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AbstractmAn initially uniform longshore current on a plane erodible beach is considered and a 
linear stability analysis of the bed-flow system is performed in order to investigate the growth of 
alongshore periodic topographic features such as transverse or oblique bars. A numerical model 
based on the shallow water equations and a simple sediment transport formula is used. For a wide 
range of parameters instability is found, leading to the growth of large-scale topographic features 
(lengthscale of the order of the current width) downflow progressing. The growth rates and the 
dominant unstable mode depend mainly on R = cdl fl parameter, where c d is the bottom friction 
coefficient and fl is the beach slope. For a small R, say less than 0.1, instability is very weak, 
probably negligible. For R between 0.1 and 0.7 instability increases with R, leading typically to a 
quite simple transverse bars pattern. A further increase in R produces a far more complicated 
behaviour where complex patterns with downcurrent oriented oblique bars, bumps and holes can 
be dominant. In this region growth rates may either decrease or increase with R depending on the 
beach slope and the maximum Froude number of the basic flow, F. Usually, the most complex 
behaviour is found for gently sloping beaches. The physical mechanism of the instability is found to 
lie on the disturbances of potential vorticity caused by topographically induced differences in 
bottom friction. In this sense it is similar to the alternate bars growth in a river rather than the dunes 
or antidunes occurrence for 1D channel flow. The predictions of the model compare well with the 
available experimental data. The alongshore wavelength, 2, typically of the order of one to four 
times the width of the current, is close to four times for the most common values of R. The typical 
growth time is proportional to it 2 and for a wavelength of 100 m can be of the order of one day, 
depending on the sediment transport rate. The migrational speed is inversely proportional to 2, in 
accordance to earlier field data reported by Sonu [(1969) Collective movement of sediment in 
littoral environment. Proceedings of the llth International Conference on Coastal Engineering, 
A.S.C.E., New York.]. Copyright (~ 1996 Elsevier Science Ltd 

1. INTRODUCTION 

Coastal morphodynamics lies on a number of complex multi-scale nonlinear processes 
which involve waves, currents and sediment transport in interaction with the changing 
topography. Even when the vertical structure of the flow is ignored and the short wave 
input is parameterized by using depth and wave period averaged equations a highly 
complex dynamical behaviour still remains on the lengthscale of the surf zone width and 
the timescale of infragravity motions [0(50 s)] or larger. In the most idealized situation, 
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i.e. waves incoming on a long, straight beach with alongshore uniformity, simple 
equilibrium solutions of the governing equations exist. When waves approach the shore 
normally, a setup/setdown of the mean water level without mean motion provides this 
equilibrium. For obliquely incident waves a longshore current with alongshore uniformity 
also results to achieve equilibrium. This simple equilibrium between wave forcing, 
pressure gradients and frictional forces is widely used by coastal scientists and engineers to 
predict currents, sediment transport and thereby shore evolution. However, these simple 
steady and alongshore uniform solutions very often break down into complex patterns 
with more or less alongshore regularity. These patterns may exist in the water motions 
within the surf/shoaling zone as horizontal circulation cells or eddies, rip currents, 
meandering in the longshore current, progressing or standing edge waves, etc. However, 
they can also exist, sometimes in a striking way, in the shoreline morphology and in the surf 
zone topography as beach cusps, transverse/oblique bars, crescentic longshore bars, ridge 
and runnel systems, etc. These morphological features, usually known in a broad sense as 
rhythmic topography, should obviously be coupled with correlated hydrodynamic pat- 
terns, especially at the moment of their formation. The contrary is not so evident, as many 
time dependent flow patterns may not have a counterpart in the topography. 

Many different physical mechanisms have been proposed to explain this complicated 
hydrodynamic and morphodynamic behaviour. One possibility is the existence of slow 
temporal or spatial modulations in the external forcing. Bowen (1969) showed how a small 
longshore periodic variation in the incoming wave amplitude can induce rip currents and 
horizontal eddies. These alongshore variations can be provided by intersecting wave trains 
(Dalrymple, 1975) or by standing edge waves (Bowen and Inman, 1969). In both cases the 
residual circulation can generate morphological features like beach cusps and crescentic 
longshore bars (Dalrymple and Lanan, 1976; Bowen and Inman, 1971). Following this 
course of thinking, the interaction of two edge wave modes of the same frequency but 
different wavelength may also give rise to rhythmic topography in some cases highly 
reminiscent of observed oblique bar systems (Holman and Bowen, 1982). But the question 
arises of whether edge waves are actually present in the surf zone and how they can be 
generated. Some researchers have shown that infragravity edge waves can be excited by a 
temporal modulation of the incoming wave groups (Sch~iffer, 1994). Moreover, field 
observations of the occurrence of edge waves and of their link to beach morphology has 
already been well documented (see, for instance, Bowen and Huntley, 1984; Wright et  a l . ,  

1986; Bauer and Greenwood, 1990). 
On the other hand, nearshore large scale complex dynamics have been observed even in 

the absence of any modulation in the external forcing. Thereby, much research has 
focused on mechanisms based on the inherent behaviour of the coastal dynamical system 
through free instabilities of the basic steady equilibrium. These instability mechanisms 
may be either purely hydrodynamic--that is, those that can take place even on a non- 
erodible bottom---or morphodynamic, those essentially based on sediment transport 
through a positive feedback between bed perturbations and flow perturbations. The edge 
wave excitation by wave-wave interaction in the nearshore is one example of the former 
type (Guza and Bowen, 1975). It provides an explanation for edge wave generation 
without any inhomogeneity in the external forcing that was observed in laboratory beaches 
by Bowen and Inman (1969). Another source of hydrodynamic instability that can yield 
steady equilibrium solutions different from the simplest one is the potential energy stored 
by the setup/setdown (Miller and Barcilon, 1978). A third example is the instability driven 
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by the cross-shore shear in the longshore current which, according to Bowen and 
Holman (1989), gives an explanation for the so-called "shear or vorticity waves" first 
observed by Oltman-Shay et al. (1989). Shear waves are large-scale [O(100 m)] eddies 
which progress downcurrent and produce a meandering in the longshore current with 
periods [O(100 s)] much longer than the possible gravity modes of the same wavelength. 
They have been extensively investigated in the last few years (see, for instance, Falquts 
and Iranzo, 1994) and have recently been generated in a laboratory beach by Reniers et 

al. (submitted). 
Any of the above-mentioned hydrodynamic processes can generate sedimentary pat- 

terns in the nearshore. However, this can also be accomplished by specifically morphody- 
namic instability mechanisms. As early as 1969, Sonu hypothesized that the "interaction 
between longshore currents and an erodible bed" was a driving mechanism for cusp-type 
sand waves in a similar way to dune growth in the bed of a river. We will refer to this 
mechanism as "bed-flow instability". But when applied specifically to the surf zone this 
mechanism is usually linked to other processes directly related to the incoming wave field. 
As soon as a bed perturbation develops, a perturbation in the wave field and thereby a 
perturbation in the radiation stress result, which modifies the circulation pattern. If again a 
positive feedback between bedform growth and flow disturbance occurs, an instability of 
the system will result. The latter mechanism is conceptually different from the former one 
and we will refer to it as "bed-surf instability". A first description of it may be found in 
Niedoroda and Tanner (1970). Bed-flow instability is directly related to the longshore 
current and may act both in river and shore environments, whereas bed-surf instability 
may occur only in the surf zone. For oblique wave incidence both processes will coexist, 
whereas for normal incidence only bed-surf instability is possible. 

