decay of A at ω = 1 during this fraction leads to vortices

with minimum energy of about six orders of magnitude smaller than for B at ω = 6.1.
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Figure 5.9: Experimentally observed axial wavenumbers k of A (⋄) and B (¤) in several
experimental runs at Rea = 240. The solid lines correspond to the Eckhaus curves from
the nonlinear computations.

5.2.4 Wavenumber selection of the flows

The neutral stability curves shown in figure 5.3 indicate that at Rea = 240 solutions

with a wide range of axial wavenumbers k can be selected. The stability of these flows

is limited by the Eckhaus bifurcation curves. In the experiments, the axial wavenumber

that is selected depends on perturbations and initial conditions that are not completely

controllable and cannot be fully characterized. Repeated experimental runs at the same

point in parameter space (Rea, ω) lead to states with different k well within the Eckhaus-

stable band. Similar multiplicity of states in classical Taylor–Couette flow is well-known

(Coles, 1965). Figure 5.9 shows the axial wavenumbers of A (diamonds) and B (squares)

observed in several experimental runs at Rea = 240 and various ω. (Results in the

interval 1 < ω < 3 are presented in §5.3 as they correspond to the competition region.)

After transients have decayed, the Taylor cells are of uniform wavelength and no defects

are observed. All the observed k are inside the Eckhaus bands as determined by nonlinear

computations. These are shown in solid lines in figure 5.9.
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Figure 5.11: Schematic of the phase portraits of the mode competition dynamics in the
six regions delimited by the bifurcation curves in figure 5.10. Open (closed) circles are
unstable (stable) fixed points of the Poincaré map P .

5.3 Mode competition: bifurcation scenario

We have numerically investigated the competition between A and B in a wide region of

parameter space around the codimension-two point where they bifurcate simultaneously,

(ω,Rea,c) = (3.936, 119.4). The critical axial wavenumbers for A and B from Floquet

analysis are kA
c = 2.71 and kB

c = 3.82. Let’s assume for now that only one A and one B,

with fixed incommensurate kA
c and kB

c , exist in the neighborhood of this codimension-

two point. This classical simplification allows one to interpret the bifurcation scenario

74



in terms of standard equivariant bifurcation theory while preserving the essentials of the

competition dynamics. The effects of the presence of two families of flows A and B, given

by the Eckhaus bands, shall be addressed in the next paragraph. Figure 5.10 shows the

bifurcation diagram of the competition between A and B in a wide region of parameter

space. For Rea and ω in region 1 the basic state mC is the only flow that exists and it is

stable. Crossing into region 2, mC becomes unstable and A emerges as a stable state via

a synchronous symmetry-breaking bifurcation. Upon crossing into region 3, B emerges

from another synchronous bifurcation from mC, but it is unstable and only stabilizes in

region 4 where an unstable mixed-mode AB is born. In region 4, A and B coexist and

are both stable. Depending on initial conditions, either of them may be obtained. The

situation is analogous when starting from region 1 and crossing into regions 6 and 5 to

reach region 4. As all the bifurcations are supercritical, these paths in parameter space

can be reversed and the same results hold. The detailed analysis of this bifurcation is

presented in Appendix D in terms of equivariant normal form theory. Figure 5.11 shows

a schematic of the phase portraits in the six regions of parameter space indicating the

stability of the flows, summarizing the results in Appendix D.

Note that at any point in parameter space with Rea > Rea,c there exist not a single

A or a single B, but two families of these flows. Therefore, on performing nonlinear

computations to determine the bifurcation curves in figure 5.10, it is necessary to consider

A and B with different axial wavenumbers (all of them multiples of the small fundamental

k0 = 0.15). Their stability is determined as explained in § 2.3. Let’s say we start a

simulation with ω = 3.2 and Rea = 140 and obtain B50 with wavenumber kB = 3.75,

corresponding to 50 Taylor cells (l = 25). Upon decreasing the Reynolds number to

Rea = 138, we cross from region 4 to region 3, B50 becomes unstable and the system

evolves to A38 (with kA = 2.85). However, at this Rea and ω, B52 (with kB = 3.9) is

still stable and is only destabilized when Rea is further reduced to 137. Likewise, for

each pair (A2l, B2l′) there exists a set of bifurcation curves. Region 4 in figure 5.10 is

defined as all points in parameter space where at least a stable A and a stable B coexist

simultaneously. The boundaries of region 4 consist of segments from the bifurcation

curves at which various A and B lose stability. Note that in region 4, there exists not a

single unstable mixed mode AB, but a family of such modes.

A typical example of the nonlinear dynamics of the transition from A to B when

crossing from region 4 to region 5 is shown in the space-time diagram of figure 5.12.

In the plot, we have arbitrarily set t = 0, however by this time the flow had evolved

for many periods until a stable A36 was obtained at Rea = 140 and ω = 4 (region 4).

Then, at t = 0 a small perturbation (with energy several orders of magnitude lower than
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Figure 5.12: Space-time diagram showing an azimuthal vorticity color-map at (r, θ) =
(ro, 0) over time and the whole computational domain in the axial direction z ∈ [0, Λ].
Black (gray) corresponds to positive (negative) values. The initial condition is A36 at
ω = 4 and Rea = 140. At t = 0 the frequency is increased to ω = 4.2 and the system
starts evolving to B48.

that of the flow) was introduced and the frequency was raised to ω = 4.2, thus entering

region 5 where A is unstable. After a transient (of about 10 periods) during which A

and B compete, the flow settles to B48. Before the transition, the half-wavelength axial

shifts of A36 every half-period are evident. Following the transition to B48, the flow no

longer shifts axially and has a larger wavenumber. Figure 5.13 shows the transition from

B to A when crossing from region 4 to region 3. The initial state is B50 at Rea = 140

and ω = 3.2, and upon decreasing the frequency to ω = 3.0, the flow evolves to A38.

5.3.1 Experimental dynamics of the competition at Rea = 240

We have conducted experiments at Rea = 240 to verify the bifurcation scenario and

identify the regions in parameter space predicted by the nonlinear computations. In the

low frequency regime, ω ≤ 1, corresponding to region 3 in figure 5.10, the only observed

flow is A. For frequencies ω ≥ 3, corresponding to region 5, only B is observed. These
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Figure 5.13: Same as Figure 5.12. The initial condition is B50 at ω = 3.2 and Rea = 140.
At t = 0 the frequency is decreased to ω = 3.0 and the system evolves to A38.

flows are characterized by a well-defined time-independent axial wavenumber k. The

observed values of k are given in figure 5.9.

The experimental procedure to detect the boundaries of the coexistence region 4 is as

follows. The apparatus is operated at ω ≥ 6 in region 5 and far from region 4 as deter-

mined by the nonlinear computations, which at Rea = 240 spans from ω ∈ (1.53, 2.20).

After transients have decayed, a spatially regular B is obtained. Then, the frequency

is decreased to say ω = 5. There is a rapid initial adjustment via vortex mergers or

splits (defects in the pattern which appear at random axial locations) on a time scale

of about 2π/ω (on the order of d2/ν for the range of frequencies investigated). This is

followed by a slower adjustment of the wavelength on the viscous time scale associated

with the distance between endwalls (Γd2/ν). The frequency is subsequently reduced

further and different B are obtained at various ω. Following each of these changes in

ω, we observe the same type of rapid adjustment via defects followed by the gradual

relaxation. However, close to region 4 (at about ω ∼ 3) the defects do not vanish after a

period but are persistent in time. Figure 5.14 shows a typical space-time diagram of an

experimental run in this parameter regime, with Rea = 240 and ω = 2. The flow does
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Figure 5.14: Space-time diagram showing the time evolution of a noise-sustained flow in
region 4 at ω = 2.0 and Rea = 240 over 36 periods, corresponding to 113 viscous time
units. At t/T = 0, the frequency was changed from a stable flow at ω = 1.0.
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Figure 5.15: Close-ups of the images in figure 5.14 showing typical defects.

not settle on a particular axial wavenumber and there are abrupt appearances of defects

over the whole experimental run (which lasted 36 periods, corresponding to about 120

viscous times). The defects are evident when the flow saturates nonlinearly, and when

Rei(t) peaks at about |Rei(t)| = 240 the cells are more spatially uniform. The defects

appear at random axial locations each half-period and the dominant axial wavenumber

is apparently randomly selected in time with values k ∈ [2.9, 4.0], showing no clear trend

(a few close-ups of the images in figure 5.14 are presented in figure 5.15 showing typical

defects). The flow cannot be regarded as either A or B; the jets separating the vortices

shift by irregular amounts in space and time. This type of behavior is observed following

decreases in ω, until we reach ω = 1. Following a decrease to ω = 1, the defects quickly

disappear within about one period, and the Taylor cells adjust slowly to a uniform axial

wavenumber k. At this ω, the jets shift by half a wavelength every half-period, corre-

sponding to A. This whole scenario is reversed with increasing ω, i.e. we did not detect

any hysteresis with varying ω.

