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a b s t r a c t

An efficient and accurate numerical scheme is proposed to solve the incompressible Navier–Stokes equa-
tions in a bounded cylinder. The scheme is based on a projection method formulated in primitive vari-
ables to maintain the incompressibility constraint, with a second-order semi-implicit scheme for the
time integration, and a pseudospectral approximation for the space variables. The Chebyshev-collocation
method applied in the radial and axial directions, and the Fourier–Galerkin approximation used in the
azimuthal direction lead to a sequence of two-dimensional Helmholtz and Poisson equations for every
azimuthal coefficient that are solved by a diagonalization technique. Radial expansions are considered
in the diameter of the cell in order to avoid clustering about the axis, and the number of points are
selected to ensure that r ¼ 0 is not a collocation point. A minimal number of regularity conditions are
imposed implicitly at the origin by forcing the proper parity of the Fourier expansions in the radial direc-
tion. The method has been tested on analytical solutions and compared with other reliable three-dimen-
sional results. The improvements introduced in the treatment of the spatial discretization reduce
significantly the difficulty of implementation of the code, and facilitate the use of high resolutions. Dif-
ferent boundary conditions can also be easily implemented.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present an efficient and accurate spectral
scheme to solve time-dependent three-dimensional thermal con-
vection of an incompressible fluid contained in an enclosed cylin-
der. The code uses a projection method formulated in primitive
variables, and takes into account the odd-even radial parity of
the Fourier coefficients. Stationary solutions and rotating waves
are also efficiently computed, so branch-following algorithms can
be easily applied. To develop the code, we have taken advantage
of our previous experience with fractional step techniques applied
to spectral collocation methods in different geometries. In addi-
tion, we have made some improvements in the spatial treatment
of the equations in order to increase efficiency as compared with
other available cylindrical codes. The main characteristics of the
resulting code are: (i) simplicity of implementation; a minimum
prepossessing is required; (ii) accuracy; spectral methods provide
much better resolution properties and accuracy than finite differ-
ence/volume methods; (iii) efficiency in large-scale simulations;
there are no severe time-step restrictions even in the simulation
of complex flows when using large resolutions, due to the absence
of clustering at the origin; and (iv) flexibility; different boundary
conditions can easily be implemented.

Different methods can be applied to fulfil numerically the diver-
gence-free condition required in incompressible fluid dynamics.
Below we detail our choice for the projection scheme and for the
spatial discretization by comparison with different alternatives
found in the literature. In a first group of methods, the velocity
field is written in terms of scalar potentials such that the diver-
gence-free condition is satisfied by construction. The streamfunc-
tion–vorticity formulation in two-dimensional problems, and the
velocity decomposition into toroidal and poloidal potentials [1]
in the three-dimensional case are well-known examples of this
group. The method is attractive because pressure is not present
in the equations; however, in bounded systems it leads to systems
of partial differential equations of higher order whose boundary
conditions are coupled. Marqués et al. [2] used this formulation
to perform a linear stability analysis of cylindrical Rayleigh–Bénard
convection. The resulting system was solved, but a slight deviation
in the boundary conditions was present in the numerical imple-
mentation. Recently, Boronski and Tuckerman [3] solved the
high-order magnetohydrodynamic equations exactly by separating
the system, with the influence matrix technique, into a sequence of
problems of lower order, each with its own boundary conditions.
However, this procedure has large memory requirements and the
complexity of the numerical code is considerable. Slightly different
velocity potentials were introduced in [4] to prevent the coupling
of the potentials in the boundary conditions. Rüdiger and Feudel
used this formulation in the simulation of thermal convection in
a cylinder [5], but resolution in this implementation was strongly
limited due to the resulting coupled equations. Petrov–Galerkin
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methods and solenoidal Galerkin formulations are also based on
building up a solenoidal velocity field through the construction
of bases of trial functions that satisfy the incompressibility condi-
tion identically [6]. As far as the authors know, these methods have
been successfully used in the computation of axially periodic flows
in cylindrical and annular geometries [7], but they have not been
implemented in bounded three-dimensional domains.

In a second group of methods, a primitive variable formulation
of the equations is adopted. In this case, projection methods pro-
vide an interesting solution to overcome the velocity–pressure
coupling problem, since they have the advantage that only one se-
quence of decoupled elliptic equations needs to be solved (see [8]
for a recent overview of projection methods for incompressible
flows). Examples of these methods are: the spectral code devel-
oped by López et al. for the Navier–Stokes equations in cylindrical
coordinates [9], and the code developed by Serre and Pulicani [10]
for thermal convection. The code we present here is based on a
time-stepping method. In particular, we have implemented the im-
proved projection scheme proposed in [11] (we used this method
for the first time in the simulation of binary mixture convection
in rectangular domains [12]), though any other time-splitting
method could also be used, such as that proposed in [13].

The spatial discretization of the equations we have imple-
mented deals with the main difficulties that arise in cylindrical
geometry, without introducing additional complexity in the imple-
mentation of the code. Some key aspects of the spectral scheme
under consideration (Chebyshev-collocation in the radial and ver-
tical directions, Fourier–Galerkin in the azimuthal direction)
should be emphasized. First, the radial expansions are considered
in the diameter of the cell r 2 ½�R;R� rather than in its radius. In
this way, excessive clustering of points near the center is avoided
[14]. Second, the problem of singularity at the origin is avoided
by ensuring that r ¼ 0 is not a collocation point, and by taking into
account the appropriate radial parity of the Fourier coefficients of
the variables. This procedure forces the minimal number of regu-
larity conditions at the origin that ensure the well-posedness of
the formulation, and has the additional advantage that the size of
the matrices is substantially reduced, while spatial resolution can
be increased. This approach is known as unshifted Chebyshev poly-
nomials of appropriate parity in [15]. Clustering is also avoided in
the method followed in [9], where a suitable basis of Legendre
polynomials is built up to perform a Galerkin technique in the ra-
dial direction, although the implementation of the code becomes
more complex. In [10], the Chebyshev-collocation method is used,
with Gauss–Lobatto points distributed over the radius of the cylin-
der. With spectral methods, the axis can also be avoided by using
Gauss–Radau nodes [16]. Finally, the change of variables combin-
ing the radial and azimuthal components of the velocity field we
use to obtain a predictor velocity yields Helmholtz equations,
which can be straightforwardly diagonalized.