Hino (1975) first investigated theoretically the instability driven by an incoming wave 
field on the surf zone bed-fluid system. He considered the shallow water equations for 
mass, momentum and sediment conservation in combination with a simple transport 
formula as governing equations. His model predicts the growth of longshore rhythmic 
patterns linked to horizontal circulation cells and/or meandering in the longshore current. 
The model leads to a dominant wavelength, that is, a fastest growing wavelength, ~ -- 4Xb 
where Xb is the surf zone width. According to Hino, there are two instability sources in his 
model: the "sand wave formation" (i.e. bed-flow instability) and wave setup. Neverthe- 
less, it is obvious from his formulation that the bed-surf mechanism is also present. 
Hydrodynamic instabilities like shear wave or edge wave generations are filtered out by 
the quasi-steady assumption---that is, the flow adjusts instantaneously to a slow varying 
topography. The work of Hino has recently been extended by Christensen et al. (1995), 
who have considered several sand transport models and irregular waves instead of regular 
waves. Their results are partially in contrast with Hino's results. For instance, in the case of 
a sand transport which is proportional to the velocity (as in Hino) no dominant wavelength 
is obtained. For more sophisticated transport models a dominant wavelength ;t = 6Xt, is 
found. The orientation of the growing oblique bars depends strongly on the gradient in the 
longshore current profile and may be upflow skewed. 

Hino's model includes both mechanisms (bed-flow and bed-surf), and it is obvious that 
both will usually operate in natural beaches. In addition, not only these two processes but 
also many others like edge wave generation, shear instabilities or modulation in the 
external forcing may occur simultaneously, some of them prevailing in some beach and 
weather conditions and some of them in others. Therefore, as a preliminary step towards 
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more in-depth study, each mechanism should be investigated in isolation. For oblique 
wave incidence, an alongshore migration of sand waves is very often observed (Sonu, 
1973; Hunter et al., 1979). This suggests that the physical processes involved in bed-flow 
instability are very common. However, the question arises of: (1) whether the bed-flow 
interaction results in a positive feedback leading to the growth of patterns rather than just a 
migration of pre-existing features; and (2) which mechanisms prevail in each real situation 
and what the experimental implications are. The purpose of this paper is to provide a 
theoretical analysis of the bed-flow instability mechanism in isolation so as to address the 
first item. Although a thorough examination of the second item is beyond the scope of the 
present paper, some discussion and comparison with observed rhythmic topography will 
be included. In addition to the above-mentioned reasons, bed-flow instability is worth 
investigating because the strong dependence of bar orientation on the shear in the current 
found by Christensen et al. (1995) suggests that the influence of the longshore current 
alone can be very significant. Furthermore, the low resolution of Hino's numerical model 
and the fact that it is partially subject to discussion recommend such a detailed analysis of 
each "ingredient". 

Even though the bed-flow instability mechanism was already suggested by Sonu (1969), 
it has been paid little attention. Barcilon and Lau (1973) proposed a model for the 
formation of transverse bars on low energy beaches. Their analysis is mainly aimed at 
longshore currents driven by tides, river discharge or wind rather than waves and may be 
considered the first theoretical study of bed-flow instability in the nearshore. They 
considered an erodible plane beach drift by a longshore current without cross-shore 
gradient. Potential flow and a simple sediment transport formula was assumed, and a 
linear stability analysis was performed. The dominant instability mode for the bed-fluid 
system proved to be quite similar to the wavelength of some transverse bar families in 
several low energy beaches. However, an important theoretical drawback was found in 
this approach (Falqu6s, 1991). The model was reconsidered and proved to yield a 
characteristic spacing of the bars related to steady edge waves, i.e. steady flows stemming 
from an upstream edge wave held stationary by the current. This characteristic spacing is 

2 = 2 4  (1) 

where V is the longshore current and/3 the beach slope. The presence of steady edge waves 
was further investigated for longshore currents with cross-shore variation (Falqu~s et al., 
1993), and it was shown that the existence of the characteristic wavelength given by 
equation (1) for the Barcilon and Lau model was due to the fact that the maximum Froude 
number of the basic flow was larger than 1, a condition hardly realistic for natural beaches. 
Therefore, the aim of the present paper is to extend the above-mentioned research by: (1) 
considering a more realistic longshore current profile; (2) introducing bottom friction; (3) 
relaxing the potential flow assumption; and (4) removing the hypothesis of a lag distance 
between flow and sediment transport taken into account by Barcilon and Lau. 

We consider a basic current profile aimed at wave driven flows in the surf zone. 
However, the numerical model could be readily applied to other environmental conditions 
just by selecting a suitable basic current and topography. We use the shallow water 
equations with a quadratic bottom friction and a driving term which may be radiation 
stresses or some other source. A sediment conservation equation is considered in 
combination with a simple transport model based on a sediment flux which is some power 
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of the current. The model is described in Section 2. As a basic undisturbed state we assume 
a plane sloping beach with a rectilinear shoreline and a longshore current which is 
alongshore uniform but with cross-shore shear. Then, a linear stability analysis is 
performed by means of numerical simulation (Section 3). We obtain the dispersion 
relations of the unstable modes and their growth rates as a function of their wavelength. 
Some attention is also paid to the spatial pattern of the growing bedforms. Section 4 is 
devoted to gaining insight into the physical mechanism of the instability. In Section 5 some 
discussion, including comparison with other theoretical models and with observed rhyth- 
mic beach features and rip current systems, is presented. Section 6 ends with a brief 
summary of our conclusions. An appendix on the numerical method is also included. 

2. THE MODEL 

We consider an erodible beach drift by a longshore current. In the basic undisturbed 
state the shoreline is rectilinear and the beach and the flow are assumed to be alongshore 
uniform. As shown in Fig. 1, we use an orthogonal coordinate system with x cross-shore, y 
running alongshore and z vertically upwards. The fluid motions are considered to be 
governed by the shallow water equations (depth averaged momentum equations and mass 
conservation equation) 

+ + gV(zb +  Ivlv (2) 
at ~ + V.(~V) = 0 ¢ (3) 

ot 

where ~,(x, y, t) is th_e~tal depth and z = Zb(x,y,t) is the level of the bottom. In (2) - (3) A 
stands for (0x, 0r), V 9; is the horizontal depth averaged velocity of the fluid, ca is a drag 
coefficient for bottom friction and 9; stands for the forcing terms. These terms may be due 
to radiation stresses or to other energy sources. In the former case, we have 

~ =  1 V - ~  .S. (4) 

These equations are time averaged over a time period longer than the period of wind or 
swell waves. Coriolis terms and lateral momentum diffusion have both been neglected. If 
our model is applied only to the nearshore region, Coriolis terms might be negligible. 
Instead, any extension to a larger scale region should take these terms into account. 
According to the work by Schielen et al. (1993) (hereafter SDS93), which deals with a very 
similar mathematical model but aimed at a fluvial environment, bottom friction is essential 
in order for bed-flow instabilities to develop. For this reason we take bottom friction into 
account, whereas we neglect turbulent eddy viscosity, which seems to play only a 
secondary role. 

Sediment transport is a very complicated matter, especially in the surf zone (see van 
Rijn, 1989, for a review). However, we think that hydrodynamics plays a dominant role in 
such a way that an accurate description of sediment transport is not necessary for an initial 
approach to the morphological instabilities we are dealing with. Furthermore, our aim is to 



1932 A. Falqu6s et al. 

keep our model as simple as possible, in order to give some conceptual insight into the 
basic physical mechanism. Thus, we consider a sediment conservation equation 

0zb + V. ~' = 0 (5) 
0t 

where ~" (x,y,t) stands for the volumetric sediment flux, in combination with a simple 
standard law 

Undisturbed stete 

Y 

Z 7'-': :'( " -- - - - - ~ -  - - ~  
y 

~ - - z = z b = - H ( x )  

Perturbed stote 

/ '  

/ ~ Z=Zb---H(x)+h(x,y,t) 

~(x,y,t)= {'(x)+ r/(x,y,t)-h(x,y,t) 
Fig. 1. Sketch of the flow, bedforms, physical parameters and coordinate system. 
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v ,mI  Vh I 
and ~'= 0 if IvI < Vc. This procedure is very similar to the approach in SDS93, except for 
the inclusion of a threshold velocity, V o  below which there is no transport. Here, rn -> 2 is 
some exponent and v is a proportionality constant which depends on the sediment 
properties. The term 7Ah, where h(x,y , t )  is any perturbation of Zb from its equilibrium 
value, accounts for the tendency of sand to move downhill. This term should in principle be 
written as yA(zb + h) but ~'Azb is balanced in some way (for instance, by the mean inshore 
transport due to waves) so that z = zb is an equilibrium bathymetry. The constant 7 is 
related to the Coulomb friction and typical values are of the order of 1. Some further 
discussion and some references related to this transport model may be found in SDS93. 

