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A B S T R A C T

Wake characteristics of the flow past a circular cylinder are analysed in detail at Reynolds number 𝑅𝑒 = 1500
via direct numerical simulation. A periodic spanwise domain of length 1.5𝜋𝐷 has been found to yield correct
first- and second-order wake statistics in remarkable agreement with published results at the same and closeby
𝑅𝑒. A Kelvin–Helmholtz instability with a frequency 𝑓KH ≃ 0.666 is observed to occur intermittently in the
shear layers issued from the top and bottom of the cylinder. The three-dimensional patterns in the wake
have an estimated spanwise length scale 𝑙1𝑧∕𝐷 ≃ 0.70 (D is the cylinder diameter) in the near-wake at
(𝑥, 𝑦)∕𝐷 = (3, 0.5), downstream from the cylinder, when quantified by autocorrelation (global approach). When
using the Hilbert-transform (local approach) instead, the predicted length scale of streamwise vortical structures
is distributed around 𝜆𝑧∕𝐷 ≃ 0.33 at the same sampling location. Our results show that the two approaches
measure different aspects of three-dimensionality: while the former informs of the typical spanwise spacing of
streamwise vortices, the latter quantifies the local spanwise size of these same flow structures.
1. Introduction

There has been a spurt of research activity regarding bluff body
wakes over the past few decades which is in part triggered by the
fundamental importance of wake flows [1], and in part by the plethora
of practical industrial applications [2,3]. Because of its tempting sim-
plicity, the flow past circular cylinders has been employed as the
canonic geometric arrangement in both experimental and numerical
setups, and a wealth of knowledge has been accumulated by scientists
and engineers alike over the years using cutting-edge experimental
techniques such as particle image velocimetry (PIV) [4,5] or laser
Doppler anemometry [6], and state-of-the-art numerical methods al-
lowing direct numerical simulation (DNS) in first-rate supercomput-
ing facilities [7,8]. The flow past a circular cylinder is considered a
paradigm for bluff body aerodynamics, and a profusion of detailed
experimental, numerical and analytic studies exist that are devoted
to the analysis and understanding of boundary layer separation, shear
layer interactions, wake vortex formation, inception and development
of three-dimensional vortical structures, and wake turbulent transition.

At sufficiently low values of the Reynolds number (𝑅𝑒 ≡ 𝑈𝐷∕𝜈,
based on cylinder diameter 𝐷, upstream flow velocity 𝑈 and fluid
kinematic viscosity 𝜈), the flow past a circular cylinder placed in a
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homogeneous crossflow features a time-independent state characterised
by two symmetric recirculating regions attached to the rear of the cylin-
der. This steady solution destabilises into a two-dimensional space–
time-symmetric solution in a supercritical Hopf bifurcation, which
manifests itself in the form of the well-known von-Kármán vortex street.
The characteristic alternate shedding of vortical structures from the
opposite sides of the cylinder results in an unsteady aerodynamic force
with components in both the axial and crossflow direction which is the
source of vibration [1] and noise [9], which may entail structure failure
or be exploited in energy harvesting applications [10,11].

The two-dimensional space–time-symmetric periodic state is over-
ruled by the onset of three-dimensionality for 𝑅𝑒 ≳ 190, spanwise
dependence being characterised by the inception of hysteretic mode A
first, followed suit by the emergence of mode B in the so-called wake
transition regime 𝑅𝑒 ∈ [190, 260]. The appearance of these instability
modes has been linked to the observation of discontinuities of the
Strouhal number when smoothly varying 𝑅𝑒 [12]. Mode A is subcritical
and is related to the onset of vortex loops and the subsequent formation
of streamwise vortex pairs in the cylinder wake with characteristic
wavelength 𝜆A𝑧 ∕𝐷 ≃ 3 ∼ 4 at 𝑅𝑒 ≳ 180, while mode B, featuring smaller-
scale streamwise vortex pairs of wavelength 𝜆B𝑧 ∕𝐷 ∼ 1, is observed over
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a range of 𝑅𝑒 ∈ [230− 250], the evolution from the former mode to the
atter being characterised by a gradual energy transfer [12]. In addition
o the aforementioned three-dimensional modes, there exist local phase
islocations that generate large-scale-spot-like structures [13,14] that
ropagate downstream of the cylinder base and render the mode A
egime spatio-temporally irregular.

The shear layers separated from the opposite sides of the cylinder
ay be subject to laminar–turbulent transition at sufficiently high
𝑒 [14]. This transition is initiated by the onset of a spatially-
eveloping Kelvin–Helmholtz instability that results in a growing train
f vortices of relatively small length and time scale. The critical
eynolds number for the onset of the shear layer instability has been
eported widely spread over a large range of 𝑅𝑒 [14–17], allegedly

bearing a strong dependence on the background disturbance, exper-
imental conditions, cylinder ends, etc. The ratio of shear-layer to
von-Kármán frequency has been observed to scale with 𝑅𝑒 with an
exponent that also presents some scatter among different sources [14,
17–19].

A number of research studies have evaluated the spanwise length
scale of three-dimensional wake instabilities using both flow visual-
isation and mathematical/numerical techniques such as autocorrela-
tion [20], Hilbert-transform [7], wavelet-transform [21], and several
others. These various methods have produced reasonably accurate and
consistent measurements for 𝜆𝐴𝑧 and 𝜆𝐵𝑧 in the so-called wake-transition
regime. Beyond this point, the variation of the spanwise length scales
of longitudinal vortices have been experimentally reported to scale
inversely with 𝑅𝑒 as 1∕

√

𝑅𝑒 in the range 𝑅𝑒 ∈ [300 − 2200] [20]
using two-probe correlation. A discrepancy of spanwise structures size
was however observed between the experimental scaling law [20] and
numerical results [22] at coincident 𝑅𝑒, which might be ascribed to the
application of different definitions and/or measuring techniques. Also
the dependence of spanwise vortex size on measuring streamwise and
cross-stream location along the cylinder wake has been shown to dis-
agree among a number of experimental [20,23] and numerical [7,22]
studies. The near-wake crossflow sampling location appears to have a
significant impact on the results, while the far-wake is less sensitive to
sampling location and produces a more stable typical spanwise size of
the structures.

In this work, we investigate the flow past a circular cylinder at 𝑅𝑒 =
1500, with the shear layer instability in its early stages of development
and therefore barely perceptible, and laminarity preserved over a fair
portion of the shear layer. The spanwise length scales of the stream-
wise vortices that arise following the secondary three-dimensionalising
instability of the cylinder wake will be characterised in detail using
both global (two-probe cross-correlation) and local (Hilbert transform)
approaches. Even-though both approaches have been applied in the
characterisation of the secondary instability in the past at higher 𝑅𝑒,
this is the first time, to the authors knowledge, that both techniques
are used concurrently on the same dataset to allow comparison and
understand the differences. We shall not be concerned here with the
large-scale dislocations that appear across the wake transition regime,
but with the shorter-scale streamwise vortices that form the regular
pattern that eventually dislocates.