5.4 Discussion and conclusions

Nonlinear dynamics of the time modulated Taylor–Couette system has been investi-

gated experimentally and numerically by solving the unsteady three-dimensional Navier–

Stokes equations. The aspect ratio of the experimental apparatus is Γ = 115, whereas in

the nonlinear computations a long periodic annulus of wavelength Λ = 41.89 has been

considered. The study has been focused on temporal modulations about a zero mean.

In this case, the basic state is characterized by the presence of a Z2 spatio-temporal

symmetry, S, in addition to the spatial symmetries of the classical Taylor–Couette sys-

tem.
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The onset of instability has been determined by Floquet analysis of the basic state,

which shows that two distinct Taylor vortex flows A (reversing) and B (non-reversing)

are born at synchronous symmetry-breaking bifurcations of the modulated Couette flow.

This result resolves the discrepancies between previous Floquet analyses for finite gaps

(Carmi & Tustaniwskyj, 1981; Barenghi & Jones, 1989) and narrow gap (Riley & Lau-

rence, 1976). Moreover, experimental evidence of the existence of A and B has been

provided for the first time. The dynamical behavior of A and B and the observed axial

wavenumbers are in good agreement with the predicted values from Floquet analysis and

nonlinear computations. The stability of the basic state has been investigated using the

half-period-flip map H instead of the Poincaré map P = H2. This approach sheds light

on the nature of the symmetry-breaking bifurcations to A and B, while also having the

practical advantage of halving the computational time. The bifurcation to B preserves

the spatio-temporal symmetry S, whereas the bifurcation to A breaks it and a new

spatio-temporal symmetry S ′ emerges, consisting of S composed with an axial shift of

half a wavelength. Flows with precisely the same symmetries as A and B arise in other

systems, such as the periodically driven cavity flow (Marques et al., 2004) and cylinder

wake flows (Barkley & Henderson, 1996), via analogous bifurcations in the transition

from two-dimensional to three-dimensional flow (Blackburn et al., 2005). However, in

modulated Couette flow, the transition is from one-dimensional to two-dimensional flow,

highlighting that the symmetry group of the system, and in particular of the flow from

which the bifurcations occur, determines the spatio-temporal characteristics of the bifur-

cated flows regardless of the specifics of the problem. Therefore, a careful consideration

of the symmetries of the system provides not only the key to understand the nature of

the two bifurcated flows, but furnishes the setting to compare systems with inherently

different physical instability mechanisms.

In previous studies, direct numerical simulation had been focused on investigating

the codimension-one bifurcations leading to the two states with distinct spatio-temporal

symmetries. The flow in the wake of a cylinder is governed by a single parameter, the

Reynolds number Re, so that a study of the mode competition between A and B is

impractical (two parameter variations are required to explore the competition dynamics

organized by the codimension-two point where both modes bifurcate simultaneously).

State A bifurcates first at lower Reynolds number, so a pure state B is never observed

in the cylinder wake experiments and can only be obtained in the computations by

prescribing the wavenumber. The transition is found to be gradual from A to B in

experiments (Williamson, 1996) and to some extent in nonlinear computations (Hender-

son, 1997). Barkley, Tuckerman & Golubitsky (2000) proposed a system of two coupled
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amplitude equations based on the assumption of the existence of a codimension-two

point where A and B bifurcate simultaneously; the experimentally observed transition

was described as a one-dimensional path (parameterized with Re) in a two-parameter

model. In modulated Taylor–Couette flow, the study of the competition between the

analogous states A and B is more straight-forward as the two parameters, Rea and ω,

can be varied. Youd et al. (2003) obtained A and B with nonlinear computations for

the first time. In a subsequent study, Youd et al. (2005) also investigated the secondary

transition to three-dimensional flows and showed that non-reversing spiral flows occur.

However, their approach, in which they computed for a single mode with a prescribed

wavelength, was unable to study mode competition and pattern selection. At about the

same time, Youd & Barenghi (2005) also considered the problem in a finite annulus with

stationary rigid endwalls and relatively short aspect ratios, and found that both states

A and B continue to exist. Although mode competition could have been studied along

the line presented here, they did not perform such an analysis and only considered two

modulation frequencies, ω = 3 and ω = 7. The effects of rigid endwalls and finite aspect

ratios on the competition between states A and B remains an open question.

In this chapter we have numerically and experimentally investigated the competition

between A and B in the two-dimensional parameter space (ω,Rea). In the nonlinear

computations, A and B coexist and the two are stable in a narrow region of parameter

space where a mixed-mode AB also exists but is unstable. In fact, in this region there

are families of A and B and mixed-modes. In the experiments neither A nor B has

been observed in the coexistence region. Instead, we have found that noise sustains

flows with irregular time-dependent axial wavenumber. Outside this region, for lower

frequency only A is observed, and for higher frequency only B is observed, in good

agreement with the numerical simulations and the Floquet stability analysis. It is thus

of interest to determine the nature of the flows observed in the coexistence region, and in

particular to determine if it is noise sustaining a mixed mode generated by a combination

of A and B with a wide range of axial wavenumbers.
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CHAPTER 6

OVERVIEW AND DISCUSSION

In the quest for understanding the general question of transition to spatio-temporal

complexity and turbulence in natural flows, there has been a need to seek more fun-

damental flows from which the important physics can be extracted. Researchers in the

past century considered idealized problems with simple geometries which have led to the

rigorous development of hydrodynamic instability theory. Since the pioneering work of

Taylor (1923), the Taylor–Couette flow has been used as canonical flow for centrifugal

instability and transition to turbulence following a progression of flow instabilities. In

this thesis, we have investigated several variations of the classical Taylor–Couette system

leading to very rich dynamical behavior. The work has been motivated by experimental

observations of complex flows whose origin was unclear. Our approach has combined

Direct Numerical Simulations of the three-dimensional Navier–Stokes equations with

equivariant bifurcation and normal form theories to uncover the key factors behind the

experimentally observed behavior. The results have been compared to related flows

with different physical instability mechanisms, highlighting that the symmetry group of

the basic flow from which the bifurcations occur determines the characteristics of the

secondary flows regardless of the specifics of the problem.