Let us now define a basic state from which bedforms will grow due to instability. 
Thus, consider a longshore flow given by: 

= (O,V(x)), ~ = ~(x) (7) 

on a beach given by: 

z b  = -n(x). (8) 

We assume the still water level given by z = 0, so that the wave setup/setdown would be 
given by ~(x) - H (x). In order for the flow given by equation (7) to be a solution of the 
governing equations (2)-(6) we assume 

gd(¢d~ H )  = ~;x, Cav2 = ~;y .  (9) 

Regarding the basic current, a profile 

V(x)  = axe -bx (10) 

has been considered, which is aimed at describing the longshore current due to incoming 
waves with an oblique incidence in the surf zone. A plane beach topography 

H(x )  = fix (11) 

has been assumed. These two simple analytical expressions provide us with insight into the 
basic physical processes avoiding unnecessary complications, but the model can be 
handled with any other profiles. 

l_~t us now consider a small perturbation of the basic state: 

= [0,V(x)] + [u(x,y, t ) ,v(x,y , t )]  (12) 

zb = - n ( x )  + h(x ,y , t ) ,  ~ = ~(x) + rl(x,y,t) - h(x ,y , t )  (13) 

where h is the perturbation of the bottom and r/is the perturbation of the free surface. 
Furthermore, to deal with dimensionless magnitudes, we choose as velocity and length 
scales the maximum of the longshore current and the distance from the shoreline where it 
takes place, that is, U = a/be and L = b -1. 

Of course, even though our analytic basic current profile decreases to 0 far offshore, it 
does not exactly vanish. Nevertheless, for practical purposes we will assume a finite width 
of the surf zone of the order of twice the distance from the shoreline to the maximum in the 
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current, that is, X b = 2L. A characteristic Froude number may be defined as f =  U/~/gI3L, 
related to the maximum Froude number of the basic flow, F, by F = ~/e/2f. All the fluid 
velocities in the model are scaled to U and the remaining variables are scaled according to: 

(x,y) = L(x',y'), t =  Tt' (14) 

U 2 
¢ = fiLe', h = flLh', r/ = - - r / '  (15) 

g 

where T is the morphological timescale which will be specified later. The next step is to 
linearize the governing equations (2)-(6), taking into account that the perturbations in 
equations (12) and (13) are small. After some standard calculations we obtain as linearized 
equations: 

_ _  C d  U L Ou + v O U +  Or/ + V = 0  (16) 
U--T Ot O y O x -fl -~ 

U---TL Ovot + _~V + vOVoy + OyO-~q + CdvV_~ _ Cd V2` 2 2 ~  ~--(Sq r/ -- h) = 0 (17) 

Ot -~ + (~u) + Oy \ Oy ~yy = 0 (18) 

flL a Oh + Oq__~ + Oqx = 0 (19) 
v TU m Ot Ox Oy 

where 

qy = ( V -  VJ" - l [mv  - fly(V - V¢) ! hI (20) 
oyj 

if V-> Vc and qx = qy = 0 otherwise. The bars have been dropped from terms which involve 
call V I and IV I - V c because we are concerned with a basic current such that V(x)>-O. In the 
dimensionless velocity field, a has been replaced by e and b by 1. Note that any 
perturbation in the driving forces, ~ ,  has been neglected. The reason for such an 
assumption is discussed later on, at the end of this section. Now, we choose the 
morphological timescale as the factor in the first term of equation (19), that is, T = 
flL2/vU m. On the other hand, L/Udefines a hydrodynamic timescale. Typical values of L 
and U in the field are 100 m and I m s -a respectively, so that the order of magnitude of L/U 
is of about 2 min, whereas the morphological time may be 1 h or more. Laboratory values 
may be estimated from an experiment by Horikawa and Sasaki reported by Sonu (1973) 
where the growth of rhythmic topography under oblique waves was observed. In this case, 
L -  2 m, U - 0.3 m s- l ,  giving a hydrodynamic time scale of about 7 s, whereas the time for 
significant morphological changes could be estimated to be at least of 10 min. Therefore, 
we may assume L/UT ,, 1, which allows us to drop the time derivatives in equations 
(16)-(17)-(18) .  This quasi-steady hypothesis means that the fluid adjusts instantaneously 
to the bottom configuration all the time and is very common in morphodynamic models 
(see SDS93). 

Now, we assume alongshore travelling wave solutions and we therefore assume 
dependences in time and in the alongshore coordinate of the form: 
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A " W 

(u,v,~l,h ) = [a(x),#(x),0(x),h(x)]e '(ky- 0 (21) 

Thus, ;l = 2n/k > 0 will be the wavelength of the sand waves and to its complex frequency. 
The migration speed will be given by the phase velocity, c = 9~e(to)/k = tot~k, and ~m(to) 
=coi will give the growth rate so that toi > 0 means instability and to; < 0 means stability. 
We also introduce the dimensionless parameter R = colfl and from equations (16) and (17) 
we obtain: 

u = -d--~lOx' v = -d22[~ - ~ x  + R f  ~-~ - ik r 1 - 

with dl = i kV  + RV/~ and d2 = i k V  + 2RVI¢ and where hats have been dropped for 
convenience. Then, by substituting equation (22) in (19)-(20) and considering appropriate 
boundary conditions we finally obtain an eigenproblem 

A(r i ,h  ) = iwBOl,h)  (23) 

with the eigenvalue to, and the eigenfunction (r/,h). Here, A, B are two linear operators 
involving 0x. As boundary conditions at infinity we have considered that the perturbations 
vanish, i.e. 

r/(oo) = 0, h(oo) = 0. (24) 

The shoreline, x = 0, is a singular point of the equations. A simple local analysis at this 
point shows that the regular solutions satisfy 

~(0) = 0, h(0) = 0 (25) 

so that equation (25) is an appropriate boundary condition at the shoreline. The physical 
meaning of this condition can be shown to be fluid and sediment conservation. 

We have neglected any perturbation in the driving terms, $;. This assumption filters out 
the bed-surf instability included in Hino's model and quoted in Section 1. Furthermore, 
the setup/setdown have been neglected in the model calculations because once the 
perturbation in the forcing terms has been dropped the setup/setdown would add just a 
small correction on the basic total depth, which would be in turn equivalent to just a small 
deviation from the assumed planar topography. In fact, the setup could be incorporated in 
this planar bathymetry by a small correction on the slope, fl, within the surf zone, and the 
setdown within the shoaling zone would result in a very small deviation from this planar 
topography (Horikawa, 1988). As will be seen, the model yields bedform growth only in 
the surf zone, so that the setdown is, indeed, negligible to our concern. Shear instabilities 
in the longshore current and the possible generation of edge waves have been filtered out 
by the quasi-steady hypothesis. Thus, only the bed-flow interaction has been selected as a 
single mechanism. It is worth noting that from a mathematical point of view our model is 
very close to the model in SDS93 for the formation of alternate bars in a channel. The only 
differences are (1) domain geometry: our "channel" has an infinite width and a transverse 
variation in depth; (2) basic flow: our basic flow has a transverse gradient; (3) free surface: 
we do not assume low Froude number (rigid lid); and (4) transport: we assume a threshold 
velocity for sediment transport. Thus, the present model may be considered as an 
extension of the model presented in SDS93 to more complex environmental conditions. 
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Therefore, the basic qualitative behaviour is expected to be essentially similar and the 
comparisons between the two models will be very helpful. 