The outline of the paper is as follows. The mathematical formulation
is presented in section Section 2 alongside the numerical approach
undertaken to solve the equations of motion. Section Section 3 reports
the numerical results in terms of global quantities first, followed by
near-wake first- and second-order statistics along the wake-centreline,
and concludes with a characterisation of the shear layers instability as
they synchronously flap in the near-wake. Section 4 is devoted to the
characterisation of the three-dimensionalising secondary wake instabil-
ity and analyses the resulting turbulent-wake spanwise structures using
both autocorrelation and Hilbert-transform. Finally, the main findings
are summarised in Section 5.
2

2. Problem formulation and numerical approach

We consider the incompressible viscous flow of a Newtonian fluid
of kinematic viscosity 𝜈 past a cylinder of circular cross-section. The
dynamics is governed by the Navier–Stokes equations, which after non-
dimensionalisation with the cylinder diameter 𝐷, and the incoming
flow velocity 𝑈 yields
𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮 = −∇𝑝 + 1
𝑅𝑒

∇2𝐮,
∇ ⋅ 𝐮 = 0,

(1)

where 𝐮(𝐱; 𝑡) = (𝑢, 𝑣,𝑤) and 𝑝(𝐱; 𝑡) are the velocity and pressure, respec-
tively, at the nondimensional location 𝐱 = (𝑥, 𝑦, 𝑧) and convective time
. The cartesian nondimensional coordinates 𝑥, 𝑦 and 𝑧 indicate location

in the streamwise, crossflow and spanwise directions and 𝑢, 𝑣 and 𝑤 are
the corresponding velocity components. The sole governing parameter,
𝑅𝑒 = 𝑈𝐷∕𝜈, is the Reynolds number. Units will be omitted from this
point on, as they are implied by the non-dimensionalisation length and
velocity scales. A computational domain of size [−20, 50] × [−20, 20] ×
[0, 1.5𝜋] in the streamwise, cross-stream and spanwise directions has
been used for the numerical simulation (Fig. 1).

A unitary velocity 𝐮(−20, 𝑦, 𝑧; 𝑡) = (1, 0, 0) is prescribed at the inlet,
the cylinder walls are no-slip, and the top and bottom boundaries
set as slip walls. In all three boundaries, Neumann pressure boundary
conditions are used, while a homogeneous Dirichlet pressure boundary
condition is prescribed at outlet. A periodic boundary condition is
enforced in the spanwise direction for all fields.

The direct numerical simulation (DNS) has been performed with
an incompressible Navier–Stokes solver provided by the open source
software OpenFOAM [24], which is based on a finite volume formula-
tion. The time integration has been done with a second-order-accurate
Crank-Nicholson central-difference scheme and a time step 𝛥𝑡 = 0.0005.
The space discretisation is based on second-order upwind and central-
differences for the advection and diffusion terms, respectively. The
pressure–velocity coupling is tackled with the Pressure-Implicit with
Splitting of the Operators (PISO) [25] scheme, using the Preconditioned
Conjugate Gradient (PCG) solver for the pressure equation, and the
Preconditioned Bi-Conjugate Gradient (PBiCG) for all three velocity
equations.

3. Numerical validation against benchmark data

Table 1 compares the present simulation with previous experimental
and numerical studies at the same and neighbouring values of the
Reynolds number. The in-plane cell count has been set high to 201×103

in order to compensate for the low order of the finite-volumes spatial
discretisation. The number of in-plane degrees of freedom considered
is comparable to that used by Sarwar and Mellibovsky [22], somewhat
larger at 548 × 82 ≃ 351 × 103 but considering a slightly higher flow
regime 𝑅𝑒 = 2000, and way larger than all other numerical studies
reported [4,7,8,26–28]. A lower bound for the Kolmogorov length scale
in the near wake has been estimated, from the average dissipation rate
of turbulent kinetic energy and assuming isotropic turbulence, at about
𝜂 ≃ 0.02, which is commensurate with the typical cell size deployed
in the region. The power spectrum of the streamwise velocity signal
at several streamwise off-centreline locations with 𝑦 = 0.5 along the
wake, shown in Fig. 2a, provides yet additional confirmation that the
mesh and method are adequate to capture the whole extent of the
inertial subrange and reach deep into the dissipation scales. Besides the
conspicuous peaks at the vortex shedding frequency and harmonics, the
spectra clearly conform to the −5∕3 energy decay rate that is typical of
the inertial subrange (see straight line) before viscous dissipation kicks
in at higher frequency.

The spanwise extent of the domain is fairly large at 𝐿𝑧 = 1.5𝜋,
sufficient to accommodate up to 9 streamwise vortex pairs of a typical
wavelength 𝜆𝑧 ≃ 0.52𝐷 at (𝑥, 𝑦) = (3, 0.5) and 𝑅𝑒 = 1500, according

to the experimental scaling law by Mansy et al. [20], who defined
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Fig. 1. Sketch of the computational domain and mesh. The streamwise-crossflow (𝑥, 𝑦)-plane is discretised with a high-density mesh in the critical areas. The inset shows a detail
of the mesh around the cylinder.
Fig. 2. (a) Spanwise-averaged spectrum |�̂�|2 of the streamwise velocity signal
𝑢(𝑥, 0.5, 𝑧; 𝑡) at several off-centreline streamwise locations. The straight line indicates the
−5∕3 slope typical of the inertial subrange. (b) Spanwise autocorrelations of fluctuation
velocity components 𝑟𝑢′𝑢′ , 𝑟𝑣′𝑣′ and 𝑟𝑤′𝑤′ at off-centerline location (𝑥, 𝑦) = (3, 0.5) for
𝑅𝑒 = 1500.

the characteristic length scale using the first peak of the normalised
instantaneous spanwise autocorrelation of streamwise velocity. The
spanwise wavelength was shown to increase progressively downstream
before reaching saturation at about 𝜆𝑧 ≃ 1.0𝐷 beyond 𝑥 ≥ 10 for
𝑅𝑒 ∈ [1100, 2000], such that 4 to 5 vortex pairs would still fit in our
domain. In order to further assess the sufficiency of the spanwise extent
of the domain, one might use time-averaged normalised spanwise
autocorrelation of velocity fluctuations

𝑟𝑢′𝑢′ (𝑙𝑧; 𝑥, 𝑦) =
⟨𝑢′𝑖(𝑥, 𝑦, 𝑧; 𝑡)𝑢

′
𝑖(𝑥, 𝑦, 𝑧 − 𝑙𝑧; 𝑡)⟩𝑧,𝑡

′ 2
, (2)
3

𝑖 𝑖
⟨𝑢𝑖(𝑥, 𝑦, 𝑧; 𝑡) ⟩𝑧,𝑡
where 𝑢′𝑖(𝑥, 𝑦, 𝑧; 𝑡) = ⟨𝑢𝑖(𝑥, 𝑦, 𝑧; 𝑡)⟩𝑧,𝑡−𝑢𝑖(𝑥, 𝑦, 𝑧; 𝑡) and the subindex in 𝑢𝑖 =
{𝑢, 𝑣,𝑤} denotes each of the three cartesian components of velocity.
Fig. 2b shows these autocorrelations for 𝑅𝑒 = 1500 at the off-centreline
location (𝑥, 𝑦) = (3, 0.5). All three velocity components decorrelate fast
initially, but saturation follows shortly, such that autocorrelation values
stagnate at about 𝑟𝑢′𝑖𝑢′𝑖 (𝑙𝑧; 3, 0.5) ≃ −0.1. Similar values are obtained at
the several off-centreline locations we have tested along the wake for
𝑦 = 0.5 and 𝑥 ∈ [2, 20] (not shown). These results are in line with
the observations of Wissink and Rodi [29] using streamwise velocity
at several streamwise locations 𝑥 ∈ [2, 8] along the wake centreline
𝑦 = 0 for 𝑅𝑒 = 3300 in a domain with 𝐿𝑧 = 8, which led them to
conclude that the spanwise extent might not be sufficient. Comparable
decorrelation levels at off-centreline locations were instead considered
sufficient by Ramberg and Griffin [30] for 𝐿𝑧 = 10 at 𝑅𝑒 ∈ [500, 600]
and by Evangelinos [31] for 𝐿𝑧 = 6 at 𝑅𝑒 = 1000. According to the
decreasing trend, our 𝐿𝑧 = 1.5𝜋 would be suitable at 𝑅𝑒 = 1500. The
residual autocorrelation could certainly hint at the possible existence
of large-scale spanwise flow structures, but the decorrelation is still
substantial enough to assume that long wavelength modulation, if
allowed for by employing sufficiently large domains, would be fairly
low amplitude and not significantly affect the properties of the vortical
structures of interest here.