After introducing the Taylor–Couette system and numerical methodology in chap-

ters 1 and 2, we have investigated the effect of an axial pressure gradient in the co-

rotating Taylor–Couette system in chapter 3. The bifurcation scenario leading to coexis-

tence of spiral waves of opposite angle, similar to those experimentally observed by Nagib

(1972), has been elucidated. Our numerical computations show that these states consist

of the superposition of spiral waves propagating in opposite axial direction. This had

been conjectured by Meseguer & Marques (2005a) from linear instability results. How-

ever, care must be taken when using periodic boundary conditions to simulate Poiseuille

type flows. In the experiments, perturbations at the inlet of the apparatus are carried

away and swallowed at the outlet. Therefore, the observation of secondary motion in

the convectively unstable regime depends on the length of the apparatus and amplitude

of the perturbations at the inlet (Babcock et al., 1994). In the Navier–Stokes equations

with periodic boundary conditions, perturbations re-enter the system and no distinction

is possible between the convectively and absolutely unstable regimes. Therefore, the nu-

merical simulation of open flows has been and continues to be a major challenge, as the

boundary conditions are not well defined. Although the numerical results in chapter 3

are most likely in the convective regime, and may be in fact never obtained in a labora-
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tory experiment, the generic bifurcation mechanism leading to interpenetrating spirals

presented here remains valid. In addition, the flows have been obtained using periodic

boundary conditions, so it seems clear that the related flows observed by Nagib in differ-

ent parameter regimes are due to linear instabilities and not to extraneous experimental

inlet/outlet effects not captured by our model.

In chapter 4, the nonlinear dynamics of the Taylor–Couette flow with axial oscil-

lations of the inner cylinder has been investigated. In contrast to the spiral Poiseuille

flow, the oscillating Taylor–Couette flow is an enclosed system, which we have approx-

imated imposing a zero net axial mass flow at any instant in time. The motivation

to study these type of flows stemmed from the experimental observation of Weisberg

et al. (1997) that harmonic axial oscillations led to a parametric suppression of the on-

set of instability. They noted that in certain ranges of forcing frequency and amplitude

they observed erratic behavior being excited directly from the basic state. Marques &

Lopez (1997, 2000) showed that this complex behavior was tied to parametric excitation

of non-axisymmetric modes via a Neimark-Sacker bifurcation. The dynamics of these

non-axisymmetric spiral modes was the subject of recent experiments by Sinha et al.

(2006), who investigated the presence of resonances between forcing and Neimark–Sacker

frequencies. Our work on this problem has shed light on the nature of the erratic be-

havior observed in the experiments by Weisberg et al. (1997) and Sinha et al. (2006).

We have found that once instability has set in, a rapid sequence of symmetry-breaking

bifurcations results in complex spatio-temporal dynamics even for very low post-critical

values of the rotation of the inner cylinder. In particular, we have shown that these

bifurcations, which cannot be experimentally detected due to the precision required, are

responsible for some of the experimentally observed frequencies which were attributed

to background noise. The breaking of all the spatial and temporal symmetries leading to

defective spiral flow, termed as M4 in chapter 4, results in chaotic behavior at a Reynolds

number for which time-periodic and spatially regular Wavy vortex flow is observed in the

unforced case. Wavenumber competition in both azimuthal and axial directions leads

to broad spatial and temporal spectra. This type of flows were experimentally observed

in Taylor–Couette flow with stationary outer cylinder and rotating inner cylinder by

Brandstäter & Swinney (1987), following the transition from Modulated wavy vortex

flow. Noteworthy, in the axially forced case our computations and experiments by Sinha

et al. (2006) show that these regimes can be realized at Reynolds numbers one order of

magnitude below those of the classical Taylor–Couette experiment. Therefore this type

of weak turbulence, as termed by Brandstäter & Swinney (1987), is not intrinsic to the

momentum of the system.
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In chapter 5, we have explored the effect of oscillating the rotation of the inner

cylinder about a zero-mean, following previous computational works (Riley & Laurence,

1976; Youd et al., 2003). The resulting time-modulated circular Couette flow possesses a

Z2 spatio-temporal symmetry which gives rise to two distinct modulated Taylor vortex

flows. These flows are initiated at synchronous bifurcations, have the same spatial

symmetries, but are characterized by different Z2 spatio-temporal symmetries and axial

wavenumber. Flows with precisely the same symmetries arise in periodically driven

cavity flow (Marques et al., 2004) and cylinder wake flows (Barkley & Henderson, 1996)

in the transition from two-dimensional to three-dimensional flow. Mode competition

between these two states, termed as A and B, has been investigated in the neighborhood

where they bifurcate simultaneously. The experiments and computations show that for

low frequencies only A is observed, whereas for high frequencies only B is observed.

In the nonlinear computations, A and B coexist and the two are stable in the mid-

frequency regime. However, in the physical experiment, neither state has been observed

in the coexistence region. Instead, noise-sustained flows with irregular time-dependent

axial wavenumber have been observed. This finding poses a fundamental question of

interest in mode competition and pattern formation. In particular it is noteworthy that

the wavenumber selection fails only in the mid-frequency coexistence region. For lower

frequencies, where noise effects are expected to be more pronounced due to the long time

that perturbations have to grow and decay, regular spatially and temporally periodic

flows were in fact observed.

Overall, the research presented in the thesis has resolved several issues that arose in

previous experimental and numerical works in Taylor–Couette flows. In turn, the new

results have given rise to interesting questions in flow transition and pattern formation. It

would be interesting to determine the bifurcation scenario that leads to chaotic flow from

the quasi-periodic interpenetrating spirals observed in spiral Poiseuille flow. This may be

similar to the broadening of the spatial and temporal spectra following Modulated wavy

vortex flow and also observed in chapter 4. In the axially oscillating Taylor–Couette

flow, only flows that break the Z2 spatio-temporal symmetry of the basic state have

been observed (these correspond to modulated traveling waves M1). It is expected that

the modulated standing waves predicted in Appendix C exist in other parameter regimes

and follow a different route to chaotic flow. In modulated Taylor vortex flow, both states

breaking (A) and preserving (B) the azimuthal spatio-temporal Z2 symmetry have been

observed. However, state A features a new type of spatio-temporal Z2 symmetry, whereas

the modulated traveling waves M1 of chapter 4 do not.
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Finally, the effects of finite aspect ratios on the competition between states A and B

of chapter 5 will be investigated. This study should be complemented with experiments

with rigid end-walls to determine if the noise-sustained flows observed in the current

experimental apparatus persist. Efforts are now focused on the implementation and

testing of an efficient spectral Navier–Stokes solver for realistic and flexible boundary

conditions, including rigid end-walls. Nonetheless, computations with periodic boundary

conditions will still be of interest in order to compare results and thus assess the role of

end-wall effects on the dynamics of the flows.
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APPENDIX A

SOLENOIDAL SPECTRAL BASES

The divergence-free condition for a perturbation field u of the form (2.8) is D+ur +

inuθ/r + ikuz = 0, where D = ∂/∂r and D+ = D + 1/r. In the axisymmetric subspace

of V , the basis is given by

u
(1)
knm(r) =







0

hm

0






, u

(2)
knm(r) =







−ikrgm

0

D(rgm) + gm






, (A.1)

except that the third component of u
(2)
m is replaced by hm when k = 0. The functions

hm and gm are expanded with Chebyshev polynomials Tm(x)

hm(r) = (1 − x2)Tm(x), gm(r) = (1 − x2)2Tm(x), (A.2)

where

x(r) = 2r − 1 + η

1 − η
, (A.3)

maps the radial domain r ∈ [ri, ro] to the interval x ∈ [−1, 1]. For the the non-

axisymmetric case the basis is

u
(1)
knm(r) =







−ingm

D(rgm)

0






, u

(2)
knm(r) =







0

−ikrhm

inhm






, (A.4)

except that the third component of u
(2)
m is replaced by hm when k = 0.

For the projection space, the basis corresponding to axisymmetric fields is

ũ
(1)
knm(r) = w(x)







0

rhm

0






, ũ

(2)
knm(r) =

w(x)

r2







ikgm

0

D+gm + 2
r
(1 − x2 + rx)hm






, (A.5)

w(x) = 1/
√

1 − x2 is the weight function within the interval (−1, 1), and the third

component of ũ
(2)
m is replaced by rhm if k = 0. The projection basis for the non-

axisymmetric case is

ũ
(1)
knm(r) = w(x)







inrgm

rD+(rgm) + 2xr2hm

0






, ũ

(2)
knm(r) = w(x)







0

ikr2hm

−inrhm






. (A.6)
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APPENDIX B

DOUBLE HOPF BIFURCATION WITH SO(2) × SO(2) SYMMETRY

The technique of Iooss & Adelmeyer (1998), which provides a clear and simple method to

obtain normal forms, incorporating symmetry considerations, is now used for the double

Hopf bifurcation with the G = SO(2) × SO(2) symmetry group. In the codimension-1

Hopf bifurcation, the presence of SO(2) × SO(2) symmetry does not alter the generic

normal form, and the same is true for the double Hopf bifurcation without resonance.