3. NUMERICAL SIMULATION 

Equation (23) was solved numerically using rational Chebyshev expansions. A brief 
description of the method together with some useful references are presented in Appendix 
A. For each set of values of the parameters and for each wave number, k, solving the 
discrete version of equation (23) gives a spectrum of as many numerical eigenvalues to and 
eigenvectors (r/,h) as the number of discretization points, N. These eigensolutions may be 
either approximations of true solutions of the original problem or spurious solutions, that 
is, solutions of the numerical problem that do not converge to proper solutions when N 
increases. Therefore, a convergence test on the numerical solutions for increasing N is 
necessary and we have only considered as reliable solutions those whose eigenvalue varies 
less than 5% when Nincreases from N1 to N2. Usually, N1 = 40, N2 = 60 or N1 = 60, N2 = 
100. The rejected solutions may be either spurious ones or proper ones with too high a 
spatial complexity to be successfully described by the N = 40 or N = 60 meshes. 

We have conducted an exploration for several values of the parameters R = Cd/fl and fl 
by fixing F = 0.1, 0.3, 0.5. Physically realistic values are: F - 0.0-0.5, fl - 0.001-0.05 an d 
ca ~ 0.0005--0.02 (see, for instance, Falqurs et al., 1995). Accordingly, R could range from 
0.01 to 20. However, equilibrium beach profiles for coarse sand are steeper than profiles 
for finer sand, so that high values of the slope, fl, will usually correspond to high values of 
the roughness and therefore, large values of Ca. As a result, the ratio R= Cd/fl will not vary 
greatly, and typical values would range between 0.1 and 1. However, if small scale 
bedforms are present, or if the beach profile is above the equilibrium profile, R could be 
larger. On the other hand, a beach profile below the equilibrium profile would give smaller 
values of R, in such a way that high R would characterize accretion states and low R erosion 
states according to the nomenclature adopted by Wright and Short (1984). The power in 
the transport formula was always taken as m = 2, except for some particular tests where m 
= 1 was considered. The threshold velocity for sand transport, Vc, was set at 0.05 U (except 
for a few tests with Vc = 0.1 U, 0.5 U, 0.8U) and ), was fixed at 1. For each set of values of 
these parameters and for each k several reliable modes were found. The number of these 
solutions increases as the number of discretization nodes, N, increases. So, for each 
alongshore wave number, k, an infinite set of modes seems to exist. These modes will be 
numbered by n = 1, 2, 3... Mode 1 is the only reliable solution for a low mesh density, 
mode 2 the first appearing when the mesh density increases, mode 3 the second one and so 
on. As can be seen in Fig. 2 and similarly to SDS93, the mode number, n, is related to an 
increasing cross-shore spatial complexity. In dealing with numerical approximations, we 
have found the comparison with similar but simpler problems which can be solved 
analytically very helpful [see, for example, Bowen and Holman (1989) and Falqurs and 
Iranzo (1994) on shear instability of longshore currents]. In the present study the analytical 
results in SDS93 therefore lend support to our numerical model. 

Hereafter the growth rate of the eigensolutions, i.e. the imaginary part of the frequency 
to,., will be denoted by o. For each set of values of F, R, fl we obtained the tor - k curves or 
dispersion lines and the tr - k or instability curves for each mode, n. The instability curves 
show a span of unstable wavenumbers, namely o(k )  > 0, with a maximum o for some k 
which will be denoted by/~M (fastest growing or dominant wavenumber corresponding to 
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mode n), and whose growth rate will be ~ .  Typical instability and dispersion curves are 
shown in Figs 3-4. The dominant wavenumbers corresponding to the different modes are 
usually ordered as k~  < k2M < k3M < .... , that is, higher number modes have shorter 
dominant wavelengths. In contrast, the ordering of the maximum growth rates may change 
according to R for each given ft. For small R we find o ~  > o2M > ty3M > . . .  so that there exists 
a dominant mode (fastest growing mode) which is mode 1 (Fig. 3). In theory, this 
dominant mode and its wavelength could be compared to the topographic features 
observed in the field. On the other hand, Fig. 4 shows that for larger R we can have oJM < 
o2M and even a~  < o2M < o3M. The numerical procedure is, of course, not able to prove these 
inequalities for all mode numbers, n. In fact, in the latter case either the dominant mode 
would be a high mode or there would be no dominant mode, i.e. the {t~M, n = 1,2,3...} 
sequence could be unbounded. In general, the larger R is, the more complex the behaviour 
becomes. For instance, the instability curve for the first mode can have two relative 
maxima. Figure 5 shows that when R - 4 the second maximum, which has a wavenumber 
comparable to the dominant wavenumbers for the higher modes, is the absolute maxi- 
mum. 

The curves showing oM or 2M = 2~/kM as a function of R for some F,fl indicate the 
dominant instability mode and its wavelength for a given beach. As we can see in Figs 7 and 
8, for small R the dominant mode is always mode 1, but for larger R higher modes can be 
dominant. In the former case a fairly periodic pattern with a low cross-shore complexity 
can be predicted. According to Figs 7 and 8 the corresponding alongshore wavelength is 2M 
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4 - 8, that is, two to four times the surf zone width. We will refer to this case as the "low 
regime". Different behaviour occurs for larger R, when mode 1 is no longer dominant. In 
this case a far more complex pattern appears in which shorter wavelengths can prevail (2M 

2). We will refer to it as the "high regime". The transition between both regimes is given 
by the intercept of the curves corresponding to modes 1 and 2 in the a M  -- R diagram. The 
critical values ofF,  R, fl for this transition are presented in Fig. 6, where it can be seen that 
the transition moves to larger R for increasing beach slope, ft. 

Typically, the aM - R curve corresponding to each mode has a maximum, which 
indicates the beach parameters most conducive to the growth of this particular mode. The 
position of these maxima moves towards large R as n increases. In some cases the 
maximum instability occurs for mode 1 and for moderate values of R, say R - 0.5 (see Fig. 
7), whereas for other beaches the instability increases with R and with n outside the range 
of our numerical study (see Fig. 8). Typically, the former behaviour corresponds to steep 
beaches, say fl - 0.02 or more, and the latter one corresponds to gentle slopes, around fl 
0.01 or less. 

For very small R, the growth rates, OM, are very small but positive, at least for mode 1. 
So, the aM - R curve for mode 1 seems to have a (0,0) intercept, and therefore there is no 
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critical value Rc such that transition between stability and instability occurs. This has been 
seen by decreasing R either by decreasing Ca or by increasing ft. Figures 7 and 8 also show 
how the dominant wavelength, ;tM, usually increases with decreasing R. Nevertheless, 
mode 1 may invert this behaviour around R - 1 with a smooth increasing 21  for R 
increasing above 1. For a very small R the dominant wavelength ;t~t, is very large, with a 
very small growth rate. 