Spectral element methods for the space discretization of the
equations have also been used for Navier–Stokes equations in
cylindrical geometries [17], although the greater sophistication of
these methods makes them more suitable for complex geometries.
In fact, some care should be taken when applying these methods to
study the bifurcation structure of a system. Assemat et al. [18] have
recently reported some subtle numerical effects of the grid on the
bifurcation diagrams when studying the patterns arising in
Marangoni convection in circular and near circular domains. The
difference in symmetry between the grid and the container can
cause an artificial split in the bifurcations and the branches, which
can substantially alter the bifurcation maps.

This paper is structured as follows. After introducing the phys-
ical problem in Section 2, the projection scheme and the time dis-
cretization of the equations are described in Section 3, while
details of the spatial discretization are presented in Section 4.

The procedure for computing steady solutions and rotating waves
is described in Section 5. The numerical performance of the code is
analyzed in Section 6, which also includes an extensive comparison
with other numerical results. Some concluding remarks are given
in Section 7.

2. The physical problem

We consider Rayleigh–Bénard convection in a vertical cylinder
of height d and radius R. The radial aspect ratio of the cylinder is
defined as C = R/d. The cylinder is heated from below in the pres-
ence of a vertical gravitational force g ¼ �gêz, DT being the tem-
perature difference between the lids. By scaling length with the
height of the layer d; time with the vertical thermal diffusion time
d2
=j, where j is the thermal diffusivity, and temperature with DT,

then the non-dimensional equations that describe the evolution of
the velocity field u ¼ ðu;v ;wÞ in cylindrical coordinates ðr; h; zÞ and
the deviation of the temperature H from the linear profile in the
Boussinesq approximation, are

r � u ¼ 0; ð1aÞ
otuþ ðu � rÞu ¼ �rpþ rr2uþ RarHêz þ F; ð1bÞ
otHþ ðu � rÞH ¼ wþr2H; ð1cÞ

where F is an externally imposed force. The two dimensionless
parameters describing thermal convection are the Rayleigh number
Ra, and the Prandtl number r, defined as

Ra ¼ aDTgd3

jm
; r ¼ m

j
; ð2Þ

where a is the thermal expansion coefficient and m is the kinematic
viscosity. The Rayleigh number is the control parameter of the sys-
tem and measures the strength of the imposed temperature gradi-
ent, while the Prandtl number relates momentum diffusion to
thermal diffusion. If the cylinder is rotating around the axis at a
constant rotation rate x, the same system of Eqs. (1) can be used
to describe the evolution of the fields u and H in the rotating frame
by including the non-inertial Coriolis and centrifugal terms

2rXu� êz �
rFrRa

C
ð1� zþHÞrêr ð3Þ

in F. Two additional non-dimensional parameters appear in this
case, the Coriolis number X and the Froude number Fr:

X ¼ xd2

m
; Fr ¼ x2R

g
:

Finally, it is assumed that conditions consistent with the incom-
pressibility of the fluid are imposed on the boundaries. However,
the introduction of new variables combining the radial and azi-
muthal components of the velocity field, as detailed in the next sec-
tion, requires that u and v satisfy boundary conditions of the same
type, i.e.

auþ bonu ¼ hu; av þ bonv ¼ hv :

This requirement is satisfied when Dirichlet boundary conditions
are specified at the lateral boundary, which besides rigid walls is in-
deed the case in many interesting situations in fluid dynamics, such
as the flow in a cylinder with a rotating or sliding wall, or when
fluid is injected across the boundary. The only limitation consists
in specifying different kinds of boundary conditions for the azi-
muthal and radial components of the velocity, as is the case with
stress-free boundary condition in the cylinder wall, but this will
only arise in some idealized geophysical problems and is unlikely
to occur in a laboratory situation.
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3. The temporal discretization and the projection scheme

For the time discretization, a second order stiffly-stable scheme
is used [13], which leads to the following system:

r � unþ1 ¼ 0; ð4aÞ

3unþ1 � 4un þ un�1

2Dt
¼ � 2NLðunÞ þ NLðun�1Þ � rpnþ1 þ rr2unþ1

þ RarHnþ1êz þ Fnþ1
1 þ 2Fn

2 � Fn�1
2 ; ð4bÞ

3Hnþ1 � 4Hn þHn�1

2Dt
¼ �2NLðun;HnÞ þ NL un�1;Hn�1

� �

þ 2wn �wn�1 þr2Hnþ1; ð4cÞ

where we have split F into two parts: F1 is independent of the
velocity field whereas F2 depends on it. Thus, the centrifugal force
is treated implicitly, while the Coriolis force is treated explicitly.

This time-stepping method, hereafter referred to as IPS, was
proposed by Hugues and Randriamampianina [11] and constitutes
an improvement on the projection scheme proposed by Goda [19]
and implemented by Gresho [20] in finite element approximations.
The fractional steps consist of a predictor for the pressure, directly
derived from the Navier–Stokes equations with the Neumann
boundary condition [13]; a predictor for an intermediate velocity
field from the momentum equation, which takes into account the
predicted pressure obtained from the previous time level, and fi-
nally a projection step with an explicit evaluation of the final diver-
gence-free velocity field. We previously used this method to
analyze two-dimensional oscillatory pure and binary fluid convec-
tion, both in large aspect ratio containers heated from below
[12,21,22] and in laterally heated cavities [23,24].