However it is important to specify what the resonance conditions are, because as we shall

see, SO(2)× SO(2) inhibits resonance. Resonance is only possible if both the temporal

frequencies (imaginary parts of the eigenvalues at the bifurcation point, ω0
1 and ω0

2) and

the spatial frequencies (azimuthal wave numbers, n1 and n2, and axial wave numbers,

k1 and k2, at the bifurcation point) satisfy the resonance condition ω0
2/ω

0
1 = n2/n1 =

k2/k1 = p/q, where p and q are positive irreducible integers. We will follow closely the

analysis of the double Hopf bifurcation with SO(2) and with SO(2) × Z2 symmetries

provided in former related works (Marques et al., 2002; Lopez & Marques, 2004).

B.1 Derivation of the normal form

The normal form theorem says that the dynamical system in a neighborhood of the fixed

point (steady, axisymmetric basic state) in the center manifold can be cast in the form

żi = iω0
i zi + Si(z1, z2, z1, z2, µ), (B.1)

plus complex conjugate, for i = 1, 2. zi are the amplitudes of the eigenvectors that

bifurcate simultaneously, and µ are parameters. The functions Si are second order in z

for µ = 0 and satisfy

S(etL∗

oz) = etL∗

oS(z), (B.2)

S(Rαz) = RαS(z), (B.3)

S(Taz) = TaS(z), (B.4)

where Lo is the linear part of the dynamical system at criticality and L∗
o is the cor-

responding adjoint operator. We have used vector notation z = (z1, z2, z1, z2) and

S = (S1, S2, S1, S2) in order to keep the expressions compact. In this notation the
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matrices etL∗

o , Rα and Ta are diagonal:

etL∗

o = diag(e−iω0

1
t, e−iω0

2
t, eiω0

1
t, eiω0

2
t), (B.5)

Rα = diag(ein1α, ein2α, e−in1α, e−in2α), (B.6)

Ta = diag(eik1a, eik2a, e−ik1a, e−ik2a), (B.7)

Equation (B.2) gives the simplest form of S attainable using the structure of the linear

part Lo, and equations (B.3) and (B.4) give the additional constraints on S imposed by

the symmetry group SO(2) × SO(2).

Let zj1
1 zj2

2 zl1
1 zl2

2 be an admissible monomial in S1; it must satisfy equations (B.2),

(B.3) and (B.4), i.e.,

(j1 − l1 − 1)ω0
1 + (j2 − l2)ω

0
2 = 0, (B.8)

(j1 − l1 − 1)n1 + (j2 − l2)n2 = 0, (B.9)

(j1 − l1 − 1)k1 + (j2 − l2)k2 = 0. (B.10)

This system always admits the trivial solution j1 − l1 − 1 = j2 − l2 = 0. If there are no

other solutions, we are in the the non-resonant case; the normal form is not modified by

the presence of the symmetry group SO(2) × SO(2). The non-resonant normal form is

S1 = z1Q1, S2 = z2Q2, (B.11)

where Qi(|z1|2, |z2|2), which coincides with the generic case analyzed in Kuznetsov (2004).

In order that equations (B.8-B.10) have non-zero solutions, the resonant case, the

condition
ω0

2

ω0
1

=
n2

n1

=
k2

k1

(B.12)

must be satisfied. The extra solutions are of the form

j1 − l1 − 1 = jp, j2 − l2 = −jq, j ∈ Z, (B.13)

where p/q is the irreducible form of the fraction n2/n1. Additional monomials

z1(z
p
1z

q
2)

j|z1|2l1 |z2|2l2 , j ∈ Z,

appear in the normal form. As k1 and k2 are positive, p and q are also positive, and we

obtain

S1 = z1Q11 + zp−1
1 zq

2Q12, (B.14)

S2 = z2Q21 + zp
1z

q−1
2 Q22, (B.15)
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where Qii(|z1|2, |z2|2, zp
1z

q
2) and Qij(|z1|2, |z2|2, zp

1z
q
2), i 6= j. This is in accordance with

Theorem 4.2 in Golubitsky et al. (1988).

Resonance in the presence of SO(2) × SO(2) symmetry group is only possible if

the resonance condition (B.12) is satisfied. The spatial (both azimuthal and axial) and

temporal modes must satisfy the same resonance condition. Notice that this condition

can never be satisfied if the two rotating waves do not precess in the same direction,

or do not propagate in the same axial direction. When these simultaneous resonance

conditions are satisfied, the normal form is given by (B.14–B.15).

Substituting (B.11) into (B.1), we obtain the normal form in the non-resonant case:

żi = zi

[

iω0
i + Qi(|z1|2, |z2|2)

]

. (B.16)

In terms of the moduli and phases of zi, zi = rie
iφi , we have

ṙi = riQ
R
i (r2

1, r
2
2), (B.17)

φ̇i = ω0
i + QI

i (r
2
1, r

2
2), (B.18)

where QR
i and QI

i are the real and imaginary parts of Qi respectively. Up to fourth order

in r1 and r2, and assuming that the coefficients of second order in QR
i are nonzero, the

normal form can be written as (Kuznetsov, 2004):

ṙ1 = r1(µ1 + p11r
2
1 + p12r

2
2 + q1r

4
2),

ṙ2 = r2(µ2 + p21r
2
1 + p22r

2
2 + q2r

4
1),

φ̇1 = ω0
1 + ψ1(r1, r2, µ1, µ2),

φ̇2 = ω0
2 + ψ2(r1, r2, µ1, µ2),

(B.19)

where we have introduced explicitly the normalized bifurcation parameters µ1 and µ2.

The dynamics of the moduli r1 and r2 decouple from the phase dynamics, and we end

up with an effective two-dimensional normal form for r1 and r2.

This effective normal form has four fixed points, that after introducing the phase

dependence, become one fixed point, two periodic solutions, and a quasi-periodic so-

lution. The stability and regions of existence of these solutions depend on the values

of pij and qi. There are eleven different scenarios, classified in two categories: simple

(p11p22 > 0) and difficult (p11p22 < 0). For a specific problem, in order to determine

the corresponding scenario, there are two options. One option is to compute the normal

form coefficients pij and qi using the eigenvectors at the bifurcation point, which is very

complicated in the present case. The other option is to numerically compute a regime

diagram in parameter space, delineating the regions of existence of the solutions, and
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determine their stability in a neighborhood of the double Hopf bifurcation point, and

use this information to determine the corresponding scenario; this is the approach we

have employed in Chapter 3. Figure 3.5 is the regime diagram we have obtained, by

computing several solutions for different parameter values close to the double Hopf bi-

furcation point, and computing the Hopf curves using linear stability analysis. There is

only one double Hopf scenario compatible with our results, and it is the type IV of the

simple case (Kuznetsov, 2004).

B.2 Transition scenario

For the simple cases (p11p22 > 0), the fourth order terms in (B.19) can be neglected.