The phase speed is always positive, making the sand waves migrate downflow. For a 
given set of parameters, the phase velocity depends on the mode and on the wavelength. 
For the fastest wavelength of the dominant mode, ;tM, the phase speed, c,, is of the order of 
1, increasing slightly from 0.8 to 1.3 as R increases. This can be seen, for example, in Fig. 3, 
where the fastest growing wavenumber of the dominant mode (1), k = 1.2, has cr = 0.8. 
Figure 4 shows a corresponding phase speed of cr = 1.1 (mode 2, k = 3.2.) In addition, the 
typical growth time, o -1, can be compared with the period by means of the 2~tr/wr ratio. 
Figure 9 shows that for realistic values of R this ratio lies between 1 and 3, with a maximum 
near R = 0.5. This means that the sand waves can grow significantly in the time of taken to 
move one to one-third of wavelength. 
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In Fig. 10 typical contour lines of  the topographic perturbation corresponding to the first 
four modes  are shown. The computat ion has been performed for R = 1, F = 0.3, fl = 0.01. 
Mode 1 gives a simple transverse bars pattern. However ,  the higher modes  display an 
oblique bar structure which has a downflow skewed shape similar to an "S". Each wave 
crest has a series of secondary bumps and each wave trough a series of  secondary holes.  
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The angles between the mean sand wave crest and the normal to the shore are approxi- 
mately 3, 27, 40 and 58 °. In Figs 11 and 12 the corresponding plots of  the basic slope plus 
the perturbation are shown. The amplitude of the perturbat ion is not determined by the 
linear theory and has been chosen arbitrarily in order  to obtain physically meaningful 
plots. 

7 

~ ' e e  '~" n=2 (k,.,=3.25, o'1d=0.81) 

Fig. 1 l .  Sand wave modes 1 and 2: basic slope + topographic disturbance. The amplitude of the 
disturbance has been arbitrarily chosen. R = I,/3 = 0.01, F = 0.3, k = 2.25. 
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These numerical results can be summarized as follows: 
(1) Within the explored range of parameters, which is the physically reasonable range of 

large-scale bedforms in the surf zone, instability has always been found. This 
instability leads t6'the initial growth of bedforms or sand waves propagating down- 

o . ,  
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!i 
° . ~ q -  e 

• ° - na  "dP 

n=4 (ku=4.25,  ¢xu=0.31) 

Fig. 12. Sand wave modes 3 and 4: basic slope + topographic disturbance. The ampfitude of the 
disturbance has been arbitrarily chosen. R = 1, fl = 0,01, F = 0.3, k = 2.25. 
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flow. There are several sand waves modes numbered as 1, 2, 3 ... with increasing 
cross-shore complexity. Mode 1 is almost like a transverse bars system. The higher 
modes have a downflow skewed bathymetry with crests reminescent of oblique bars. 
Secondary bumps and holes appear in their crests and their troughs. 

(2) The main parameter controlling instability was found to be R = ca~ft. Typically, for R 
0.1--0.7, increasing R gives rise to a monotonous increase in growth rates that for R 

up to 0.5 may be estimated by 

tr M -- 0.9R °'6. (26) 

A further increase leads either to a maximum growth rate and then to a smooth 
decrease or to a sustained increase depending on whether the slope is steep or gentle 
and also depending on F. For very small R, growth rates of modes 2, 3,... are negative. 
However, the growth rate of mode 1 is very small but always positive. Therefore, 
transition does not exist, that is, there is no critical value, Re, below which the basic 
flow is stable. Instead, for very small R the model gives very large beach features 
growing very slowly. This is clearly in contrast with the channel case (SDS93), and it 
means that for beaches with very small R there would always be large-scale unstable 
modes growing very slowly in time. From a physical point of view this is irrelevant due 
to the very small growth rates, but from a mathematical one it means that there is no 
transition and that a standard weakly nonlinear analysis would be impossible. 

(3) The wavelength of the fastest growing mode is usually a decreasing function of R, and 
typical values may be around two to eight times the distance from the shoreline to the 
peak longshore current. Assuming that this distance is about half the current width, 
Xb, the wavelength would be around one to four times Xb. The cross-shore location of 
the bedforms is similar to the location of the current. 

(4) The behaviour of steep beaches is simpler than the behaviour of gently sloping 
beaches. Any beach of the former type has a maximum unstable situation which 
corresponds to mode 1 for some R - 0.5. In contrast, bed-flow instability in very 
gently sloping beaches increases with R and n, apparently without bound (as far as we 
could see with the numerical model). 

(5) For every beach of slope fl, if R is less than some critical value Rc(fl,F), the fastest 
growing mode or dominant mode is always mode 1. For larger values of R, higher 
modes may be dominant or there could even be no dominant mode. A natural beach 
which belongs to the first class would show a fairly periodic and simple pattern with 
transverse bars two to four times the width of the current apart. On the other hand, a 
beach of the second class would have a more complex downflow skewed bathymetry 
with bumps and holes in which shorter wavelengths could be dominant. In this latter 
case, even two different wavelengths can have the same growth rate yielding a quasi- 
periodic pattern. The critical value for this transition ranges from 0.5 to 1.3 and 
increases with increasing ft and decreasing F. In general, it is found that the most 
complex sand wave pattern is exhibited by very gently sloping beaches with large 
bottom friction. 

(6) The dimensionless phase speed, cr, is of the order of 1 (see Fig. 9) and the ratio 
between the period and the typical growth time ranges from 1 to 3 with the result that 
sand waves can grow significantly while they move only one-third to one wavelength. 
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4. THE PHYSICAL MECHANISM 

The present section will be devoted to gaining insight into the physical mechanism 
underlying the model. A more thorough discussion including a comparison with other 
theoretical models and with experimental data will be presented in Section 5. 

The behaviour of the sand waves (i.e. whether they grow or not, whether they migrate 
downflow or upflow, etc.) is governed by the phase lag between the periodic topographic 
pattern and the resulting periodic flow pattern. Growing bedforms need a convergence of 
sediment flux near the crests and divergence near the troughs. If such bedforms are 
downflow progressing, the maximum divergence of sediment transport (that is, the 
maximum erosion) should lag the wave crests in a phase ~, such that ~r/2 < ~b < ~. 
Therefore, given a disturbance on the bottom, we need to know the perturbation resulting 
in the flow. This problem was addressed in Falqu6s et al. (1993), but just some simple 
properties that can readily be seen from equations (16)-(18) are sufficient here for our 
purpose. We must emphasize that in contrast to Barcilon and Lau (1973), this phase lag, ~, 
is not assumed a priori but computed from the flow equations. For simplicity, we will 
assume Vc = 0. 

Let us first assume that there is no bottom friction, that is, R = 0. Moreover, for 
simplicity, we will neglect downslope transport, y = 0, which always produces a damping 
of instability [this can easily be seen from equation (29), where y appears only in the 
diffusive terms]. Then, by substituting equation (22) in (18) we obtain 

(~-~r/x)x + ( 1 -  ~v2)k2r/ = k2h (27) 

[see Falqu6s etal. 1993, equation (5)]. Obviously, if we consider a real bottom disturbance, 
h, equation (27) implies that the free surface perturbation, r/, will be real too, that is, will 
be in phase with respect to h. Then, according to equation (22), u will be imaginary, 
whereas v will be real. Finally, according to equation (20), the divergence of the sediment 
transport will be imaginary, that is, will have a phase lag of ~ = ___~t/2 with respect to the 
bed wave crests. Therefore, in the absence of bottom friction the sand waves will be 
neutral waves, namely, waves propagating without growth. This is in line with SDS93 (p. 
333). A few numerical tests that have been done for R = 0 also lend support to this 
statement. 

Let us now assume a one-dimensional flow. In this case, equation (16) requires no cross- 
shore variation in r/and from the other equations no cross-shore gradients are allowed. So, 
assume also Vx = 0, ~x = 0. Then, a combination of equations (17) and (18) leads to 

_ m ¢ F V "  
v . ~ ' =  ~ - i m k V " - l v  = ~2 h 

Oy 3RF2V 2 + ik¢(F2V 2 - 
(28) 

so that the phase lag between divergence of sand transport and wave crests is given by tan 
= (~2 _ FZV2)k~/3RF2V 2, from where, if F < 1, we have 0 < ~ < ~r/2. Therefore, in this 
case we find that there is no growth but a damping due to bottom friction (note that R = 0 
would again lead to ~ = ~t/2, i.e. neutral waves). 