In this section, we detail the fractional steps of the second order
splitting method when the improved projection scheme (IPS) pro-
posed in [11] is used.

� Hnþ1 is obtained from the Helmholtz-type problem

r2 � 3
2Dt

� �
Hnþ1 ¼ 2NL un;Hnð Þ � NL un�1;Hn�1

� �
� 2wn

þwn�1 � 4Hn �Hn�1

Dt
; ð5Þ

� A preliminary pressure field is obtained from the Navier–Stokes
and continuity equations

r2�pnþ1 ¼ r �
�
�2NLðunÞ þ NLðun�1Þ þ RarHnþ1êz

þ Fnþ1
1 þ 2Fn

2 � Fn�1
2 þ 4un � un�1

2Dt

�
; ð6Þ

with a boundary condition for the pressure obtained from the
semi-discrete equation (4b), where the viscous linear term is
rewritten as a solenoidal part approximated by an explicit
scheme and an irrotational part approximated by an implicit
scheme of appropriate order.

� A predictor velocity field u� ¼ ðu�;v�;w�Þ is calculated from the
Navier–Stokes equation by including the predictor pressure �p
with the actual boundary conditions

r2 � 3
2rDt

� �
u� ¼ r�1r�pnþ1 þ r�1

�
2NLðunÞ � NLðun�1Þ

� Fnþ1
1 � 2Fn

2 þ Fn�1
2 � 4un � un�1

2Dt

	
� RaHnþ1êz:

ð7Þ

Since the velocity components ðu;vÞ are coupled in the linear vis-
cous term,

r2u�
� �

r
¼ r2u� � 2

r2

ov�
oh
� u�

r2 ; r2u�
� �

h
¼ r2v� þ 2

r2

ou�

oh
� v�

r2 ;

it is convenient to introduce a new set of complex functions fol-
lowing [25]

u�þ ¼ u� þ iv�; u�� ¼ u� � iv�:

Under the new unknowns, system (7) gives rise to decoupled
equations for ðu�þ;u��;w�Þ.

� In the correction step, the system

3ðunþ1 � u�Þ
2Dt

¼ �rðpnþ1 � �pnþ1Þ; ð8aÞ

r � unþ1 ¼ 0; ð8bÞ

is solved with the first equation satisfied in the interior as well as
in the boundary, with the correct boundary condition for the nor-
mal component of the velocity field. This system gives rise to a
Poisson equation for variable U ¼ 2=3Dtðpnþ1 � �pnþ1Þ, with Neu-
mann boundary condition oU=on ¼ 0. Finally, the corrected pres-
sure and velocity fields, pnþ1 and unþ1, are calculated from the
value of U

pnþ1 ¼ �pnþ1 þ 3U
2Dt

; ð9aÞ

unþ1 ¼ u� � rU: ð9bÞ

4. Spatial discretization

The cylindrical components of the velocity field and tempera-
ture are functions of the cylindrical coordinates ðr; h; zÞ. The azi-
muthal dependence is solved by using Fourier expansions. For u,
w, H the expansions are of the type:

Uðr; h; zÞ ¼
Xnh=2�1

k¼�nh=2

Fkðr; zÞeikh; ð10Þ

where the complex functions Fkðr; zÞ satisfy

F0ðr; zÞ ¼ f0ðr; zÞ;
F�nh=2ðr; zÞ ¼ fnh�1;

Fkðr; zÞ ¼ f2k�1ðr; zÞ þ if2kðr; zÞ; for k ¼ 1 : nh=2� 1;

F�kðr; zÞ ¼ Fkðr; zÞ; for k ¼ 1 : nh=2� 1;

and where the over bar means complex conjugate. This gives nh inde-
pendent real-valued functions fl, with l ¼ 0 : nh � 1 (l ¼ 2k� 1 for the
real part and l ¼ 2k for the imaginary part), for fixed values of ðr; zÞ.

It is convenient to choose a different expansion for the azi-
muthal velocity v

vðr; h; zÞ ¼ i
Xnh=2�1

k¼�nh=2

Fkðr; zÞeikh; ð11Þ

where the complex functions Fkðr; zÞ now satisfy

F0ðr; zÞ ¼ if0ðr; zÞ;
F�nh=2ðr; zÞ ¼ ifnh�1;

Fkðr; zÞ ¼ f2k�1ðr; zÞ þ if2kðr; zÞ; for k ¼ 1 : nh=2� 1;

F�kðr; zÞ ¼ �Fkðr; zÞ for k ¼ 1 : nh=2� 1:

Different expansions of the components u, w and v are used so that
only purely real or purely imaginary parts of the unknowns appear
in the equations. For example, the divergence free equation for the
Fourier mode k splits into two equations,

r�1orðru2k�1ðr; zÞÞ þ ozðw2k�1ðr; zÞÞ � kr�1v2k�1ðr; zÞ ¼ 0;

r�1orðru2kðr; zÞÞ þ ozðw2kðr; zÞÞ � kr�1v2kðr; zÞ ¼ 0:
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In the same manner, the real (imaginary) part of the complex k-Fou-
rier mode of u��, ðU��Þkðr; zÞ, involves only the real (imaginary) parts
of the k-Fourier modes of u� and v�. Thus,

ðU��Þkðr; zÞ ¼ ðu�2k�1ðr; zÞ 	 v�2k�1ðr; zÞÞ þ iðu�2kðr; zÞ 	 v�2kðr; zÞÞ:

With respect to the radial dependence, a scalar function f on a disk
is known to be analytic at the origin if the following regularity con-
ditions of the Fourier coefficients are satisfied: FkðrÞ ¼ rjkjpðr2Þ,
where p is a polynomial [15,9]. These conditions arise as a conse-
quence of the singularity of the cylindrical coordinates at r ¼ 0.
An overview of the different options for dealing with the apparent
singularity using spectral methods can be seen in [15]. The regular-
ity conditions can be imposed for all azimuthal modes by using
expansions in appropriate special functions [26,27], although the
practical implementation is far from simple. Other approaches im-
pose the regularity conditions only for some of the most dangerous
modes [28]. In our approach, named unshifted Chebyshev polynomi-
als of appropriate parity in [15], only the minimal set of regularity
conditions on the axis needed for the well-posedness of our weak
formulation of Navier–Stokes equations is imposed; the appropriate
parity of the Fourier coefficients is forced, and clustering at the ori-
gin is avoided. Furthermore, the implementation is very simple.

Chebyshev expansions in r and z are assumed for the radial and
vertical dependence of the variables, where the unknowns are the
values of the azimuthal coefficients at the collocation points rj; zl.
Following the method described in [29] in the formulation pro-
posed by [14], the radial expansions are considered in r 2 ½�R;R�,
and the appropriate parity at the origin is forced. It is important
to notice that ðr; hþ p; zÞ represents the same point as ð�r; h; zÞ,
so any scalar function satisfies Fðr; hþ p; zÞ ¼ Fð�r; h; zÞ. More care
is needed for vector quantities, since the radial and azimuthal basis
vectors are reversed, r̂ðr; hþ p; zÞ ¼ �r̂ð�r; h; zÞ and ĥðr; hþ p; zÞ ¼
�ĥð�r; h; zÞ. As a result, the complex Fourier coefficients Fkðr; zÞ of
variables u and v must have the same parity as kþ 1 and those
of variables w and H the same parity as k.

Assuming a radial-Chebyshev expansion in 2nr þ 2 polynomi-
als (from j ¼ 0 : 2nr þ 1), equations are written in rj ¼
R cosðpjÞ=ð2nr þ 1Þ with j ¼ 0 : nr . By ensuring that the origin is
never a collocation point, the problem of singularity at r ¼ 0 is
avoided. Additionally, the points are not clustered in the radial
direction near the pole. The radial derivatives of the functions are
calculated using a matrix multiplication method. Instead of using
a single ð2nr þ 2Þ � ð2nr þ 2Þ Chebyshev differentiation matrix,
two different matrices of dimension ðnr þ 1Þ � ðnr þ 1Þ are built,
one for odd parity functions (even Fourier coefficients of u and v,
and odd Fourier coefficients of w and H), and another for functions
of even parity (odd Fourier coefficients of u and v, and even Fourier
coefficients of w and H).

As a result of the splitting, several Helmholtz and Poisson equa-
tions must be solved. For the real and imaginary parts of every Fou-
rier mode k of temperature, of the vertical component of the
velocity field and of pressure, these equations are written as

orr f þ 1=r orf � k2
=r2 f þ ozzf þ af ¼ h; ð12aÞ

whereas for the real and imaginary parts of the Fourier mode k for
variables u�	 they are

orrg þ 1=r org � ðk� 1Þ2=r2 g þ ozzg þ ag ¼ h: ð12bÞ

To solve these equations, some regularity conditions need to be im-
posed at the origin. By expanding the 1=rm terms in Taylor series for
f ðrÞ and gðrÞ, the regularity conditions reduce to

f 0ð0Þ ¼ 0; if k ¼ 0; g0ð0Þ ¼ 0; if jk� 1j ¼ 0; ð13aÞ

f ð0Þ ¼ 0; if jkj ¼ 1; gð0Þ ¼ 0; if jk� 1j ¼ 1; ð13bÞ

f ð0Þ ¼ f 0ð0Þ ¼ 0; if jkj > 1; gð0Þ ¼ g0ð0Þ ¼ 0; if jk� 1j > 1:

ð13cÞ

As stated in [30], it suffices to consider only one of the last two reg-
ularity conditions, since any regular solution of Helmholtz and Pois-
son differential equations will satisfy both. Thus, if one condition is
imposed and a regular solution is obtained, it will necessarily satisfy
both regularity conditions. It is important to notice that although
pole conditions are not written explicitly in the code, the parity of
the Fourier coefficients of the functions ensures that conditions
(13a) and (13b) and one of the conditions (13c) are satisfied. The
Helmholtz and Poisson equations for every Fourier mode k are
solved using a diagonalization technique in the two coordinates r
and z [31]. Unlike in the cylindrical code of Serre and Pulicani
[10], where the predictor velocity step for the combined variables
u�� is not solved, all the eigenvalues of the matrix involving the ra-
dial part in the differential equation (12) are real, and the diagonal-
ization technique is straightforward to apply. Notice that due to the
coupling between the radial and azimuthal part, for every Fourier
mode k we need to calculate the eigenvalues, the eigenvectors
and the inversion of the corresponding matrix of the radial part.
This preprocessing step is done once and the results stored before
starting the time integration. Accuracy in the computation of these
eigenvalues and eigenvectors, obtained with the pole conditions
commented above, is essential to ensure the correct treatment of
the origin.