Using 𝑁𝑧 = 128 spanwise grid planes yields a spanwise resolution
density 𝑁𝑧∕𝐿𝑧 ≃ 27.1, which is not overly high but deemed sufficient
to properly capture the smallest spanwise features of the flow. Statistics
are collected over 125 vortex-shedding cycles so that convergence can
be safely claimed. This should in principle allow detection of the low-
frequency wake fluctuation reported by Lehmkuhl et al. [34] at 𝑅𝑒 =
3900, and we have indeed found some evidence that this might also be
occurring at 𝑅𝑒 = 1500. Increasing the in-plane resolution to 241 × 103

cells, and the spanwise resolution and size of the domain to 256 and
2𝜋, respectively, produced no significant changes in the results despite
the much shorter data sample achievable in a reasonable time-span.

Since the Strouhal number (von Kármán vortex-shedding frequency)
is known to present an almost flat trend across the flow regime under
scrutiny [35], it can be expected that our numerically computed fre-
quency 𝑓vK = 0.212 at 𝑅𝑒 = 1500 should agree well with published
results at neighbouring values of 𝑅𝑒. As it happens, the agreement is
fair with all reported experimental [5,19,32,33] and numerical [19,32,
36,37] values for 𝑅𝑒 ∈ [1500, 3900]. Similarly, mean drag values are
consistent with both experimental [19] and numerical [22,26] results
at close-by 𝑅𝑒 if allowance is made for the slightly increasing trend that
is to be expected. The recirculation bubble length 𝐿 is instead known
𝑟
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Table 1
Experimental and numerical literature survey of circular cylinder in crossflow. Listed in the table are the spanwise domain length 𝐿𝑧, spanwise 𝑁𝑧 and in-plane 𝑁𝑥𝑦 grid resolutions
(discretisation order in superscript, 𝐹 for Fourier), free stream turbulence intensity 𝑇𝑢, number of vortex-shedding cycles used in computing statistics 𝑁𝑠, vortex-shedding frequency
𝑓vK , shear-layer frequency 𝑓KH, recirculation bubble length 𝐿𝑟, boundary layer separation point 𝜃sep, and shape of the cross-stream profile of mean streamwise velocity in the
near-wake at 𝑥∕𝐷 = 3 behind cylinder.

Numerical

Author [Ref] Method 𝑅𝑒 𝐿𝑧 𝑁𝑧 𝑁𝑥𝑦 𝑁𝑠 𝑓vK 𝑓KH 𝐿𝑟 𝐶𝐷 −𝐶𝑝𝑏 𝜃sep Sol.

Present results: DNS FVM 1500 1.5𝜋 128 241 × 103 125 0.212 0.666 1.72 0.969 0.78 90.0 U
Sarwar and Mellibovsky [22] DNS SEM 2000 2.5 128𝐹 54848 55 0.215 0.839 1.66 0.975 0.80 90.0 U

DNS SEM 2000 𝜋 96𝐹 54848 22 0.211 1.71 0.961 0.79 90.0 U
Gsell et al. [7] DNS FVM 3900 10 300 150 × 103 3–4 0.210 1.365 0.92 86.8
Ma et al. [8] DNS SEM 3900 𝜋 128𝐹 90210 0.219 1.59 0.84 U

1.5𝜋 64𝐹 90210 0.206 1.00 1.04 V
2𝜋 256𝐹 9028 0.203 1.12 0.96 V

(𝑐𝑠 = 0.032) LES SEM 1.5𝜋 64𝐹 9028 0.213 1.28 0.90 UV
(𝑐𝑠 = 0.196) 1.5𝜋 64𝐹 9028 0.208 1.76 0.77 U

Dong et al. [4] DNS SEM 3900 𝜋 128𝐹 9028 40–50 0.210 1.539 1.36 UV
1.5𝜋 192𝐹 9028 0.208 1.18 0.93 V

128𝐹 0.210 1.12 0.96 V
64𝐹 0.206 1.00 1.04 V

Chen et al. [26] iLES FVM 2580 𝜋 56 70 × 103 50 0.220 1.66 0.95 0.73 U
20 12.5 × 103 50 0.220 1.13 1.03 0.88 V

Mohammad et al. [28] iLES SDM 2580 𝜋 183 11 1443 20 U
182 78802 20 V
123 78803 20 U

Lodato and Jameson [27] iLES SDM 2580 3.2 103 18473 300 U

Experimental

Author [Ref] Method 𝑅𝑒 𝐿𝑧 𝑇𝑢 𝑁𝑠 𝑓vK 𝐿𝑟 𝐶𝐷 −𝐶𝑝𝑏

Norberg [19] HWA 2000 240 ∼0.1% 0.213
3000 80 ∼0.1% 0.213 1.65 0.98 0.84
3000 80 ∼1.4% 0.209 1.44 1.03 0.89

Norberg [6] LDV 1500 65 <0.1% 1350 1.75 1.79
3000 65 <0.1% 1.66

Norberg [32] LDV 1500 105 <0.1% 0.212
Konstantinidis et al. [33] LDV 1550 10 ∼3.3%

2150 10 ∼3.3% 0.215 1.77
2750 10 ∼3.3%

Konstantinidis and Balabani [5] PIV 2150 10 ∼3.3% 0.215 1.58
a
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to notably decrease across the shear layer instability regime [38]. This
explains why the value obtained, 𝐿𝑟 = 1.72, is similar to that found
n experiments [6,33] and well-resolved numerical simulations [22,26]
or 𝑅𝑒 < 2600 but considerably higher than reported values for 𝑅𝑒 >
000 [4,8,19].

Fig. 3a depicts the mean pressure coefficient (𝐶𝑝(𝜃), grey solid line)
istribution along the cylinder wall from the front stagnation point
t 𝜃 = 0◦ to the cylinder base point at 𝜃 = 180◦. Agreement with
xperiments by Norberg [35] at the same 𝑅𝑒 = 1500 is excellent.
ressure is maximum at the stagnation point and decreases fast as the
low accelerates along the front portion of the cylinder. A minimum is
eached somewhat ahead of the highest point on the surface and starts
ecovering. The recovery is nevertheless not complete, as separation is
bserved to occur at 𝜃 ≃ 90.0◦ (see zero crossing of the 𝐶𝑓 distribution,
rey dashed line). The 𝐶𝑝 stabilises thereafter at a fairly constant
egative value (suction) that is maintained all the way down to the
ase point.