Introducing new variables, ξ1 = −p11r
2
1 and ξ2 = −p22r

2
2, we obtain

ξ̇1 = 2ξ1(µ1 − ξ1 − θξ2),

ξ̇2 = 2ξ2(µ2 − δξ1 − ξ2),
(B.20)

where θ = p12/p22 and δ = p21/p11. For the double Hopf bifurcation investigated in §3.2,

θ < 0, δ < 0, and θδ < 1. The expressions for the normalized parameters µ1,2 as a

function of the physical parameters Reo and Rei read

µ1 = Rei − (1.949Reo + 22.05), (B.21)

µ2 = Rei − (1.952Reo + 21.75), (B.22)

where Hi = {µi = 0}, for i = 1, 2. This normal form admits up to four fixed points:

P0 = (0, 0), P1 = (µ1, 0), P2 = (0, µ2), (B.23)

P3 =
(µ1 − θµ2

1 − θδ
,
µ2 − δµ1

1 − θδ

)

. (B.24)

Figure B.1 shows the parametric portrait in a neighborhood of a type IV double Hopf

bifurcation point. Parameter space is divided into six regions, delimited by bifurcation

curves. The number of solutions and their stability is different in each region. P0 exists

for all values of µ1 and µ2, and is stable for µ1, µ2 < 0. This corresponds to our basic

state SPF. P1 exists for µ1 > 0 and is stable for µ2 < δµ1 (below the N1 curve in

figure B.1, region 6); P2 exists for µ2 > 0 and is stable for µ2 < θ−1µ1 (below the N2

curve in figure B.1, region 2). By including the phase information, P1 and P2 are limit

cycles, corresponding to Right and Left spiral waves, respectively. P3 exists and is stable

between N1 and N2 (regions 3, 4 and 5 in figure B.1). As both moduli are nonzero for

P3, by including the phase information, it is recognized as a quasi-periodic solution on

92



(a) (b)

µ1

µ2

H2

H1

N2

(1)

(2) (3)
(4)

(5)

(6)

N1

H2

H1

(1) (2) (3)
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Figure B.1: a) Parametric portrait for a simple type IV double Hopf bifurcation. The
curves H1 and H2 (coinciding with the axes µ1 = 0 and µ2 = 0, respectively), are the two
Hopf bifurcation curves at which the limit cycles, P1 and P2, bifurcate supercritically
from the basic state P0. The curves N1 and N2 are Neimark-Sacker bifurcation curves
at which the quasi-periodic mixed mode P3 bifurcates. Phase portraits in each of the
six regions indicated are shown in (b).

a two-torus, and in our case it corresponds to interpenetrating spirals. For P1, P2 and

P3, r1 and r2 are constant, and so they have constant angular frequencies:

ω1 = φ̇1 = ω0
1 + ψ1(r1, r2, µ1, µ2),

ω2 = φ̇2 = ω0
2 + ψ2(r1, r2, µ1, µ2).

(B.25)

B.3 Symmetries of the solutions

In the non-resonant case, we have seen that the normal form is unaltered by the sym-

metry group G. Nevertheless, the symmetries act on the bifurcating solutions in a

well-determined fashion. From (B.6) and (B.7), we see that the action of G leaves the

moduli (r1, r2) invariant, and G acts only on the phases (φ1, φ2). The action of G on

the phases is:

Rα

(

φ1

φ2

)

=

(

φ1 + n1α

φ2 + n2α

)

, (B.26)

Ta

(

φ1

φ2

)

=

(

φ1 + k1a

φ2 + k2a

)

. (B.27)

The basic state P0 is a steady solution, r1 = r2 = 0, there are no phases, and hence it is

G-invariant. The solution P1 has r2 = 0 and so we only need to consider φ1; as k1 and
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n1 are different from zero, both symmetries are broken. The actions of Rα and Ta are

equivalent to appropriate time translations τα and τa:

Rα : ω1τα = n1α → τα = n1α/ω1, (B.28)

Ta : ω1τa = k1a → τa = k1a/ω1. (B.29)

Rα and Ta become spatio-temporal symmetries; time evolution is equivalent to a rotation

around the axis and also to a translation along the axis. The limit cycle can be viewed

simultaneously as a rotating wave (with precession frequency ωp = −ω1/n1) and also as

a traveling wave in the axial direction (with axial speed c = −ω1/k1). In fact, P1 retains

a helical symmetry: Hα = RαT−n1α/k1
leaves P1 invariant; these helical symmetries

generate a SO(2)H symmetry group, which is a subgroup of G. The periodic solution

P1 is point-wise SO(2)H-invariant, and as a set it is G-invariant. For this reason we call

this solution a spiral wave.

The solution P2 has r1 = 0 and so we only need to consider φ2; exactly the same

considerations as for P1 show that P2 is a rotating wave/traveling wave with helical

symmetry SO(2), i.e., a spiral wave; but the helical symmetries that keep P2 invariant

are different from the ones that leave P1 invariant. P2 is invariant to H ′
α = RαT−n2α/k2

.

The helical symmetries for P1 and P2 are the same only when there is spatial resonance:

n2/n1 = k2/k1.

The time evolution of a P3 solution is given by

Φt

(

φ1

φ2

)

=

(

φ1 + ω1t

φ2 + ω2t

)

, (B.30)

where Φt is the time evolution operator acting on the phases φ1 and φ2. If ω2/ω1 is

rational P3 is a periodic solution; it is the temporal resonance case. If not, it is a

quasi-periodic solution. From P3, the action of G generates a two torus (in the non-

resonant case, where B.12 is not satisfied). The two-torus as a set is G-invariant, but

the individual P3 solutions do not retain any point-wise spatial symmetry (except in the

case of spatial resonance). Although P3 is quasi-periodic, in an appropriate rotating (or

traveling axially) frame of reference, it becomes a periodic solution; using (B.26), in an

arbitrary reference frame rotating with angular velocity ωr, the time evolution of P3 is

given by:

R−ωrtΦt

(

φ1

φ2

)

=

(

φ1 + (ω1 − n1ωr)t

φ2 + (ω2 − n2ωr)t

)

. (B.31)

When ωr is such that (ω1 − n1ωr)/(ω2 − n2ωr) is rational, P3 is periodic in the rotating

reference frame. The two simplest choices are ωr = ωi/ni, for i = 1 and 2. These choices

are precisely the precession frequencies of the pure modes P1 and P2.
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APPENDIX C

NEIMARK-SACKER BIFURCATION WITH SO(2) × O(2)ST SYMMETRY

The analysis of the dynamics in a neighborhood of a periodic orbit in a continuous

system is greatly simplified by the introduction of the Poincaré map. Generically, the

Poincaré map is defined locally, in a neighborhood of the periodic orbit considered.

However, in periodically forced systems like the present problem, there exists a global

Poincaré map P , consisting of strobing the flow once every forcing period Tf . The base

state, which is synchronous with the forcing, is a Tf -periodic orbit γ that becomes a

fixed point of the discrete dynamical system P . The dynamics in a neighborhood of γ

are completely determined once the normal form of the Poincaré map is known. The

normal form is a low-dimensional low-order polynomial dynamical system, which is easy

to obtain once the critical eigenvectors of γ and their symmetries are known. The critical

eigenvectors span a low-dimensional linear subspace tangent to the center manifold. The

amplitudes of these eigenvectors are the natural coordinates of the center manifold. In

our problem, the base state γ depends only on (r, t) and the critical eigenvectors can be

Fourier expanded in (θ, z). They are of the form u1(r, t)e
i(kz+nθ), u2(r, t)e

i(kz−nθ), with

n = 1, and their complex conjugates. The first is a left-handed spiral and the second is

a right-handed spiral (both are rotating waves in θ and traveling waves in z). Figure 4.6

shows the geometrical shapes of these spirals. The center manifold is four dimensional,

and we use as coordinates the complex amplitudes (A,B, Ā, B̄) of the eigenvectors. The

four eigenvectors bifurcate simultaneously because the space-time symmetry transforms

A into B.

C.1 Spatial symmetries: generic dynamics

Let x → P (x) = LP x+NP (x) be the discrete dynamical system considered (the Poincaré

map), restricted to the center manifold, with a fixed point that we assume to be the origin

(after a convenient translation if necessary). The map is written as the sum of a linear

part, LP , and a nonlinear part, NP . The eigenvalues of LP are the critical eigenvalues,

of modulus one. The symmetries of the original problem act on the amplitudes as a

linear representation of the symmetry group of the problem, that commute with LP .