So far, similarly to the case of alternate bars in a channel, we have proved that bottom 
friction and two-dimensional flow are necessary conditions for growing bottom disturb- 
ances. For the channel case, instability needs a power in the transport formula larger than 
1, m > 1. In contrast, some numerical tests indicated that this is not true for the coastal 
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case. The explanation for this is the following. From a combination of equations (18)-(20) 
we obtain 

Oh + m fly V~-~x + = 
at  ~ Oy Oy~, ~y ] J 

(rn - 1 )  V~-  '~x - [mV --(-~x -~--~x + (1 - m) vm-Zu + mF2 0rl (29) 
Oy 

in a close analogy with SDS93 [equation (3.18)]. Similarly to the channel case, the left hand 
side corresponds to an advection-diffusion equation that in the absence of forcing from the 
fight hand side would describe decaying travelling sand wave solutions. The first term on 
the fight hand side is similar to the single term in equation (3.18) of SDS93. However, the 
second one, related to the cross-shore gradients in the current and in the bathymetry, and 
the third one, related to the free surface, are new. If m = 1, the first term drops out but the 
second and third ones can produce unstable wave solutions, and they actually do, as we 
have found by numerical simulation. 

The existence of a dominant wavenumber for each mode would be due to a balance 
between the forcing provided by the terms on the right hand side of equation (29) and the 
diffusive terms on the left. The latter terms are proportional to k 2, whereas the former 
ones are either proportional to k or not dependent on k. Therefore,  short waves are stable. 
The behaviour of long waves is in contrast with the channel case as we found unstable 
waves with arbitrarily small wavenumbers. This can be understood as follows. When k 
0, the diffusive terms in equation (29) and also the first and the third term on the right 
vanish. In contrast, the second term on the right, related to the cross-shore gradients in the 
basic state, does not vanish and therefore becomes dominant.  

Finally, we will try to investigate why bottom friction yields sand wave growth and why 
this can only occur if cross-shore gradients are allowed. The explanation follows from a 
detailed examination of the potential vorticity. So, the first step is to derive a vortici~ 
equation. This can readily be achieved by taking the curl of equation (2) and replacing V. V 
with its expression from equation (3) yielding: 

aS =-ca-f y -  7x + 

where Vx = dV/dx is the background vorticity, 12 = Oxv - Oyu is its perturbation, and (Vx + 
~ ) / ~  is the total potential vorticity. Only l ine~  terms have been kept on the right hand 
side and any perturbation of the forcing terms, $;, has been neglected. Then it is easily seen 
that if there is no bottom friction, ca = 0, the potential vorticity is conserved. The first term 
on the right is a stabilizing one as it produces a decrease of disturbances on the background 
potential vorticity, Vx/~. However, the other two terms may produce a growth of 
disturbances if cross-shore gradients are allowed. So, bottom friction plays two roles in the 
vorticity dynamics: a damping one but also a (possibly) destabilizing one. Now we have to 
face the problem of finding the flow disturbance produced by a given bed perturbation. 
This problem has a simple analytical solution in the case where no cross-shore gradients in 
the basic state are allowed, Vx = 0,¢x = 0 (channel flow, SDS93). Although some 
important physical effects can arise from these cross-shore gradients, especially from the 
background vortieity Vx, we believe that the physical mechanism of bed-flow instability is 
basically the same for both river and coastal environments. Therefore, we will focus on the 



Bed-flow instability of the longshore current 1949 

former one, which is mathematically much simpler. Also, since the surface effects are not 
essential, low Froude number, F ~ 1, will be assumed. For the sake of consistency, we will 
keep the notation of the coastal case. Thus, our (x,y) coordinates correspond to ( -y ,x)  in 
SDS93 and our (u,v) to ( - v '  ,u'). Then, given a steady bed perturbation 

h(x,y) = e iky COS px (31) 

flOW equations (3.2) in SDS93 can readily be solved to find the resulting perturbation in the 
fluid motion: 

u - kp (kD- 3iR)eiky sin px, v = (1 -- pE(aRD + ik))dky cos px (32) 

where D = R(k 2 + 2p 2) + ik(k 2 + p2). In R = Cd/fl, fl has been defined as the depth to width 
ratio. If bottom friction is neglected, it can be seen from these equations that the maximum 
longitudinal velocity, V + v, occurs over the bar crests, y = 0, and the minimum on the 
troughs, y = ~r/k, so that neutral sand waves travelling downcurrent result. Moreover, the 
streamlines follow the topographic contours without lag [see Fig. 13(a)] and, according to 
equation (30), there is no vorticity, l'~ = 0. Over the crests, v decreases by moving away 
from the channel bank, that is, increasing 
maximum at the crests. Therefore, 19v/Ox is 
the absence of vorticity, 

Ou 
19y 

x, and this decrease achieves its alongshore 
negative and has its minimum there. Then, in 

1912 
lI (33) 

8x 

implies that also Ou/Oy will have its minimum at the crests. Notice that this alongshore 
minimum coincides with the location where the streamlines turn inshore, u = 0, because u 
depends harmonically on y. These statements can be derived from equation (32). 

When bottom friction is taken into account, equation (32) shows that the maximum 
longitudinal velocity lags the bed crests, so that the phase lag between divergence of 
sediment transport and bed crests becomes ~ > ~r/2 and, therefore, the bars grow. The 
occurrence of this phase lag can be understood in terms of the vorticity. Let us first 
consider the case of an isolated transverse bar. Consider a fluid particle initially without 
vorticity and approaching the bar, convected by the undisturbed flow velocity, V. As soon 
as the particle approaches the bar, it will find a transverse slope Oh~ Ox < 0 and thereby also 
a gradient Ov/Ox < 0 because flow tends to go faster in shallow rather than in deep water 
due to mass conservation. Then, looking at vorticity equation (30), we find that the second 
term on the right will be positive and will therefore create vorticity. The rise in vorticity will 
continue until a balance involving the first term is achieved. This process can easily be 
understood in terms of the torque due to the excess of frictional forces per mass unit in 
shallower water, both depth being smaller and the current stronger. Now let us assume an 
alongshore periodic sand wave train and a small bottom friction, Ca. In that case, the 
vorticity will be also alongshore periodic. Taking into account again the sign of Oh I Ox and 
av 18x, according to equation (30), the vorticity of a fluid particle will tend to increase over 
the crests and decrease over the troughs. Therefore, its maximum will be somewhere 
slightly downstream of the crests. Looking again at equation (33), we see that the location 
where the streamlines turn inshore, that is, where 8u/19y achieves its minimum, will now be 
slightly shifted downstream. Then, as shown in Fig. 13(b), the streamlines will diverge at 
the crests and owing to F ~ 1, by mass conservation, this will produce a maximum 
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longitudinal velocity slightly upstream of the crests rather than over the crests. As we have 
seen, this produces the growth of the bars. 