5. Computing steady solutions and rotating waves

An efficient method for the computation of steady states of the
Navier–Stokes equations was recently introduced by Tuckerman
and collaborators [32–34]. The method uses a first order semi-im-
plicit time scheme for the calculation of a Stokes preconditioner,
which allows a matrix-free inversion of the preconditioned Jaco-
bian. This idea can be straightforwardly applied to the computation
of rotating waves, provided that the new terms arising from the
change in the frame of reference are properly treated in the
time-stepping algorithm. The method is based on solving in a very
efficient manner the system resulting from each Newton iteration

ðL þ NXÞdX ¼ ðL þ NÞX; ð14aÞ
X X� dX: ð14bÞ

Here, X represents the spatially discretized fields, dX the correction
fields in every Newton iteration; L and N the spatially discretized
linear and non-linear operators, respectively, and NX the Jacobian
of the non-linear term evaluated at X.

Notice that the first order semi-implicit time scheme

Xnþ1 � Xn

Dt
¼ LXnþ1 þ NXn; ð15Þ

where n determines the time instant, tnþ1 ¼ tn þ Dt, can be rewrit-
ten as

Xnþ1 � Xn

Dt
¼ ðI� DtLÞ�1ðL þ NÞXn: ð16Þ

If P ¼ ðI� DtLÞ�1, with a large value of Dt, is used as a precondition-
er of system (14a) in every Newton iteration

ðI� DtLÞ�1ðL þ NXÞdX ¼ ðI� DtLÞ�1ðL þ NÞX; ð17Þ

and relationship (16) is taken into account, then the right-hand-side
of (17) can be obtained by carrying out a time step evolution, and
the left-hand-side by carrying out a linearized time step. In this
way, the linear system (17) can be solved by using a matrix-free
method [35], and neither the building of the Jacobian matrix
ðL þ NXÞ nor its storage are needed.
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To calculate rotating waves, we propose the method described
in our recent work [36]. Since the dependence of any variable v
in a rotating wave on coordinate h and time t is of the form
vRWðx; y; z; tÞ ¼ vRWðh�x0t; y; zÞ, by letting ~h ¼ h�x0t in the gov-
erning equations, the time derivative of v in the associated evolu-
tion equation becomes �x0 o~hv. Thus, we obtain a steady system of
equations in the new spatial coordinates ~h; y; and z. The unknown
angular velocity x0 can be determined by adding an equation to fix
the phase of the solution. To do this, we typically force the real or
imaginary part of a Fourier azimuthal coefficient at a fixed point
ðr; zÞ to be zero. Special care must be taken in the selection of the
coefficient and point in order to prevent the value of the coefficient
at that point from being previously fixed by any of the symmetries
of the solution. Once we have converted the evolution equations
into a steady system, we can apply the standard procedures to
solve these new equations. We propose that this new term receive
the same numerical treatment as the advective non-linear terms
u � rv, both in the Navier–Stokes equations and in the rest of con-
servation equations.

We have used this method to calculate and follow by continua-
tion both steady solutions and travelling waves in several two
dimensional problems [23,37–40]. It has very recently been used
to analyze three dimensional steady convection in a vertical cylin-
der [41].

6. Numerical tests

In this section, we present some tests performed with the cylin-
drical code in order to check the accuracy of the solutions and to
prove the spectral convergence obtained with the full time depen-
dent code. We also present some numerical tests in which a com-
parison with recent reported results, both in purely hydrodynamic
problems and in thermo-convective problems, has been made.

6.1. Accuracy and spectral convergence

In order to check the accuracy of the solutions obtained with
the numerical code, we first show the convergence properties of
the Poisson and Helmholtz solvers, on which the splitting scheme
is based. We show results for the maximum error as a function of
the radial and vertical number of points displaying the expected
spectral convergence; the same behaviour is also obtained in the
azimuthal direction. The test problem used is r2u ¼ f , with
u ¼ sin4ðrÞ expð2zÞ sin 2h. We compare u with the numerical solu-
tion obtained by solving the problem numerically using f calcu-
lated analytically. The results are presented in Tables 1 and 2 and
displayed in Fig. 1, where the expected spectral convergence can
be seen.

In order to show that the scheme also retains the spectral accu-
racy when applied to a fully non-linear solution, we have chosen a
solution obtained with our code in a Rayleigh–Bénard configura-
tion. This solution, described in Section 6.2, can be seen in Fig. 6a
and corresponds to a pattern of seven straight rolls. The total ki-
netic energy associated to every azimuthal mode can be seen in
Fig. 2a, while in Fig. 2b we show the spectral Chebyshev ampli-
tudes for the dominant azimuthal mode of the kinetic energy, for

radial coefficients (crosses), and for axial coefficients (circles).
These figures show clearly the expected exponential decay charac-
teristic of spectral accuracy. The same solution is also used to show
how the code treats flows having non-zero radial velocity compo-
nents along the axis, as is the case for the central roll of this solu-
tion. The correct treatment of these flows is manifest in Fig. 3,
where the projection of the velocity field is plotted on a plane per-
pendicular to the axis of the cylinder.

Finally, in order to show the computational performance of the
present method, we give an example of the time required for a typ-
ical computation (see Table 3). Let us say that this time should be
of the same order of magnitude as similar codes using similar
semi-implicit splitting schemes together with diagonalization
techniques for the solution of the diffusive operators. The main
advantage of our method is the combination of this high efficiency
with the prevention of clustering at the axis, as well as the easy and
flexible implementation of different boundary conditions.

6.2. Comparison with reported results

In this section, we present the results corresponding to several
numerical tests in which a comparison with recent reported re-
sults, both in purely hydrodynamic problems and in thermo-con-
vective problems, has been made. In the interests of brevity, we
hereafter refer to a solution which is invariant under a rotation
of 2p=m as an m solution.