The average streamlines issued symmetrically from the separation
oints at either side of the cylinder coalesce in a statistically quiescent
low some distance behind the cylinder, whence two purely streamwise
treamlines emanate, one pointing upstream towards the base point
nd the other extending downstream to infinity. The streamlines ar-
angement conforms a two-lobed-symmetric recirculated flow region,
ttached to the cylinder back surface, where fluid is trapped on av-
rage. The quiescent flow point bounding it at the rear is used in
efining a recirculation bubble length 𝐿𝑟, which is known to inversely

correlate with base pressure and, therefore, the drag coefficient [39].
Along the two streamlines issued from the separation points extend the
shear layers resulting from the separated boundary layers. The cross-
stream gradients of streamwise velocity are large across the shear layers
and contribute in triggering the Kelvin–Helmholtz instability that is
intermittently detected.
4

u

Fig. 3b (top) shows the mean streamwise velocity distribution �̄�(𝑥, 0)
long the wake centreline of the present numerical solution along with
xperimental measurements at the same and close-by values of 𝑅𝑒.
he mean streamwise velocity �̄� is negative in the close vicinity of
he cylinder base, as the fluid recirculates there, and the distance to
he zero-crossing provides the definition for the recirculation bubble
ength 𝐿𝑟 = 1.72. Downstream from the quiescent flow point, �̄� recovers
ast in the near wake but the recovery rate soon slows down and
aturates at an imperceptible slope in the mid wake. The streamwise
elocity in the wake centreline remains defective, with respect to free-
tream velocity, for a very long distance behind the cylinder. The
pstream shift of both �̄�(𝑥, 0)𝑚𝑖𝑛 and the zero-crossing evinces that the
ecirculation bubble shrinks as 𝑅𝑒 is increased. The agreement with
xperimental results at the same [6] and similar [33] 𝑅𝑒 is good as
egards the trends and the location of the lowest mean velocity and
ero crossing, but �̄�(𝑥, 0)𝑚𝑖𝑛 appears to be somewhat underestimated in
ur computations as compared to Norberg [6]. This same discrepancy
ith respect to Norberg [6] is systematically observed in all other well-

esolved numerical studies that analysed the mean streamwise velocity
istribution along the wake centreline at closeby 𝑅𝑒 (see e.g. [34,37]).
e believe that the mismatch is related to a shortcoming in the

xperimental measurements, given that the agreement is instead fair
hen comparing with Konstantinidis et al. [33].

The wake centreline distribution of streamwise velocity covariance
⟨𝑢′𝑢′⟩ in Fig. 3b-bottom) shows the characteristic two-peak distri-
ution typically reported in experiments [6,33,37]. While the first
eak follows from vortex formation, the second peak has been as-
ribed to the cross-over of mode-B-type longitudinal vortices [6]. The
hape and streamwise location of the peaks comply with experimental
easurements at the same 𝑅𝑒 [6], but their magnitude is severely
nder-predicted. At the slightly higher 𝑅𝑒 = 2000 [22] numerics seem
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Fig. 3. (a) Mean pressure (𝐶𝑝, solid grey) and friction (𝐶𝑓 , dashed grey) coefficient
distribution along the cylinder wall at 𝑅𝑒 = 1500 (solid line). Circles indicate
experimental measurements by Norberg [35]. (b) Streamwise velocity first- (top,
mean �̄�) and second-order (bottom, covariance ⟨𝑢′𝑢′⟩) near-wake statistics distribution
along the wake centreline. Shown are the present results (solid line, 𝑅𝑒 = 1500),
numerical results by Sarwar and Mellibovsky [22] (dashed line, 𝑅𝑒 = 2000), and
experiments also by Norberg [6] (circles: black, 𝑅𝑒 = 1500; grey, 𝑅𝑒 = 3000; white,
𝑅𝑒 = 5000), Konstantinidis et al. [33] (black squares, 𝑅𝑒 = 2150) and Parnaudeau et al.
[37] (white triangles, 𝑅𝑒 = 3900).

to closely match the experiments of Norberg [6] at 𝑅𝑒 = 1500, while one
would expect the peak to fall half way between experimental values at
𝑅𝑒 = 1500 and 3000. Whereas the trend with 𝑅𝑒 seems right, numerical
results fall consistently short of experimental measurements. As was
the case with mean streamwise velocity distribution along the wake
centreline, the experiments by Norberg [6] report streamwise normal
Reynolds stress distributions systematically higher than found else-
where [34,37]. Again, some flaws in the experimental determination
of instantaneous velocity in this rather active region of the wake might
be held responsible. The dissimilar inflection point and peak ⟨𝑢′𝑢′⟩(𝑥, 0)
distribution reported by Konstantinidis et al. [33] at 𝑅𝑒 = 2150 is
most probably the result of high free-stream turbulence (𝑇𝑢 ∼ 3.3%)
advancing the turbulent transition along the detached shear layers. As
for the mean velocity, the covariance peaks also shift upstream towards
the cylinder as 𝑅𝑒 is increased. The vortex formation region length (𝐿𝑓 )
is accordingly shortened, which also contributes to the drag coefficient
increase.

Near-wake dynamics might be analysed comprehensively through
the inspection of time signals obtained from spanwise probe arrays
conveniently embedded in the detached shear layer. Vortex-shedding
dynamics might be captured with probes located anywhere in the wake,
but to allow detection of an incipient Kelvin–Helmholtz instability,
the probe location must be chosen along the time-averaged shear
layer, upstream from the vortex formation region to avoid excessive
flapping, but far downstream from the separation point for an eventual
5

Fig. 4. Spanwise-averaged power spectrum |�̂�SL|
2 of the streamwise velocity signals

𝑢SL(𝑧; 𝑡) = 𝑢(1, 0.8, 𝑧; 𝑡) along a spanwise probe array submerged in the shear layer. The
inset shows one such signal at an arbitrary 𝑧 location.

instability to have had space to develop sufficiently. The inset of Fig. 4
shows the instantaneous streamwise velocity signal of a point probe
𝑢SL(𝑡) = 𝑢(1, 0.8, 𝑧; 𝑡) at some arbitrary spanwise location 𝑧. The low-
amplitude low-frequency fluctuations are related to shear layer flapping
due to the formation of Kármán vortices in the wake. The occasional
high-amplitude peaks have a higher frequency associated, that can be
traced to a shear layer instability that is not sustained permanently.
The spanwise-averaged streamwise velocity spectrum |�̂�SL| in Fig. 4
helps identify the underlying frequencies of the wake. The clear sharp
peak at 𝑓vK = 0.212 and its harmonic 2𝑓vK are the result of a regu-
lar vortex-shedding process in the wake. A broadband energy spread
around 𝑓KH = 0.666, resulting from the intermittent high-amplitude
high-frequency fluctuation bursts, might be ascribed to an inherent
Kelvin–Helmholtz instability of the shear layer. This value is in re-
markably good agreement with experimental measurements by Prasad
and Williamson [17], which displayed a similar space–time dependence
that was already acknowledged by Sarwar and Mellibovsky [22].

A close look into the shear layers provides some insight into the
origin and nature of velocity fluctuations. Fig. 5 depicts colour maps
of fluctuation kinetic energy and normal Reynolds stress fields in the
near-wake region. The contour levels are evenly distributed in loga-
rithmic scale so as to expose any linear mechanism that may govern
the amplification of fluctuations within the shear layer. Fluctuation
kinetic energy 𝑘 = (⟨𝑢′𝑢′⟩ + ⟨𝑣′𝑣′⟩ + ⟨𝑤′𝑤′

⟩)∕2 (Fig. 5a) increases
fast along the narrow strip that delimits the average shear layer (see
red dashed line) whence it diffuses into the recirculation region of
the wake. The growth is essentially led by the normal streamwise
component ⟨𝑢′𝑢′⟩ of the Reynolds stress tensor (Fig. 5b), with the
spanwise component ⟨𝑤′𝑤′

⟩ (Fig. 5d) trailing behind. The cross-stream
component ⟨𝑣′𝑣′⟩ (Fig. 5c) remains instead very low over a long portion
of the shear layer, while turbulent mixing amplifies it considerably
within the recirculation bubble to values comparable to the other two
components. The evolution of all four quantities along the mean shear
layer centreline (red dashed line), defined as the loci of points with
the highest mean transverse shear, are shown in Fig. 6. The fluctuation
kinetic energy 𝑘 grows subexponentially along the shear layer and is
clearly dominated by the streamwise normal Reynolds stress ⟨𝑢′𝑢′⟩. The
cross-stream component ⟨𝑣′𝑣′⟩, which together with ⟨𝑢′𝑢′⟩ inevitably
contains the fluctuations induced by two-dimensional vortex shedding,
starts over one order of magnitude below at the root of the shear
layer and, despite growing exponentially, remains always smaller in
magnitude. The spanwise component ⟨𝑤′𝑤′