However, this applies only to purely spatial symmetries; space-time symmetries require

a different treatment.

The normal form of the map, when the symmetries are purely spatial and do not
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involve time, satisfy the equations (Iooss & Adelmeyer, 1998)

NP (L†
P x) = L†

P NP (x), NP (Gx) = GNP (x), ∀G ∈ G0, (C.1)

where L†
P is the adjoint (conjugated and transposed) of LP . The symmetry group of

the spatial symmetries of the system under consideration is G0 = SO(2) × SO(2) and

it is generated by rotations Rα about and translations Ta along the common axis of the

cylinders. The actions of Rα and Ta on the amplitudes x = (A,B, Ā, B̄) are

Rα = diag(einα, e−inα, e−inα, einα), Ta = diag(eika, eika, e−ika, e−ika). (C.2)

As LP commutes with Rα and Ta, it must be diagonal. Let eiβ1 be the eigenvalue

corresponding to A. As the space-time symmetry S transforms A into B, both have the

same eigenvalue. Therefore, LP must be of the form

LP = diag(eiβ1 , eiβ1 , e−iβ1 , e−iβ1), (C.3)

where β1 is related to the spiral frequency ωs as β1 = ωsTf = 2π ωs/ωf . The normal

form for the Poincaré map is

P :







A → eiβ1A + N1(A,B, Ā, B̄),

B → eiβ1B + N2(A,B, Ā, B̄),
(C.4)

plus complex conjugates. Let ApBqĀrB̄j be a monomial in N1. The first equation in

(C.1) is a particular case of the second, because LP coincides with an axial translation

a = β1/k (LP = Tβ1/k). The second equation in (C.1) results in

einα(p−q−r+j) = einα

eika(p+q−r−j) = eika

}

⇒ p − q − r + j = 1

p + q − r − j = 1

}

⇒ p = r + 1, q = j, (C.5)

so N1(A,B, Ā, B̄) = AQ1(|A|2, |B|2), and analogously for N2. Equation (C.4) reduces to

P :







A → eiβ1A
(

1 + Q1(|A|2, |B|2)
)

,

B → eiβ1B
(

1 + Q2(|A|2, |B|2)
)

,
(C.6)

where a factor e−iβ1 has been included in Qi for convenience. Some important conse-

quences of this normal form are worth noting. First of all, there are no resonant terms,

therefore the normal form is the same regardless of whether β1/2π is rational or irra-

tional. In particular, there is no distinction between strong resonances (β1/2π = ℓ/m,

with m = 1, 2, 3 or 4), weak resonances (m > 4), or no resonances at all (β1/2π 6∈ Q).

This is a consequence of the rotational and translational symmetry of the system, i.e.
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the spatial symmetry group G0 = SO(2) × SO(2). Another important consequence is

the absence of frequency-locking phenomena. Generically, frequency-locking takes place

when resonant terms (different from A|A|2 and A|B|2 in N1, and analogously in N2)

couple the modulus and phase dynamics of A and B. By introducing A = r1e
iφ1 and

B = r2e
iφ2 , the normal form (C.6) can be written as

P :







r1 → r1

(

1 + Q1,1(r
2
1, r

2
2)

)

r2 → r2

(

1 + Q2,2(r
2
1, r

2
2)

)







φ1 → φ1 + β1 + Q1,2(r
2
1, r

2
2)

φ2 → φ2 + β1 + Q2,1(r
2
1, r

2
2)

(C.7)

and the modulus dynamics (r1 and r2) decouples from the phase dynamics (φ1 and φ2).

The decoupling is the cause of the suppression of the frequency-locking phenomena.

This frequency-locking suppression is very similar to the result of Rand (1982, Theo-

rem 3 and Remark) that Hopf bifurcations from rotating waves do not manifest frequency-

locking, due to the rotational symmetry. In our case, the base state is not a rotating wave,

but it is independent of the azimuthal and axial coordinates, i.e. it is a SO(2) × SO(2)

symmetric periodic orbit. The breaking of these symmetries results in modulated spiral

waves that do not manifest frequency-locking. There has been a great deal of work con-

cerning bifurcations from periodic orbits generalizing Rand’s original work (Krupa, 1990;

Lamb et al., 2003), from which our result, complementary to Rand’s, can be obtained.

We have kept the result in the appendix for completeness.

C.2 Space-time symmetry S

Now consider the implications of the space-time symmetry S. The square of S is the

identity on the base state of the system, but acting on an arbitrary solution results in

the global Poincaré map P : the two axial reflections Kz cancel each other, and the total

advance in time is the period of the forcing Tf . The fact that the Poincaré map is a

square, P = S2, has important implications on the dynamics (see for example Swift

& Wiesenfeld, 1984, when the critical eigenvalues are simple). A powerful and simple

way to take into account the space-time symmetry is to analyze the normal form of

S and recover the Poincaré map normal form by squaring it. This has been done, for

example, in Marques, Lopez & Blackburn (2004) for a system with spatial symmetry

O(2) and spatio-temporal symmetry Z2. The analysis in that case was facilitated by

the fact that the spatio-temporal symmetry commuted with the spatial symmetries, and

the conditions to be satisfied by the normal form of S were the same as in (C.1), just

replacing LP by LS. But in the present problem, S does not commute with the axial
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translations Ta (in fact STa = T−aS), so we need to establish what are the conditions to

be satisfied by the normal form of S. The condition N(Gx) = GN(x) must be changed

to a more general condition that includes the case of non-commutativity of the spatial

symmetries with S, and in particular with their linear part LS. The discrete dynamical

system S is a map S : x → F (x), but now F is not G0-equivariant (i.e. F (Gx) 6= GF (x),

∀G ∈ G0). This is because there exist elements of G0 that do not commute with S (e.g.

the axial translations Ta). Inspired by, and following the work of Lamb & Melbourne

(1999) (and references therein), we say that F satisfies a twisted equivariance condition

of the form

F (Gx) = ψ(G)F (x), ∀G ∈ G0, (C.8)

where ψ is an automorphism of G0. This automorphism is fixed by the same twisted

equivariance condition on the linear part of S, LS(Gx) = ψ(G)LS(x), i.e. ψ(G) =

LSGL−1
S . Summarizing, if the normal form of S is x → S(x) = LSx + N(x), the

conditions on N are of the form

N(L†
Sx) = L†

SN(x), N(Gx) = ψ(G)N(x), ∀G ∈ G0, where ψ(G) = LSGL−1
S . (C.9)

Notice that when LS commutes with G (as in Marques et al., 2004), the inner automor-

phism becomes the identity, and we recover the ordinary equivariant condition (C.1).

What is the action of LS on the center manifold? The center manifolds and eigenvectors

of P and their square-root S are the same, and the eigenvalues of P are the eigenvalues

of S squared. However, there is some freedom in the form of LS, because the eigenvalues

are of multiplicity two (e.g. the two-dimensional eigenspace associated to the eigenvalue

eiβ1 has A and B as coordinates). This freedom is fixed since LS must transform A into

B, because the axial reflection Kz transforms the left-handed spiral A into the right-

handed spiral B (modulus the time translation T/2). The action of LS on the complex

amplitudes (A,B, Ā, B̄) is

LS =













0 eiβ1/2 0 0

eiβ1/2 0 0 0

0 0 0 e−iβ1/2

0 0 e−iβ1/2 0













(C.10)

and the actions of Rα and Ta are unchanged, given by (C.2). The automorphism ψ can

be explicitly computed: ψ(Rα) = Rα, ψ(Ta) = T−a, reflecting the fact that S commutes

with Rα, but STa = T−aS. ψ is an involution, ψ2 = Id, reflecting the fact that S2 = P .