5. DISCUSSION 

Dimensional magnitudes will be used throughout this section, and the subindex M in 2 M, 
a M will be dropped out for the sake of simplicity, so that ~., cr refer to the dimensional 

(a) 

I ~Omin imun 

X 

accretion 

(b) 

Fig. 13. Sketch of the perturbation in the current caused by a sand wave train without bottom 
friction (a), and with bottom friction (b). A typical streamline and the location of the maximum and 
minimum longshore component are shown. The shifts produced by bottom friction are indicated in 

(b). 
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dominant spacing and growth rate of the topographic waves. Any application of bed-flow 
instability mechanism to field conditions will essentially have to do with topographic 
features that: (1) display some alongshore periodicity, and (2) migrate downcoast, along 
with a correlated meandering in the longshore current with, possibly, a correlated rip 
currents system. Alongshore rhythmic topographic patterns with horizontal lengthscale of 
the order of the surf zone width are commonly known as rhythmic topography (Sonu, 
1973; Wright and Short, 1984; Lippmann and Holman, 1990). Rhythmic topography is 
revealed very often by a system of sand ridges which joint the shoreline and are known as 
tranverse or oblique bars, depending on whether they are normal to the coast or skewed. 
They were called cusp-type sand waves by Sonu (1969) and defined as a series of crests and 
troughs along the shore. Each crest starts in a cusp on the shoreline and extends offshore. 
Transverse/oblique sand bar systems have been reported by many authors from open 
coasts (Evans, 1939; Hunter et al. ,  1979; Chappell and Eliot, 1979) or from sheltered 
beaches (Niedoroda and Tanner, 1970; Barcilon and Lau, 1973; Falquds, 1989). Abundant 
sand supply and very gentle slopes are conditions favouring their formation, and Evans 
(1938) pointed out that they are characteristic of beach profiles above equilibrium profile. 
Figures 14 and 15 provide two examples of oblique bar systems on high and on low energy 
beaches. 

Even though the morphological instability mechanism based on the longshore current 
was probably the first invoked to explain rhythmic beach topography (Sonu, 1969), little 
attention has been paid to it in comparison with mechanisms based on edge wave activity. 
Bowen and Inman (1971) showed how the net drift velocities associated with an infragra- 
vity standing edge wave (periods of 30-60 s) could provide an explanation for crescentic bar 
formation. Although this mechanism seems well suited to crescentic bars between 
headlands its extension to long straight beaches is not obvious, especially for wave lateral 
incidence where progressive edge waves rather than standing ones are expected. Holman 
and Bowen (1982) relaxed the hypothesis of standing edge waves and looked at any 
interaction of two progressive edge modes of the same frequency but different mode 
number and wavelength. They found that some combinations of edge waves lead to 
topographic patterns highly reminiscent of observed rhythmic features like, for instance, 
oblique bars. However, the theory lies on the hypothesis of  phase-locked interacting edge 
waves and it is not obvious why edge waves excited in natural beaches should be coherent 
and whether they actually are or not (Huntley, 1988). Several field studies provide 
evidence for the interaction between infragravity edge waves and rhythmic topography. 
Wright et al. (1986) and Aagaard (1991) obtained infragravity wave energy peaks at 
periods corresponding to edge waves of wavelengths highly correlated to the existing 
rhythmic topography at that moment. In a more detailed study, Bauer and Greenwood 
(1990) proved the presence of a mode 3 standing edge wave and showed how an initial 
linear longshore bar tended towards a crescentic bar in response to the forcing by this 
wave. In spite of all these efforts, Aagaard stated: "the definitive verification of the validity 
of the infragravity model has not yet been accomplished". Even though there is no doubt 
that crescentic bars and infragravity edge waves do often exist together, there are some 
cases where these waves are controlled by the inherited topography rather than being 
forced by the grouping of incident waves (Wright et al.,  1986). This suggests that even if 
topography-linked edge waves are present, it might happen in some cases that they are not 
the initial driving mechanism. 

For lateral wave incidence, even if edge waves are present, the morphological role of the 
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Fig. 14. Welded oblique bars on an open coast (Oregon, U.S.A.) after Hunter et aL (1979). 
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longshore current should not be underestimated, as it seems to have been for a long time. 
In a first instance, the longshore current can significantly disturb the edge wave character- 
istics (Falqu6s and Iranzo, 1992). But of major importance is that longshore currents can 
easily reach values of up to 1-1.5 m s -1 and have therefore an obvious capability for 
sediment transport and thereby morphological activity. Evidence for this activity at 
lengthscales relevant to surf zone dynamics is well established from alternate bar 
formation in river environments (SDS93). Therefore, it seems conceivable that the same 
physical mechanism as in rivers could operate in the surf zone environment even if other 
physical processes like edge wave activity or bed-surf instability also occur. Thereby, the 
predictions of the present model should apply to the initial stage of growing rhythmic 
features wherever there is a significant longshore current. We have nevertheless to keep in 
mind that the results of the model depend on the cross-shore extension and distribution of 
the longshore current. Therefore, the appropriate environmental conditions would be the 
surf zone of any sandy beach under lateral wave incidence. From equation (26) the 
dimensional growth rate can be easily obtained. First and according to the scaling defined 
in Section 2, the morphological timescale is T = flL21Q, where Q = vUm is of the order of 
the peak sediment transport, v ( U  - Vc) 'n, and can be considered as a characteristic rate of 
sediment transport (volume per width unit and time unit). Then, taking into account L = 
0.5Xt, and ;t ~ 3Xt, we obtain a dimensional growth rate 

a,~C 0"6 Q 
tr ~ -'~-~-i~ ~-~ • (34) 

Therefore, the typical growth time 0 -1 is longest for the largest features. Typical values of 
the sand transport rate Q for current intensity of order I m s -x may be of the order of 10 -4 
m 2 s -1 (Osborne and Vincent, 1993; Horikawa, 1988) so that for Cd ~ 0.005 and fl ~ 0.01 
growth times of the order of 13 h are obtained for rhythmic topographies with a spacing of 
100 m and of the order of 5 days for a spacing of 300 m. These orders of magnitude are in 
agreement with that observed, for instance, by Lipmann and Holman (1990): "Initial 
formation of longshore variability may be quite rapid, commonly less than i day after the 
peak of high wave events. Continued periods of low wave energy generally result in the 
formation of large scale three-dimensionality, with time scales of 5-7 days." A rough 
dependence of the dimensional growth rate on the height of the incoming waves, Ht,, can 
be obtained from the Longuet-Higgins model (Horikawa, 1988), which gives a longshore 
current scale U ~ (~r~-t,gHt,IR) sin at, where ?t, ~ 0.8, and where at, is the angle of wave 
incidence. A combination of this expression with the definition Q = vU m and equation (34) 
gives ,  

/2 m+5)/2 Cd m-4)/2 • (35) 

where it is seen that growth rates increase with the incidence angle, in agreement with 
Sonu's statement that lateral wave incidence favours rhythmic topography development. 
If the power m in the transport formula is smaller than 4, the growth rate in equation (35) 
increases with decreasing wave energy (a very common value is m = 3, and we took 2 in the 
numerical model). This might seem senseless because waves are the energy input, but it is 
easily understood assuming some ratio r = M X  b ~ 4 and a relationship between wave 
height and local depth at breaking ?b = Hbl~b" Then, it appears that 
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r 
2 = (36) 

~,bfl Hb 

from where the geometrical control in equation (34), 22, increases faster than the sediment 
transport, Q, under rising wave height (for m < 4). This is in agreement with the 
experimental observation that rhythmic features are most often seen under moderate and 
falling wave energy. Note that equation (35) would predict an increasing growth rate 
without bound for very small wave amplitude, which, of course, is unrealistic. This is due 
to the fact that the present model calculations are for only one value of the threshold 
velocity for sand transport, Vc = 0.05U. In fact, some calculations done with Vc = 0.1 U, 
0.5U, 0.8Ushow that for Vc - Uthe non-dimensional growth rate decreases for increasing 
Vc/U so that the trend is reversed and as a result, the dimensional growth rate also 
decreases to zero for lowering wave energy. 