⟩, which is instead purely a
product of three-dimensionalisation, starts as low as ⟨𝑣′𝑣′⟩, but grows
exponentially at a much faster rate before saturation occurs. It is
unclear whether the exponential growths of ⟨𝑣′𝑣′⟩ or ⟨𝑤′𝑤′

⟩ could
follow from a linear instability of the mean shear layer, particularly so
when the fastest growing component cannot be interpreted in the light
of a Kelvin–Helmholtz instability, which would be two-dimensional in
nature.
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𝜔

Fig. 5. Shear layer and near wake velocity fluctuation statistics. (a) Fluctuation kinetic
energy 𝑘 = (⟨𝑢′𝑢′⟩+ ⟨𝑣′𝑣′⟩+ ⟨𝑤′𝑤′

⟩)∕2. (b) Streamwise ⟨𝑢′𝑢′⟩, (c) cross-stream ⟨𝑣′𝑣′⟩ and
(d) spanwise ⟨𝑤′𝑤′

⟩ normal Reynolds stress components. Eight colour levels have been
evenly distributed in the logarithmic range [5 × 10−5 , 0.5] in factors of

√

10. The red
dashed line indicates the core of the shear layer. The peak location for each field is
marked with a blue plus sign.

Fig. 6. Normal Reynolds stresses (⟨𝑢′𝑢′⟩, ⟨𝑣′𝑣′⟩, ⟨𝑤′𝑤′
⟩) and fluctuation kinetic energy

(𝑘) evolution along the shear layer (see red dashed line of Fig. 5).

4. Results and discussion

Flow visualisation has been routinely used in experimental studies
to estimate the typical spanwise size of large-scale three-dimensional
coherent structures in the cylinder wake [40]. A more systematic
analysis might however be carried out employing mathematically rigor-
ous methods such as autocorrelation [20], Fourier, Hilbert–Huang [7]
or wavelet transforms, spectrogram, etc. Each one of these methods,
when applied to a spanwise dependent signal, is capable of capturing
different three-dimensional aspects of the flow patterns present in
the cylinder wake. Autocorrelation and Fourier transform are usually
favoured due to their simplicity, and constitute an ideal choice when-
ever the three-dimensional flow structures are regularly distributed
along the span. Both methods act globally, and as such are better suited
for flow structures that result from global pattern-forming instabilities
and pervade the full span of the wake. The Hilbert, Huang–Hilbert
and wavelet transforms capture instead local features of the signal,
and are therefore more appropriate in detecting and characterising
structures that exhibit localisation in the spanwise coordinate. It is
6

Fig. 7. Sketch of the two different spanwise length scales that are targeted by global
(vortex spacing 𝑙1𝑧) and local (vortex size 𝜆𝑧) approaches, respectively. The blue line
represents the spanwise dependence of some perturbation signal under scrutiny.

therefore to be expected that while global methods provide a mea-
surement of the typical spanwise spacing of three-dimensional vortical
structures, local methods yield estimates for their characteristic span-
wise size instead. The sketch of Fig. 7 represents schematically the
difference between the two length scales. They necessarily coincide
at the three-dimensionalising instability, where the bifurcated solution
is just a modal perturbation of the underlying two-dimensional flow
(the perturbation field is perfectly sinusoidal in the spanwise direc-
tion at the critical Reynolds number), but as the solution develops
nonlinearly, vortices tend to concentrate and perhaps even localise
while their spacing (related to the number per unit span that can be
packed comfortably together) may evolve otherwise. In experiments
or time-stepping numerical simulations, the two length scales may be
different from outset whenever the three-dimensionalising bifurcation
is subcritical, as is the case of mode A for the circular cylinder.

In the cylinder wake at 𝑅𝑒 = 1500, three-dimensional vortical
structures are typically organised in a pseudo-periodic spanwise array,
but the irregularity of the pattern is sufficient to claim that local
effects are also at play. Isolated vortical structures seldom occur, as
is also the case at higher 𝑅𝑒 = 2000 [22], but the spacing between
concurrent streamwise vortices is often large enough for them to decor-
relate to some extent. Here we employ autocorrelation and the Hilbert
transform, as representing global and local approaches, respectively, to
independently analyse the typical spanwise spacing and characteristic
spanwise size of streamwise vortices appearing in the cylinder wake
in the transitional regime at 𝑅𝑒 = 1500, in an attempt to clarify to
what degree these two length scales have become independent from
one another.

The signal we use to analyse the presence of streamwise-cross-
stream vortical structures in the wake is the spanwise gradient of
streamwise velocity �̃�𝑦(𝑧; 𝑡) ≡ 𝜕𝑧𝑢(3, 0.5, 𝑧; 𝑡), which provides an indirect
measurement of cross-stream vorticity. The sampling location lies just
downstream of the recirculation region, where three-dimensionality is
dominant between the braids connecting consecutive Kármán vortices,
and at a cross-stream height conveniently aligned with the mean shear
layer issued from the top of the cylinder, such that the passage of top
Kármán vortices can be readily detected [20,22]. Following Sarwar and
Mellibovsky [22], the local spanwise size of the vortical structures is
accordingly measured by computing the corresponding analytic signal

̃ 𝑎𝑦 = �̃�𝑦 + i(�̃�𝑦) = 𝐴𝜔ei𝜑𝜔 (3)

where  denotes the Hilbert transform, and 𝐴𝜔(𝑧; 𝑡) and 𝜑𝜔(𝑧; 𝑡) ≡
arg (�̃�𝑎

𝑦) are the amplitude and phase, respectively. The latter provides a
definition for the local spanwise size of the vortical structures following

2𝜋
𝜆𝑧(𝑧, 𝑡)

=
𝑑𝜑𝜔
𝑑𝑧

, (4)

while the former informs of its local intensity.
The probability density function (PDF) of 𝜆𝑧 is assessed via nor-

mal/Gaussian kernel density estimation (KDE) with bandwidth 𝑤 =
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Fig. 8. Time evolution of (a) the probability density function of the local spanwise size PDF(𝜆𝑧 , 𝑡) duly weighed by instantaneous local amplitude 𝐴𝜔, and (b) the autocorrelation
function 𝑅𝑢′𝑢′ (𝑙𝑧 , 𝑡). The 𝐶𝐿 signal used in defining an instantaneous phase has been superimposed to panel (a). The panels to the right correspond to details and 8 equispaced
instantaneous phases along a vortex-shedding cycle are indicated with vertical dashed lines and labelled 𝜃𝑖 = 𝑖𝜋∕2, 𝑖 ∈ {0, 1, 2, 3,…7}.
0.02, and used to identify the typical spanwise size 𝜆𝑧 of vortical struc-
tures along the probe-array. Fig. 8a represents the time evolution of 𝐴𝜔-
weighed contours of PDF(𝜆𝑧(𝑧, 𝑡)). The dark regions denote the presence
of strong three-dimensional spanwise structures of the corresponding
typical size, while white indicates absence of streamwise-cross-stream
vortical activity. The synchronous recurrent pattern of dark spots re-
veals that three-dimensionality chiefly occurs at certain phases of the
vortex-shedding process, and that, when present, spanwise vortical
structures have a preferred characteristic size that is rather small at
𝜆𝑧 ≃ 0.33. Also drawn in Fig. 8a is the 𝐶𝐿 signal, which provides
timely information on the vortex-shedding cycle. The 𝐶𝐿 time series
can also be used in defining an instantaneous phase. This has been
done by using again the Hilbert transform to produce an analytic signal
𝐶𝑎
𝐿 = 𝐶𝐿 + i(𝐶𝐿) whose phase is readily obtained as 𝜃 ≡ arg (𝐶𝑎