Having explicitly obtained the actions of LS, ψ and G0, we can work out the conditions
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(C.9). The normal form for the space-time map S is of the form

S :







A → eiβ1/2B + N3(A,B, Ā, B̄),

B → eiβ1/2A + N4(A,B, Ā, B̄).
(C.11)

Let ApBqĀrB̄j be a monomial in N3. Following the same lines as in the purely spatial

symmetries case, we obtain

S :







A → eiβ1/2B
(

1 + Q(|B|2, |A|2)
)

,

B → eiβ1/2A
(

1 + Q(|A|2, |B|2)
)

.
(C.12)

Instead of two arbitrary functions Q3 and Q4, there is only one, Q, because LS transforms

A into B. By squaring the map, the normal form of the Poincaré map P (C.6) is obtained,

but thanks to the use of the space-time symmetry S, we obtain

Q1(|A|2, |B|2) = Q2(|B|2, |A|2) = Q̃(|A|2, |B|2), (C.13)

where Q̃ is a complex-coefficient polynomial; this is the constraint imposed by the space-

time symmetry S on the normal form of the Poincaré map. The relationship between Q

and Q̃ is easy to obtain, but convoluted1. In terms of the moduli and phases of A and

B, the normal form of the Poincaré map (C.7) reduces to

P :







r1 → r1

(

1 + Qm(r2
1, r

2
2)

)

r2 → r2

(

1 + Qm(r2
2, r

2
1)

)







φ1 → φ1 + β1 + Qp(r
2
1, r

2
2)

φ2 → φ2 + β1 + Qp(r
2
2, r

2
1)

(C.14)

where the polynomials Qm and Qp have real coefficients: 1 + Q̃ = (1 + Qm) exp(iQp).

The moduli dynamics decouples from the phase dynamics, and we end up with a two-

dimensional reduced normal form, the first two equations in (C.14). As the polynomial

Qm is the same in r1 and r2, the fixed points of the reduced normal form are of the form

(r, r), including (0, 0) which is the base state, or they come in symmetric pairs (r, r′)

and (r′, r). In the complete problem, the fixed points of the form (0, r), (r, 0) and (r, r),

r 6= 0, are quasiperiodic solutions with two frequencies, and the fixed points of the form

(r, r′), r 6= r′ 6= 0, correspond to three-frequency solutions.

C.3 Bifurcation scenarios

In order to explore the dynamics in a neighborhood of the bifurcation, the normal form

for S (C.12) is truncated up to fourth-order terms, and written in terms of the moduli

1The precise expression is Q̃(x, y) = {1 + Q(x, y)}{1 + Q(x|1 + Q(x, y)|2, y|1 + Q(y, x)|2)} − 1

99



and phases of A and B:

S :







r1 → r2(1 + µ − ar2
2 − br2

1)

r2 → r1(1 + µ − ar2
1 − br2

2)







φ1 → φ2 + β1/2 + ν + cr2
2 + dr2

1

φ2 → φ1 + β1/2 + ν + cr2
1 + dr2

2

(C.15)

It is worth noting that the symmetry group of this normal form is Z2 × Z2. One of the

symmetries corresponds to the exchange between r1 and r2 (r1 ↔ r2), and comes from

the space-time symmetry S. The other Z2 symmetry (r ↔ −r) comes from the use of

polar coordinates. The bifurcation is of codimension two (two independent parameters µ

and ν), but the reduced system is of codimension one since the parameter ν only affects

the phase dynamics. The only fixed points of the reduced planar system (r1, r2) in a

neighborhood of the origin are of the form (r, r), and there are two of them:

p0 = (0, 0), p3 =
(

√

µ

a + b
,

√

µ

a + b

)

. (C.16)

The corresponding eigenvalues (in the reduced system for S) are

p0 : λ1 = 1 + µ, λ2 = −1 − µ, (C.17)

p3 : λ1 = 1 − 2µ, λ2 = −1 + 2
a − b

a + b
µ. (C.18)

The eigenvalues of the corresponding reduced system for P are the same squared. The

base state is p0, it exists for any µ value, it is stable for µ < 0 and unstable for µ > 0.

p3 exists only for µ/(a + b) > 0, and is stable for a − b > 0 and µ > 0. Both p0 and

p3 are invariant under the space-time symmetry S. The bifurcation is supercritical for

a + b > 0 and subcritical for a + b < 0. The bifurcated state p3 is a linear combination

with the same weight (|A| = |B|) of the left-handed and right-handed spirals, which

travel in opposite axial directions. p3 therefore corresponds to a modulated standing

wave, MSW.

We can also look for periodic orbits of S, of period two, and these are fixed points

of the Poincaré map P . As P = S2, from (C.15) we obtain

P :







r1 → r1(1 + 2µ − 2ar2
1 − 2br2

2)

r2 → r2(1 + 2µ − 2ar2
2 − 2br2

1)







φ1 → φ1 + β1 + 2ν + 2cr2
1 + 2dr2

2

φ2 → φ2 + β1 + 2ν + 2cr2
2 + 2dr2

1.

(C.19)

The fixed points of the reduced planar system, of the form (r, r) are the same p0 and p3

already obtained. But there is a pair of new fixed points of P :

p1 = (
√

µ/a, 0), p2 = (0,
√

µ/a), (C.20)
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Figure C.1: Regions in parameter space where different dynamics exist. The correspond-
ing phase portraits are shown in figure C.2.

that exist for µ/a > 0. The fixed points p1 and p2 correspond to periodic orbits of

period two of the space-time symmetry S that transforms one into the other: Sp1 = p2,

Sp2 = p1, as can be checked directly in (C.15). p1 is a left-handed spiral, a traveling

wave in the axial direction. p2 is a right-handed spiral, traversing in the opposite axial

direction. Both are modulated traveling wave solutions, MTW, that break the space-

time symmetry. They have the same eigenvalues (in the reduced system for P ), which

are

p1, p2 : λ1 = 1 − 4µ, λ2 = 1 + 2
a − b

a
µ, (C.21)

and they are stable if µ > 0 and a < b.

When a = 0 or a + b = 0 or a − b = 0, there are degeneracies between the fixed

points pi and/or their eigenvalues, so we will assume a 6= 0 and a + b 6= 0 and a− b 6= 0.

The bifurcation has six different scenarios, corresponding to the six regions in parameter

space delimited by the curves a = 0, a+ b = 0 and a− b = 0, as illustrated in figure C.1.

The phase portraits for the six scenarios are schematically drawn in figure C.2. The

scenarios and phase portraits in figures C.1 and C.2 occur in a number of contexts

involving symmetry breaking Hopf bifurcations (see Crawford & Knobloch, 1991, and

references there in). As the bifurcation is of codimension one and takes place for µ = 0,

we have plotted the phase portraits for the reduced system (r1, r2) before and after the

bifurcation.

In the first (I) and second (II) scenarios, the two modulated traveling waves and

the modulated standing wave bifurcate simultaneously and supercritically from the base

state, that becomes unstable. In the first scenario the MTW are stable and the MSW is

unstable. In the second scenario it is the opposite. In the (IV ) and (V ) scenarios, the two

modulated traveling waves and the modulated standing wave bifurcate simultaneously
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Figure C.2: Phase portraits corresponding to the six bifurcation scenarios in figure C.1.
Phase portraits for the reduced system (r1, r2) have been plotted before (µ < 0) and
after (µ > 0) the bifurcation.

and subcritically from the base state, that becomes unstable. The traveling and standing

waves are always unstable, so after the bifurcation (µ > 0) there are no stable solutions

close to the origin, and the system evolves far away from the base state. The only

difference between both scenarios is in the number of unstable directions of the standing

wave, one and two in scenarios (IV ) and (V ) respectively. In the (III) scenario, the base

state becomes unstable by colliding with the unstable MSW, and after the bifurcation

the two MTW emerge but are unstable, and the system evolves far away from the base

state, as there are no stable states close to the origin. Finally, in the (V I) scenario,

the base state becomes unstable by colliding with the two unstable MTW, and after the

bifurcation the MSW emerge but are unstable, and the system evolves far away from the

base state as before. In the system under consideration, and for the parameter values

analyzed, the second scenario (II) takes place.