We start with the problem analyzed in [42,9], where the flow in
an enclosed right-circular cylinder is driven by the rotation of one
of its endwalls. The authors use a semi-implicit second-order pro-
jection scheme and a Fourier expansion in the azimuthal direction,
while the axial and vertical directions are discretized with a Legen-
dre expansion [9]. The Poisson-like equations are solved using a
spectral-Galerkin method [43]. The flow for a fixed aspect ratio
C = 1/3 is computed at several Reynolds numbers Re, with
Re ¼ xbR2=m, where xb is the angular velocity of the bottom lid.
Starting from the basic steady non-trivial axisymmetric flow, there
is a supercritical Hopf bifurcation to an m = 4 rotating wave (RW)
at Re = 2730. This mode can only be observed inside and around
the strong jet close to the wall. By increasing the Reynolds number
to Re = 2900, a secondary bifurcation takes place. It is a supercriti-
cal Neimark–Sacker bifurcation to a 2-torus; a modulated rotating
wave (MRW). A second frequency appears, associated with the
presence of the azimuthal mode m = 1, which becomes apparent
in and near the axis. In our numerical test we reproduce the re-
ported secondary bifurcation. Using a grid of
ðnr ;nh;nzÞ ¼ ð64;42;64Þ, our results show that this instability oc-
curs at Re 
 3000, this value being obtained from the linear fitting
of the values of the mean kinetic energy of the m = 1 mode near the
bifurcation. Fig. 4 shows contours of the perturbation of axial
velocity w (the azimuthal m = 0 Fourier mode has been subtracted)
for the m = 4 rotating wave at Re = 2850 and for the modulated
wave at Re = 3030, both obtained with our numerical code. Follow-
ing the procedure in [43], the discontinuous boundary condition
for the azimuthal velocity at the bottom corner is avoided by using
a boundary layer function that provides a reasonable representa-
tion of the experimental gap.

Table 1
Maximum error for different nr with nh ¼ 20 and nz ¼ 20.

nr max(E) nr max(E)

3 4.423723 11 2:831639� 10�5

5 1.553011 13 1:131021� 10�10

7 1:43994� 10�1 15 2:478102� 10�13

9 3:304688� 10�3

Table 2
Maximum error for different nz with nh ¼ 20 and nr ¼ 21.

nz max(E) nz max(E)

8 0.1590711 16 1:564922� 10�8

10 0.004306517 18 1:482476� 10�10

12 8:471913� 10�5 20 1:432454� 10�11

14 1:288486� 10�6
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The second problem we consider is the flow in an enclosed cyl-
inder rotating at rate x, in which motions are driven by a contact

top lid that differentially rotates at rate xt (or which rotates in the
inertial frame of reference at rate x� ¼ xþxt). We focus on the
reference work [44], in which the counter-rotation of the top end-
wall is investigated both numerically and experimentally. The
authors used the same numerical method as in the previous prob-
lem [9]. The Reynolds number Re ¼ xR2=m and aspect ratio C = R/d
are held fixed ðRe ¼ 1000;C ¼ 2Þ, and the rotation rate of the top
lid, quantified through the non-dimensional parameter
S ¼ �x�=x, is allowed to vary. A retrograde driving situation with
xt < �x is considered, so that S is positive. The numerical results
in this paper show that the axisymmetric basic state undergoes a
Hopf bifurcation as S is increased beyond 0.408, leading to an
m = 4 rotating wave state ðRW4Þ. By continuing this branch to
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Fig. 1. Accuracy of the Helmholtz solver. Maximum error in the solution of a test problem. (a) Dependence on radial resolution and (b) dependence on vertical resolution.
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Fig. 2. Mode amplitudes of the kinetic energy corresponding to the steady solution shown in Fig. 6a (C = 4), insulating sidewalls, r = 1, Ra ¼ 1805:44 (in [5]). (a) Fourier-
azimuthal modes of the kinetic energy, and (b) Chebyshev amplitudes of the kinetic energy of the dominant Fourier component for the radial (crosses) and axial (circles)
directions.

Fig. 3. (a) Representation of the horizontal component of the velocity field at z ¼ 0:9 C for a steady convection solution with C = 4, insulating sidewalls, r = 1, Ra = 1805.44
(in [5]). (b) Detail region marked with a dashed square in (a).

Table 3
Example of computation time for various resolutions using an Intel Pentium 4 CPU at
3.20 GHz with 1024K L2 cache.

nr nh nz Dt Time Computation time

32 80 32 5� 10�3td
100td 98 min 7.860 s

32 60 32 5� 10�3td
100td 69 min 28.834 s

32 40 32 5� 10�3td
100td 45 min 49.918 s

24 80 24 5� 10�3td
100td 68 min 10.420 s

16 80 16 5� 10�3td
100td 46 min 4.195 s
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larger values of S, the authors obtain a supercritical Neimark–Sack-
er bifurcation leading to a stable 2-torus at S ¼ 0:441. The new
solution is a modulated wave in which, among the new arising
modes, the maximum kinetic energy corresponds to m = 5. As S is
further increased, the modulated wave undergoes a reverse Nei-
mark–Sacker bifurcation at S 
 0:462, where the rotating wave
RW4 is re-stabilized. Although these bifurcations are numerically
robust, the modulated wave could not be detected experimentally.
In the numerical tests with our code, we are able to locate the
bifurcation of the basic state to the m = 4 rotating wave, reproduc-
ing exactly the values of the RW4 wave frequencies included in
Fig. 17 in [44], and identifying the two Neimark–Sacker bifurca-
tions, which destabilize and re-stabilize the RW4. By using two dif-
ferent grids, (46,80,48) and (34,80,36), the Hopf bifurcation is
obtained at S ¼ 0:406. With regard to the Neimark–Sacker bifurca-
tions, in Fig. 5a we plot the mean kinetic energies associated to
modes m = 4 and m = 5 of the modulated wave as a function of
the S parameter in the zone where the modulated wave appears.
The range of S values where the modulated wave exists is almost
the same as that reported in the aforementioned paper (see
Fig. 11 in [44]). As an indication of the correct treatment of the ori-
gin, in Fig. 5b we plot the vertical vorticity at z ¼ 0:6d of a modu-
lated wave for S ¼ 0:455. As can be observed, contour plots of
vertical vorticity do not exhibit any oscillation around the origin.