𝐿).
The panel to the right shows a detail covering just over a full vortex-

shedding cycle. Eight equispaced phases have been indicated with
vertical dashed lines and labelled 𝜃𝑖 = 𝑖𝜋∕4, 𝑖 ∈ {0, 1, 2,… , 7}. Note that
these equispaced phases, univocally defined via de Hilbert transform of
the 𝐶𝐿 signal, may not correspond to equal time intervals, as the phase
and time parametrisations may locally stretch or shrink with respect to
each other along any particular vortex shedding cycle. At 𝜃0, the probe-
array does not register any indication of three-dimensionality, which
gradually builds up through 𝜃1 and 𝜃2 and peaks at 𝜃3. Afterwards
streamwise-cross-stream vortical structures fade fast and are rather
weak in the interval between 𝜃4 and 𝜃5, whence three-dimensionality
reactivates anew and reaches a second peak, higher than the previous
one, at about 𝜃6. Past this peak, spanwise structure decays altogether
and the flow becomes predominantly two-dimensional beyond 𝜃7 and
𝜃8 = 𝜃0.

The spanwise modulation component of the streamwise velocity sig-
nal 𝑢′(𝑧, 𝑡) ≡ 𝑢(𝑧, 𝑡) − ⟨𝑢(𝑧, 𝑡)⟩𝑧 has been used to detect spanwise patterns
via non-normalised autocorrelation, which is defined and estimated as

𝑅𝑢′𝑢′ (𝑙𝑧, 𝑡) = 1
𝐿𝑧 ∫

𝐿𝑧

0
𝑢′(𝑧, 𝑡)𝑢′(𝑧 − 𝑙𝑧, 𝑡) 𝑑𝑧 ≃

≃ 1
𝑁

𝑁−1
∑

𝑖=0
𝑢′(𝑧𝑖, 𝑡)𝑢′(𝑧𝑖 − 𝑙𝑧, 𝑡).

(5)

Here, the 𝐿𝑧 periodicity is duly exploited and the discrete autocorrela-
tion function evaluated at a discrete set of shift values 𝑙𝑧𝑗 = 𝑗 𝐿𝑧∕𝑁 , 𝑗 ∈
{0, 1,… , 𝑁 − 1}, 𝑁 = 128, from point measurements at 𝑁 equispaced
discrete locations 𝑧𝑖 = 𝑖 𝐿𝑧∕𝑁 , 𝑖 ∈ {0, 1,… , 𝑁 − 1} along the probe
array. Autocorrelation is periodic and recovers unity value for all 𝑙 that
7

𝑧

are integer multiples of 𝐿𝑧. Large positive and negative values at 𝑙𝑧 ∈
(0, 𝐿𝑧∕2) unveil an underlying pattern. Fig. 8b shows the time-evolution
of the autocorrelation function. Light (dark) regions correspond to
high positive (negative) autocorrelation. The clear alternate layout of
light and dark regions at some phases along the vortex-shedding cycle
(see detail) indicate that the pattern is predominantly periodic. This
is consistent with vortical structures arising from a global, rather than
local, instability. Spanwise localisation of the pattern would translate
into an oscillating but decaying autocorrelation function, with vortical
structures gradually decorrelating from one another as the distance sep-
arating them grows larger. We use the first peak 𝑙1𝑧 away from the origin
as an indication of high correlation between adjacent streamwise-cross-
stream vortices, such that it provides an indirect measurement of the
preferred spanwise separation between contiguous vortical structures.

In order to trace signal-processing results back to physical flow
structures, Fig. 9 depicts streamwise vorticity (𝜔𝑥) colour maps on a
spanwise-cross-stream cross-section located in the wake at the same
streamwise location as the sampling probe array (𝑥 = 3, indicated with
a white line).

Spanwise-averaged contours of spanwise vorticity (⟨𝜔𝑧⟩𝑧) are also
shown to relate the observation of streamwise-cross-stream vortices to
the precise location along the Kármán vortex street (the white cross
pinpoints the exact position of the probe array). Shown are eight
snapshots at equispaced phases 𝜃𝑖, 𝑖 ∈ 0, 1,… , 7, duly marked and
labelled in Fig. 9.

The probe array is well above the wake centre line, at the height
of the top separation point on the cylinder surface, and a distance
downstream such that three-dimensionality has fully developed in the
braids connecting two consecutive opposite-sign Kármán vortices. At
𝜃0, the leading edge of the last Kármán vortex shed from the top
side of the cylinder is still upstream from the sampling probe line,
while the previous vortex has long left its location. No streamwise
cross-stream vortices are detected by the probe and the 𝜔𝑥 imprints
crossing the plane below it are related to the passage of the braid
that connects consecutive Kármán vortices issued from the lower side.
Nothing much has changed at 𝜃1 and 𝜃2, except that the leading edge
of the top Kármán vortex is just reaching the probe location. Still,
no traces of streamwise-cross-stream vortices are detectable. As the
Kármán vortex core traverses the probe array across phases 𝜃3, 𝜔𝑥
contours indicate for the first time the appearance of three-dimensional
yet diffuse vortical structures traversing the probe array. Slightly later,
as the trailing edge of the Kármán vortex leaves the plane containing
the probe and the bottom side of the top braid starts piercing it for 𝜃 ,
4
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Fig. 9. Colour maps of streamwise vorticity 𝜔𝑥 ∈ [−5, 5] at the 𝑥 = 3 plane (left) and spanwise-averaged spanwise vorticity ⟨𝜔𝑧⟩𝑧 ∈ [−5, 5] (right) at the eight equispaced phases
along the vortex-shedding cycle indicated in Fig. 8. The white solid line and bullet at (𝑥, 𝑦) = (3, 0.5) indicate the sampling probe array used for systematic signal processing.
the streamwise-cross-stream vortices become better defined and occupy
a narrower band across the braid thickness that does not extend much
beyond its breadth. This narrow pattern of three-dimensional vortical
structures is preserved as the bulk of the braid traverses the plane
for 𝜃5 and until at about 𝜃6. At 𝜃6 it is the upper side of the braid
that is finally crossing the probe location and, although still clear, the
streamwise-cross-stream vortices are accompanied by a thicker pattern
that includes three-dimensionality present in the bottom Kármán vor-
tex, which is now traversing the plane. Although not clear from the
particular cycle depicted here, we will see that it is precisely at this
instant that the PDF(𝜆𝑧) usually peaks in Fig. 8a, thus indicating that
three-dimensionality is strongest on the external side of the braids,
rather than within their thickness. Finally, at 𝜃7, the braid is leaving
the line probe location and only some remnants of three-dimensionality
are still conspicuous. Vortical patterns 𝛥𝜃 = 𝜋 apart are statistically
related by a mirror symmetry with respect to the plane 𝑦 = 0, and
although this does not hold exactly for instantaneous snapshots distant
by half a period, the main characteristics of the symmetry are clearly
recognisable.