C.4 Neimark-Sacker bifurcation with SO(2) symmetry

The M1 spiral waves perturbation velocity field depends on (θ, z) only in the combi-

nation ωst + kz + nθ. After the bifurcation, an additional dependence on ωwt + nwθ
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appears, therefore the critical eigenvector is of the form f(r, t, ωst + kz + nθ)ei(ωwt+nwθ).

In fact we do not have a pair of complex-conjugate eigenvectors, but rather an infinite

family. This is because the action of Rα does not leave a M1 spiral wave invariant

(the bifurcation to M1 has broken the rotational symmetry), but changes its phase in

the azimuthal direction. The Poincaré map (strobing with the forcing period Tf ) has a

pair of complex-conjugate eigenvectors of modulus one at the bifurcation point, given

by e±iβ2 with β2 = ωwTf = 2π ωw/ωf . It also has a center direction corresponding

to the continuous symmetry broken at the bifurcation to M1, so the center manifold

is three-dimensional. Nevertheless, as M1 is a relative periodic orbit, the dynamics in

this third direction decouples from the dynamics corresponding to the pair of complex-

conjugate eigenvectors (see Wulff et al., 2001), so the bifurcation can be analyzed as

being effectively two-dimensional, spanned by the mentioned eigenvector and its com-

plex conjugate, and can be parameterized by a complex amplitude A. The normal form

x → P (x) = LP x + NP (x), with x = (A, Ā) must satisfy (C.1), where the symmetry

group is now G0 = SO(2), generated by the helical motion Hα = RαT−nα/k, and no

spatio-temporal symmetries exist. The action of LP and Hα on (A, Ā) is easy to obtain

from the (θ, z) dependence of the eigenvectors, and is

LP = diag(eiβ2 , e−iβ2), Hα = diag(einwα, e−inwα). (C.22)

LP = Hβ2/nw
, showing that the bifurcated solution is a modulated spiral wave: advancing

a forcing period is equivalent to a helical motion. The conditions (C.1) on the normal

form result in NP (A, Ā) = AQ̃(|A|2) and the normal form is

P : A → eiβ2A
(

1 + Q(|A|2 )
)

, (C.23)

where a factor e−iβ2 has been included in Q for convenience. This is the normal form of

a non-resonant Neimark-Sacker bifurcation (Kuznetsov, 2004), the absence of resonant

terms being due to the presence of the helical symmetry group SO(2), irrespective of

β2/2π = ωw/ωf being rational or irrational. The bifurcated solution retains a discrete

helical symmetry: from (C.22), H2π/nw
is the identity on the bifurcated solutions, and

their symmetry group is discrete, Zlnw
, generated by the helical motion H2π/nw

. Notice

that in this bifurcation the axial periodicity is not altered: Hnw

2π/nw
= Tλ, an axial

translation of the wavelength of the spiral wave.
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APPENDIX D

DOUBLE PITCHFORK-OF-REVOLUTION WITH ZST
2 × O(2)

SYMMETRY

In chapter 5, we found that the dynamics of the Taylor–Couette system with modulations

about a zero-mean is organized about a codimension-two point where the periodic base

state bifurcates simultaneously to modes A and B. In the axisymmetric subspcace, the

symmetry goup of the basic state is G = ZST
2 ×O(2). Marques et al. (2004) obtained the

possible bifurcations and corresponding normal forms in G-symmetric systems. More-

over, they analyzed in detail the codimension-one bifurcations and illustrated them with

examples in periodically driven cavity flow. Since mode A breaks the space-time sym-

metry S, and mode B preserves it, the normal form for the half-period-flip map H, up

to third order, is (Marques et al., 2004)

H :







A 7→ A(−1 + µ + a|A|2 + b|B|2)
B 7→ B(+1 + ν + c|A|2 + d|B|2),

(D.1)

where A and B are the complex amplitudes corresponding to the bifurcating modes A

and B respectively. Since all the coefficients (µ, ν, a, b, c, d) are real, the dynamics of the

phases of A and B are trivial; writing A and B in terms of their moduli and phases,

A = r1e
iφ1 and B = r2e

iφ2 , we obtain

H :







r1 7→ r1(−1 + µ + ar2
1 + br2

2)

r2 7→ r2(+1 + ν + cr2
1 + dr2

2),







φ1 7→ φ1

φ2 7→ φ2

, (D.2)

and the phases φ1 and φ2 remain constant. Assuming that a and d are not zero (they

are negative in our problem), re-scaling r1 and r2 gives

H :







r1 7→ r1(−1 + µ − r2
1 − ζr2

2)

r2 7→ r2(+1 + ν − δr2
1 − r2

2),
(D.3)

with two unfolding parameters µ and ν, and two constants ζ and δ whose exact values

depend on the problem considered. In the neighborhood of the codimension-two point

the two bifurcation parameters µ and ν are linearly related to Rea and ω by

µ = Rea − 10.56 ω − 77.86,

ν = Rea + 0.8992ω − 122.96,
(D.4)

and the two constants are ζ = 1.9670 and δ = 1.9022. These values have been ob-

tained from the numerical data in figure 5.10. The action of Gs = O(2) × Z2 leaves
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the amplitudes r1 and r2 invariant, but acts non-trivially on the phases (Marques et al.,

2004):

Ta(φ1, φ2) = (φ1 + k1a, φ2 + k2a),

Kz(φ1, φ2) = (−φ1,−φ2),

H(φ1, φ2) = (φ1 + π, φ2),

(D.5)

where k1 and k2 are the critical axial wavenumbers of modes A and B respectively.

These actions are easy to obtain by considering that the bifurcating eigenvectors are of

the form Aeikzv(r, t) because the base state mC is independent of (θ, z). We assume that

k1/k2 is irrational (non-resonant case), i.e. the critical wavenumbers of the two modes

are not in a rational ratio, as is the case in our problem.

In order to describe the dynamics associated to the normal form (D.3), it is very

convenient to obtain the fixed points of the Poincaré map P = H2. Up to third order,

P :







r1 7→ r1(1 + 2µ − 2r2
1 − 2ζr2

2)

r2 7→ r2(1 + 2ν − 2δr2
1 − 2r2

2).
(D.6)

The Poincaré map may have up to four different fixed points, depending on the values

of ζ and δ, and on the region in parameter space (µ, ν) considered. The fixed points in

phase space (r1, r2) are:

mC = (0, 0), A = (
√

µ, 0), B = (0,
√

ν ), AB =

(
√

ζν − µ

ζδ − 1
,

√

δµ − ν

ζδ − 1

)

, (D.7)

and they have been labeled according to the solutions of the present problem.

The modulus dynamics (D.6) are identical to the modulus dynamics of the double-

Hopf bifurcation (dH) of equation (B.19) in Appendix B. Therefore, the results Kuznetsov

(2004) apply to the present case. In particular, the bifurcation scenario of figure 5.10 is

the analogous of type I of the “simple” case of dH, for which ζ > 0, δ > 0 and θδ > 1

(Kuznetsov, 2004). However, the interpretation of the dynamics associated to the fixed

points (D.7) changes. The Hopf bifurcations in dB become pitchforks-of-revolution bi-

furcations (since the phases remain constant). A and B are limit cycles in dH, and here

they are fixed points; and AB, a quasiperiodic solution in dH, is also a fixed point here.

As the phase dynamics here refers to translations in z while in the dH it is associated

with time, A and B are periodic solutions in z, while AB is quasiperiodic in space. Fi-

nally, in dH one is dealing with an ODE system, so the curves in the phase portraits

are orbits in (r1, r2) phase space; here we are dealing with maps (P and H) and so the

curves in the phase portraits are invariant manifolds, containing an infinite number of

discrete orbits.
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