In a second group of tests, we reproduce some of the states aris-
ing in thermal convection in a cylinder, which have been obtained

by several authors using different numerical codes. We first show
in Fig. 6a the pattern consisting of seven straight rolls obtained by
Rüdiger and Feudel [5] in a cylinder of aspect ratio C = 4 and insu-
lating sidewalls, at a Rayleigh number Ra 
 1805:44 for a fluid of
Prandtl number r = 1. Following [1,4], the authors solve the equa-
tions and boundary conditions using a spectral collocation code in
a formulation based on the decomposition of the velocity field into
its axisymmetric and non-axisymmetric parts, each of them ex-
pressed as a function of two potential functions

u ¼ r� vðr; h; zÞer þ wðr; h; zÞez þ
1
r

f ðr; zÞeh

� �
þ ~vðr; zÞeh:

The four potential functions and temperature are decomposed into
Fourier functions in the azimuthal direction and Chebyshev polyno-
mials in the r and z direction. The proper parity of the potentials and
temperature with respect to r ¼ 0 is forced in the decomposition.

The pattern in Fig. 6b corresponds to the so-called star pattern,
obtained in a cylinder of aspect ratio C = 2 and perfectly conduct-
ing sidewalls for a fluid of Prandtl number r = 6.7 by Boronska [45].
In order to reproduce the experimental results reported in [46],
where the coexistence of several stable states for one configuration
of control parameters was observed, the authors performed a se-
quence of simulations varying the initial state and the Rayleigh
number. The six-armed star pattern was obtained when using an
arbitrary perturbation as initial condition at Ra = 25,000. The code

a b

Fig. 4. Contour plots of the perturbation of the axial velocity (obtained by subtracting the m = 0 azimuthal mode) at z ¼ 0:8d for (a) the rotating wave at Re = 2850 and (b) the
modulated rotating wave at Re = 3030. (Numerical test related with results published in [42].)
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Fig. 5. (a) Mean kinetic energy associated to azimuthal modes m = 4 (circles) and m = 5 (squares) of the modulated rotating wave as a function of the parameter S, which
measures the counter-rotation of the top endwall. (b) Vertical vorticity of a modulated wave for S ¼ 0:455. (Numerical test related with results published in [44].)
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used in that work is based on a spectral Tau method for the spatial
discretization, where the deviation of temperature and the velocity
components are expanded in Chebyshev polynomials in the radial
and vertical directions, and in Fourier series in the azimuthal direc-
tion. In these expansions, the parity and the regularity conditions
described in [47] are taken into account. For the time discretiza-
tion, a semi-implicit second order scheme with an Adams–Bash-
forth explicit formula for the non-linear terms and buoyancy
term and an implicit Crank–Nicholson scheme for the linear term
were used. Incompressibility was ensured by using a influence ma-
trix technique.

The pattern in Fig. 6c was obtained by Rüdiger and Knobloch
[48] in a rotating cylinder with insulating walls, aspect ratio
C = 1, Coriolis number X = 30 and for a fluid of Prandtl number
r = 6.8. Centrifugal effects were neglected. The solution corre-
sponds to the so-called ‘2 + 0’ rotating wave, obtained at
Ra = 30,000. This solution is only invariant under a rotation by p.
The other symmetry of the m = 2 solution that bifurcates from
the conductive state, a rotation through an angle p=2 followed by
a midplane reflection, is broken at Ra 
 4000. The numerical code
used by these authors is the same as that used in [5] to obtain the
solution in Fig. 6a.

The solution shown in Fig. 6c is also a rotating wave, an m = 21
wall mode obtained recently by Sánchez-Alvarez et al. [49] at
Ra = 21,380, in a cylinder of aspect ratio C = 5 with insulating side-
walls, rotating at a Coriolis number X = 274, filled with a fluid of
Prandtl number r = 6.4. The spectral projection method used by
the authors is described in [10]. A collocation-Chebyshev expan-
sion is used both in the radial and axial directions, and a Fou-
rier–Galerkin method is used for the azimuthal dependence. The

projection scheme employed to maintain the incompressibility
constraint is the same as that in our code [11]. The main differ-
ences with our method concern the spatial treatment. In [10], the
radial dependence of the functions was approximated by a Cheby-
shev expansion ½0;C� ! ½�1;þ1� on a Gauss–Lobatto distribution
of points, which generates a cluster of points near the axis. Addi-
tionally, a change of dependent variables was used to enforce a
boundary condition at the axis for the m = 1 Fourier mode. This
change of variables entails dealing with complex eigenvalues when
the diagonalization technique is applied. Furthermore, the use of a
predictor velocity for the radial and azimuthal velocity compo-
nents, as opposed to the coupled variables u�þ;u

�
� proposed in our

code, forces a different time evaluation (implicit/explicit) in two
parts of the radial diffusion term (see Appendix A in [10]).