For a systematic analysis of the two spanwise length scales consid-
ered, namely structure size 𝜆𝑧 and structure spacing 𝑙1𝑧, phase averaging
has been performed over the whole computational run. To do so, instan-
taneous samples have been classified as belonging to either one of eight
equally-sized phase bins 𝛥𝜃𝑖 ∈ [𝜃𝑖 −𝜋∕8, 𝜃𝑖 +𝜋∕8] (𝑖 ∈ {0, 1, 2,… , 7}). In
the case of spanwise size 𝜆𝑧, the instantaneous PDFs have been phase-
averaged into the eight separate phase-averaged PDFs. Instantaneous
spanwise spacing 𝑙1𝑧 being instead a single-valued function of time,
the eight phased-averaged PDFs have been generated by considering
the sequence of individual time samples as independent occurrences of
a normally distributed random variable. In producing the PDFs, each
sample has been weighed by the valley-to-peak height difference 𝐴𝑅 =
𝑅𝑢′𝑢′ (𝑙1𝑧 , 𝑡) − 𝑅𝑢′𝑢′ (𝑙0.5𝑧 , 𝑡), with 𝑙0.5𝑧 denoting the first valley preceding
the first peak in the autocorrelation function. Weighing in this way
promotes the relevance of highly correlated patterns in identifying the
spanwise spacing of streaks.

Fig. 10a shows the phase-averaged probability density function
PDF(𝜆𝑧) of spanwise size of three-dimensional vortical structures. The
PDF grows and drops along the cycle on account of the presence or
absence, at the sampling location, of passing vortical structures during
each particular phase, but their typical size persists at around 𝜆𝑧 ≃
0.33±0.01 all along. The spanwise size of streamwise vortical structures,
as measured at the same location using the same methodology, was es-
timated at 0.234 (ranging from 0.204 to 0.280 at different phases along
8

the vortex shedding cycle) at the slightly higher 𝑅𝑒 = 2000 [22], thus
evincing a declining trend of 𝜆𝑧 with 𝑅𝑒. This seems to contradict Gsell
et al. [7], who obtained a larger value around 0.58 at 𝑅𝑒 = 3900.
Although the same method was used at the same streamwise-cross-
stream location, the signal picked for the Hilbert transform was the
fluctuation component of the actual cross-stream vorticity 𝜔′

𝑦 and the
typical size of vortical structures assessed from conditional averaging
over just four vortex-shedding cycles of only the 10% most frequent
local wavelengths.

Analysing instead the phase-averaged probability density function
PDF(𝑙1𝑧) for the various phase bins considered (Fig. 10b) alongside the
overall weighed time average (solid black line), yields conspicuously
higher length scale values. The PDF peak is less stable along the full
cycle and the probability peak oscillates to some degree around 𝑙1𝑧 ≃
0.51 for the different phases. The mean spanwise spacing is in very good
agreement with the value predicted for 𝑅𝑒 = 1500 by the empirical
scaling law of Mansy et al. [20].

The discrepancy between 𝑙1𝑧 and 𝜆𝑧 at this value of 𝑅𝑒 = 1500,
for which the three-dimensional pattern retains a considerable degree
of spanwise periodicity, may be ascribed to nonlinearity. The vortical
structures would then arise from a global, pattern-forming instability
of wavelength 𝑙1𝑧, but the individual nonlinear vortices have already
developed a propensity to concentrate in a spanwise extent 𝜆𝑧 < 𝑙1𝑧.
This inclination becomes all the more dominant at higher flow regimes,
as illustrated by Sarwar and Mellibovsky [22] at 𝑅𝑒 = 2000.

Lehmkuhl et al. [34] reported a very low frequency fluctuation of
the vortex-formation region past a cylinder at 𝑅𝑒 = 3900 between
what they called the low and high energy modes, each with distinct
near-wake flow statistics and ensuing characteristic aerodynamic per-
formance indicators. Although our time integration horizon is not long
enough for this low frequency to show indistinctly in the power spec-
trum of aerodynamic force coefficients or point probe signals, Fig. 11a
shows what might be interpreted as traces of such fluctuation in the
drag coefficient signal 𝐶𝐷 at 𝑅𝑒 = 1500. A slow oscillation about a mean
value is readily observed from the smoothing of the instantaneous time
series (black line) by a running average using a window of five vortex-
shedding cycles (red). The amplitude of the 𝐶𝐷 fluctuation is consistent
with that reported by Lehmkuhl et al. [34], but the frequency would
appear to be somewhat higher, perhaps on account of the different 𝑅𝑒
studied. We have recomputed the PDFs of Fig. 10 but applying this
time conditional averaging subject to whether 𝐶𝐷 is above or below
its mean long-term value (horizontal dashed line) in order to assess the
dependence of the two spanwise length scales studied on the low or
high energy state of the wake. It turns out that the distributions are

essentially independent, within statistical accuracy, of the wake mode
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Fig. 10. Weighed time-averaged (solid line) and phase-averaged (see legend) prob-
ability density distributions of (a) spanwise size 𝜆𝑧 and (b) spanwise spacing 𝑙1𝑧 of
three-dimensional vortical structures traversing the probe array. Phase averaging is
done at phases 𝜃𝑖 = 𝑖 ∗ 𝜋∕4 using bins 𝛥𝜃𝑖 ∈ [𝜃𝑖 − 𝜋∕8, 𝜃𝑖 + 𝜋∕8] (𝑖 ∈ {0, 1, 2,… , 7}). The
areas below each one of the curves corresponds to the mean value of the weighing
factor, i.e. 𝐴𝜔 and 𝐴𝑅 for 𝜆𝑧 and 𝑙1𝑧 , respectively.

considered. This is clear from the conditional PDFs of 𝜆𝑧 and 𝑙1𝑧 depicted
in Fig. 11b. Only time averages are shown, but their phase-averaged
counterparts reflect essentially the same independence of both length
scales on the prevailing wake state. The peaks are slightly, although
not significantly, higher for the low-drag state as compared to the high-
drag state, but their precise location is indistinguishable. If anything,
the somewhat different areas enclosed below the curves would indicate
that streamwise vortices are marginally stronger and better defined, at
the location tested, for the low-drag mode.

The two length scales considered have so far been measured at a
unique streamwise-cross-stream location, namely (𝑥, 𝑦) = (3, 0.5). In
order to gauge how 𝑙1𝑧 and 𝜆𝑧 measurements depend on the location
of the probe array, Fig. 12 depicts the evolution of both spanwise
length scales along the wake at off-centreline cross-stream locations
𝑦 = 0.5 and 𝑦 = 1.0 together with published experimental [20] and
numerical [7] results. Vortex spacing 𝑙1𝑧 (blue circles and dashed line)
is barely mensurable at 𝑦 = 1.0 for 𝑥 < 5, as the wake hardly affects
this flow location (see Fig. 9), but follows thereafter a trend barely
distinguishable from that observed at 𝑦 = 0.5 (blue circles and solid
line). At this cross-stream distance, the spacing of vortices slightly
decreases, on average, up to 𝑥 ≃ 2 and then initiates a gradual increase
that saturates at 𝑙1𝑧 ≃ 0.75 beyond about 𝑥 ≳ 10. The spacing that
might be measured at any particular time, however, is subject to wild
fluctuations, as indicated by the spread of the PDF at half the peak
height (error-bars). The asymptotically increasing trend we observe for
𝑙1𝑧 and the match between sweeps at 𝑦 = 0.5 and 1 is consistent with
experimental observations at 𝑅𝑒 = 600 [20] (squares), but the curves
are offset to lower values in our case. Vortex size 𝜆𝑧 (red circles and
dashed line) is again hardly significant at 𝑦 = 1 for 𝑥 < 3, while clearly
9

Fig. 11. (a) Low frequency fluctuation of the instantaneous drag coefficient (𝐶𝐷) signal
(black line), as shown by a running average (red) with window of five vertex-shedding
cycles. The horizontal black dashed line indicates the signal average. (b) Weighed time-
averaged probability density distributions of spanwise size 𝜆𝑧 (black) and spanwise
spacing 𝑙1𝑧 (blue) for the full (solid), and high (dashed) and low (dotted) drag states.

matching, on average, the typical vortex size at 𝑦 = 0.5 for 𝑥 ≥ 3 (red
circles and solid line). The typical size of vortex pairs, which starts close
to the cylinder with 𝜆𝑧 ≃ 0.35 is fairly constant along the wake, with
a slight increasing trend that may be related to viscous diffusion and
stabilises at about 0.44 in the mid to far wake. Numerical results for 𝜆𝑧
at 𝑅𝑒 = 3900 [7] (diamonds) show somewhat larger vortex sizes. The
discrepancy might be ascribed to a different definition of vortex size.
Overall trends, however, are similar to those found here, particularly
so in the aft portion of the wake formation region and beyond.