Finally, as a test of the method for calculating and following
steady solutions using continuation techniques, in Fig. 7 we show
the bifurcation diagram giving the location and connection with
the basic conductive state of the solution in Fig. 6a. In this figure,
where we plot the value of the zero azimuthal mode of the temper-
ature deviation at a fixed point ðr; zÞ as a function of the Rayleigh
number, three branches of steady solutions can be observed. This
figure shows only the branches involved in the connection with
the basic state, although additional branches of steady solutions
not shown in this figure do exist for this range of parameter values.
Since the steady solutions of every branch possess different sym-
metries, it is convenient to begin the description of the dynamics
with a brief discussion of the symmetries of the system (non-rotat-
ing cylinder with insulating sidewalls). Equations and boundary
conditions are equivariant under the group of symmetries
Oð2Þ � Z2, where O(2) is generated by proper rotations Ra and

a b

c d

Fig. 6. Contour plots of the perturbation of the temperature at z ¼ 0:5C for different convection patterns. (a) Steady solution, C = 4, insulating sidewalls, r = 1, Ra = 1805.44
(in [5]), (b) steady solution, C = 2, perfectly conducting sidewalls, r = 6.7, Ra = 25,000 (in [45]), (c) rotating wave (m = 2), C = 1, insulating sidewalls, r = 6.8, Ra = 30,000,
X = 30 (in [48]), and (d) rotating wave (m = 21), C = 5, insulating sidewalls, r = 6.4, Ra = 21,380, X = 274 (in [49]).
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reflections j with respect to vertical planes containing the axis,
while Z2 accounts for the reflections with respect to the midplane
c. These symmetries act on the fields u, v, w, H as follows:

Ra : ðr; h; zÞ ! ðr; hþ a; zÞ; ðu; v;w;HÞ ! ðu; v;w;HÞ; ð18Þ
j : ðr; h; zÞ ! ðr;�h; zÞ; ðu;v ;w;HÞ ! ðu;�v;w;HÞ; ð19Þ
c : ðr; h; zÞ ! ðr; h;�zÞ; ðu;v ;w;HÞ ! ðu;v ;�w;�HÞ: ð20Þ

Notice that this system is equivariant under the same group of sym-
metries as the two dimensional thermal convection in periodic
channels is. Thus, the classification of the primary solution bifurca-
tions, extensively studied in the 2D channel [50,51], can be directly
applied to the cylinder.

The primary solution for this system (solid line), which appears
in a supercritical pitchfork bifurcation of the conductive state at
Ra = 1739.2, is an m = 1 solution invariant under the following
transformations: reflections with respect to an appropriate vertical
plane j; the midplane reflection combined with a rotation cRp, and
the combination of both transformations jcRp. Fig. 7 includes the
contour plot of temperature deviation for a solution of the primary
branch near the onset. This solution manifests the exponential
dependence in h expected from the m = 1 modal dependence. No-
tice that, due to the jcRp symmetry, the temperature deviation
at mid height verifies Hðr; h;0Þ ¼ �Hðr; hþ p;0Þ. The primary solu-
tion loses stability at Ra = 1755.7 in a slightly subcritical bifurca-
tion where symmetries cRp and jcRp are broken and symmetry
j is maintained. The secondary branch (dot-dashed line) ends as
a bifurcation at Ra = 1787.7, where stability is transferred to a
new branch of solutions (dashed line), which are again invariant
under j, cRp and jcRp. By increasing the Rayleigh number from
this bifurcation, we obtain the stable solution of seven straight rolls
plotted in Fig. 6a.

A bifurcation diagram incorporating branches of several m-solu-
tions bifurcating from the conductive state and their stability has
recently been obtained in this system [41]. The aim of this work
was to analyze the multiplicity of steady states in a cylinder of as-
pect ratio C = 2 and Prandtl number r = 6.7, which corresponds to
the physical setting of the experiment in [46]. As in the method
presented in this paper, the authors use a first-order time-stepping
formulation to calculate steady solutions. However, the formula-
tion employed is based on an improved version of the algorithm

proposed in [52,53], with a central difference method on a stag-
gered grid for the spatial discretization.

7. Concluding remarks

In this paper, we present a spectral-projection method for solv-
ing the three-dimensional Navier–Stokes equations in an enclosed
cylinder. The use of a projection scheme to fulfil the incompress-
ibility constraint, and a pseudospectral approximation in combina-
tion with a diagonalization technique to solve the sequence of
Helmholtz and Poisson equations resulting from the splitting, lead
to an accurate and efficient code for computing unsteady 3D
incompressible flows. Special emphasis is placed on keeping the
development of the code simple, since a minimum preprocessing
is required. The spatial discretization proposed in the scheme over-
comes the difficulties arising from the presence of the pole singu-
larity in cylindrical geometry without introducing additional
complexity of implementation. Moreover, stationary solutions
and rotating waves can also be efficiently computed, and branch
following techniques can be applied straightforwardly. The code
maintains spectral accuracy and gives a correct treatment of flows
having a non-zero radial velocity. An excellent agreement is ob-
tained when comparing our code with earlier studies in non-rotat-
ing and rotating cylindrical cavities in which flows are driven by a
rotating lid or by a thermal gradient.

Finally, it is worth emphasizing that the flexibility of the code
allows different boundary conditions to be implemented and
new fields to be introduced in a simple way. Indeed, several groups
are currently using the code in different problems with success. For
instance, López et al. [54] have analyzed the role of the Eckhaus–
Benjamin–Feir instability in the dynamics of the wall modes aris-
ing in convection in a regime dominated by the Coriolis force. Fur-
thermore, the study of the role of centrifugal effects in rotating
convection has been addressed in the work of Marqués et al.
[40], and time-dependent boundary conditions have been imple-
mented by Rubio et al. [55] in order to study the axisymmetric pat-
terns arising in modulated rotating Rayleigh–Bénard convection.
The complex spatiotemporal dynamics near the threshold of con-
vection in binary fluid convection, which requires the introduction
of a concentration field, has also been analyzed in a very recent
work [56].
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