A third and last way of exploiting the �̃�𝑦 signal systematically to
provide a spanwise characterisation of the wake is afforded by its use
in counting the number of vortices that are distinctly identifiable at
each given instant. A cutoff threshold |�̃�𝑦| > 3 has been defined to
detect individual passing vortices at any given time and the vortex
count established as the number of occasions in which the threshold is
exceeded continuously for a spanwise extent of at least 0.1. The number
of vortex pairs 𝑁𝑣𝑝 is then taken as half the number of single vortices
detected. The frequency of vortex-pair count occurrences is plotted as
a normalised histogram in Fig. 13. Instantaneous samples have been
weighed by their degree of three-dimensionality as measured by the
autocorrelation function for zero spanwise shift 𝑅𝑢′𝑢′ (0, 𝑡). The height
of each column thus indicates the weighed fraction of the time that
𝑁𝑣𝑝 vortex pairs are observed along the 𝐿𝑧 = 1.5𝜋 spanwise extent of
the probe array at (𝑥, 𝑦) = (3, 0.5). The most frequent vortex-pair count
is clearly 𝑁𝑣𝑝 = 7, which is observed for about 18% of the time. In a
domain of spanwise size 𝐿𝑧 = 1.5𝜋, a spanwise spacing 𝑙1𝑧 = 0.70, as
obtained by signal autocorrelation, yields a typical number of vortex
pairs 𝑁 ′

𝑣𝑝 = 𝐿𝑧∕𝑙𝑧 = 6.7, in fairly good agreement with the value
obtained via direct counting of vortical structures. The sharp decay
of the tail for large 𝑁𝑣𝑝 gauges the minimum wavelength into which
the periodic pattern may be naturally squeezed and still persist as an
eligible instability. At the other end, the substantial decrease in the
frequency of occurrence of low 𝑁𝑣𝑝 constitutes a good indicator that
the periodic extent of the domain is acceptable. A peak at too low 𝑁 ,
𝑣𝑝
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Fig. 12. Typical spanwise spacing (𝑙1𝑧 , blue) and spanwise size (𝜆𝑧, red) of streamwise vortical structures at off-centerline cross-stream locations 𝑦 = 0.5 (solid) and 𝑦 = 1.0 (dashed)
along the wake. Shown are our numerical results (circles, with error bars denoting the range for which the probability remains above half the peak probability) along with
numerical results by Gsell et al. [7] at 𝑅𝑒 = 3900 (diamonds) and experimental results by Mansy et al. [20] at 𝑅𝑒 = 600 (squares).
Fig. 13. Normalised and weighed frequency of observation of 𝑁𝑣𝑝 vortex pairs along the 𝐿𝑧 = 1.5𝜋 spanwise probe array at (𝑥, 𝑦) = (3, 0.5). The threshold for individual vortex
etection is |�̃�𝑦| ≥ 3. Samples are weighed by the degree of three-dimensionality as given by 𝑅𝑢′𝑢′ (0, 𝑡).
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s was observed by Sarwar and Mellibovsky [22] with a domain 𝐿𝑧 = 2
t 𝑅𝑒 = 2000, would have denoted insufficient (or barely sufficient)
omputational spanwise domain size, as the admissible periodic pat-
erns would have been constrained to a very small subset of discrete
avelengths, not properly covering the actual spectrum of unstable

hree-dimensional modes. A certain frequency of observation of low
𝑣𝑝 naturally remains following partial vortex counts that arise when-

ver the streamwise-cross-stream vortices, which are mainly located
long the braids connecting consecutive Kármán vortices, approach or
epart from the location where the sampling probe array is located.
t these particular periods, the streamwise and cross-stream inhomo-
eneities in the spanwise distribution of vortical structures introduces
nd removes these latter into and from the measurement location in
uccession over a short period of time rather than simultaneously and
nstantly.

. Conclusions

The transitional flow past a circular cylinder at 𝑅𝑒 = 1500 has
een comprehensively investigated. The spanwise periodic size of the
omputational domain has been taken sufficiently large at 𝐿𝑧 = 1.5𝜋
o minimise finite-domain effects, and the spanwise length scale of
hree-dimensional vortical flow structures arising in the wake analysed
tatistically.

A local approach, based on the Hilbert transform of velocity read-
ngs along a spanwise probe array, measures a typical spanwise length
cale 𝜆𝑧 ≃ 0.33 that we relate to flow structures size. The overall
hree-dimensionality appears and disappears from the probe location
s Kármán vortices and trailing braids cross the plane containing the
robe array, but the cross-stream-streamwise vortical structures pre-
erve about the same spanwise size all along the vortex-shedding cycle.
ortices are seen to be strongest along the outer side of the braids
onnecting consecutive Kármán vortices.
10

b

A second length scale is provided by a global approach based on
he spanwise autocorrelation of streamwise streaks measured along
he same probe array. The first autocorrelation peak is distributed
round 𝑙1𝑧 ≃ 0.70 and measures instead the typical spanwise spacing
f three-dimensional vortices. The discrepancy between the two length
cales can be ascribed to their measuring different aspects of three-
imensionality. They are expected to coincide at the inception of
hree-dimensional flow in a spanwise-invariance bifurcation on account
f the spanwise dependence being modal (no harmonics in the linear
egime) and the local wavelength therefore constant, independent of
he location along the span and equal to the instability wavelength. As
he Reynolds number is increased beyond the instability, non-linearity
ends to concentrate the vortices into a smaller radius while preserving
heir typical spacing. Vortex pairs have been counted systematically
nd their number found to distribute around about 𝑁𝑣𝑝 = 7. This typical
ortex-pair count is in fair agreement with the typical spacing measured
hrough autocorrelation, as 𝑙1𝑧 ≃ 𝐿𝑧∕𝑁𝑣𝑝.

The results presented here at 𝑅𝑒 = 1500 may be compared with
hose reported in Sarwar and Mellibovsky [22] at 𝑅𝑒 = 2000, both using
he same statistical estimators, to roughly assess the Reynolds number
ependence of the two length scales. Comparison seems to point at a
ecline of streamwise vortex size 𝜆𝑧, and an increase of their typical
pacing, but the uncertainty in the estimation of this latter at 𝑅𝑒 = 2000,
ainly due to insufficient spanwise extent of the domain, makes it very
ifficult to draw conclusions. An extensive analysis at varying Reynolds
umber across the transitional regime will be required to clarify how
he two length scales evolve.

Finally, it might be worth exploring in the future how the length
cales of streamwise vortical structures compare in wakes past bluff
odies other than circular cylinders or in the presence of upstream
hear or both [41,42], for which the first three-dimensionalising insta-
ility is not the usual mode A.
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