Sonu (1969) noted that the migrational speed of sand waves, V,,,i, decreases with 
increasing wavelength, being proportional to 2 -4/5. In view of the inherent large error 
bars, V,,,i was proposed to be roughly proportional to 2-1. The dimensional phase speed is 
V,a = crL/T, where T is the morphological timescale and L = 0.5Xb the lengthscale. 
Taking into account that from the model calculations the dominant wavelength is 2 - 3Xb, 
and that the non-dimensional phase speed, cr, is of the order 1, the migration velocity for 
the dominant mode would then be 

V,,,i ~ 6 ~Q (37) 
g2 

in concordance with Sonu's statement. Clearly, as Sonu also suggested, the migrational 
speed also depends on the strength of the current in such a way that any prediction based 
on the field data presented in his article (Fig. 11) should be handled with care as there is no 
information on the currents. However, assuming the 2 -1 dependence, one can infer from 
the smaller sand waves in Sonu's Fig. 11: V m i  ~ 1.4 x 103/2 (in m day -1, 2 in m). This 
estimate, assuming fl - 0.01, is in agreement with Sonu's equation (3.2) for a sediment 
transport of Q ~ 3.0 x 10 -5 m 2 s -1 which is not unrealistic at all. An application of 
equation (3.2) to the laboratory experiment reported by Sonu (1973), with fl = 0.05, 2 -~ 
3 m, U ~ 0.3 m s -1 and Vmi ~- 1.1 × 10 -4 m s -1 would give Q = 2.8 x 10 - 6  m 2 s -1 which 
also seems realistic taking into account that the current was two or three times smaller than 
typical values for field conditions. By introducing this value of Q into equation (34) we 
obtain a growth time of 4 h, which is in rough agreement with the experimental results. 

Another important issue of morphodynamic models of rhythmic topography is the 
alongshore spacing or wavelength, 2. Although that reference to rhythmic topography is 
very common in the literature, data on spacing along with mean bottom slope and surf 
zone width is not so common. An indirect data source comes from the spacing between rip 
currents, which are assumed to be linked to rhythmic topography. Then, the many existing 
field observations of rip currents (see, for instance, Sasaki and Horikawa, 1975; Huntley 
and Short, 1992) lead to an observed wavelength to surf zone width mean ratio around 
2/Xb ~ 3 -- 4, but with a scatter from 1.5 to 8. The available direct observations of 
topographic features correspond, indeed, to this ratio. For instance, field data from 
Oregon reported by Hunter et al. (1979) gave a ratio of 6. The authors observed ratios 
between 1.5 and 4.5 in Trabucador Beach, a low energy beach in the Ebro Delta (see Fig. 
15). In the experiment reported by Sonu (1973) a 1.9 ratio was observed. All this is not in 
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disagreement with the present model, which gives a ratio ranging from I to 4. For values of 
R up to 0.3, which are very common, the dominant mode is mode I and the corresponding 
ratio then ranges between 3 and 4. 

As was mentioned in Section 1, Hino (1975) considered the full instability of a beach 
under wave attack, incorporating both instability mechanisms, bed-surf and bed-flow. For 
lateral wave incidence, namely, when the bed-flow mechanism is in operation, some 
comparison between his analysis and the present one can be made. Even with regard to the 
bed-flow mechanism, there are many differences between Hino's model and the present 
one. His current profile is linear up to the breaker line and then falls to zero. The bottom 
friction and the sand transport are both linear in the velocity (m = 1). The numerical model 
has some similarity with ours in that it is based on a Galerkin expansion, but the resolution 
is very low (N = 8) and at the end a more severe truncation is made. In spite of these 
differences a ;dXb = 4 ratio is obtained, very similar to that given by the present model. 
Unfortunately, Hino's paper does not give many details and no distinction is made in this 
final result between normal and lateral wave incidence. One has to assume that the ratio of 
4 is not likely to depend on the angle. This would not be surprising if we assume that bed- 
surf alone (normal incidence) gives a ratio of 4 and we take into account that bed-flow 
mechanism gives a ratio of 3-4. More recent research by Christensen et al. (1995) has 
reproduced Hino's analysis and no preferred wavelength was found. This discrepancy may 
perhaps be due to their assuming that the incoming waves were Rayleigh distributed 
instead of regular as Hino did. Another possibility is the low numerical resolution of 
Hino's numerical model. In the case of more realistic sediment transport modelling (either 
similar to ours with m = 3 or suspended load) a wavelength 2 ~- 6Xb is obtained. 
Apparently, no instability is found for normal incidence. This would mean that bed-flow 
instability should be the prevailing mechanism rather than bed-surf. Clearly, it appears 
that there is a need for more extensive research with a unified numerical model with the 
capability to select either of the two instability mechanisms or both together, to choose 
between several sediment transport models and to use alternatively regular or irregular 
waves. In addition to morphological instability models like the present one or Hino's 
model, purely hydrodynamic models can also account for the correct rip current spacing. 
For normal wave incidence, Miller and Barcilon (1978) found that the basic steady solution 
lacked uniqueness so that there can be a steady equilibrium with horizontal circulation 
cells. Curiously, the spacing between these eddies, ;t, has also values between 1.5 and 8, 
and is a decreasing function of the parameter R = Cd/fl. 

Barcilon and Lau (1973) reported some field observations on transverse bar systems in 
low energy beaches. Some other data on sheltered beaches are also available from 
Niedoroda and Tanner (1970), Sonu (1973) and Falqu6s (1989) (see Table 1). It is revealed 
that the spacing increases with decreasing bottom slope, so that the parameter fig does not 
vary very much, keeping values between 0.15 and I while the spacing, ~, ranges from 3 m 
(laboratory experiment; Sonu, 1973) to 1000 m (see Fig. 16). If edge waves were 
responsible for the rhythmic spacing, since the wavelength, 2ew, of an n mode edge wave of 
period Tew is given by 

1 + 2ng~--T~ed~ (38) 

it would be expected that rhythmic topography spacing increases with beach slope. This 
should happen if the period and the mode number were more or less fixed by the forcing, 
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but just the opposite trend is seen from the low energy data set out in Table 1. For the 
moderate to high energy beach data collected, f12 ranges between 1.4 and 6. In this case, 
the tendency of the spacing to increase with decreasing beach slope is not so clear, but at 
least, there is no tendency to decrease. This trend of 2 to not increase with the beach slope, 
fl, is not surprising because, owing to equation (36), the parameter f12 depends on the 
breaker amplitude through/32 = rHb/~'b. This suggests that the cases reported by Barcilon 
and Lau could be related to bed-flow instability for wave driven currents (rather than tidal 
or river-discharge) or to bed-surf instability (especially wave refraction, see Niedoroda 
and Tanner, 1970). In the case of edge wave related features, the tendency of 

Table 1, Mean beach slope and spacing corresponding to observed rhythmic 
topography 

Mean beach slope Mean alongshore Low/high Site* 
fl spacing 3, (m) energy 

0.00082 640 L 5 
0.001 1000 L 4 
0.0015 218 L 3 
0.0015 140 L 6 
0.0035 50 L 7 
0.0045 64 L 2 
0.0066 23 L 8 
0.01 60 L 1 
0.01 20 L 1 
0.05 3 L 9 
0.005 370 H 12 
0.01 600 H 10 
0.01 500 H 14 
0.01 136 H 11 
0.017 75 H 15 
0.02 300 H 16 
0.02 250 H 13 
0.03 92 H 17 

*Numbers correspond with the following beaches: 
1 Trabucador Beach, Ebro Delta, Spain. 
2 Florida, U.S,A. (Niedoroda and Tanner, 1970). 
3 Florida, U.S.A. (Niedoroda and Tanner, 1970). 
4 Mansel Island, Canada (Barcilon and Lau, 1973). 
5 Bethany Beach, Delaware, U.S.A. (Barcilon and Lau, 1973). 
6 St James Island, Florida, U.S.A. (Barcilon and Lau, 1973). 
70chlockonee Point, Florida, U.S.A. (Barciion and Lau, 1973). 
8 Silver Lake, Michigan, U.S.A. (Barcilon and Lau, 1973). 
9 Laboratory experiment by Horikawa and Sasaki (Sonu, 1973). 

10 Crescentic bar, Australia (Wright et al., 1978). 
11 Crescentic bar + transverse bars, Australia (Wright et al., 1978). 
12 Welded oblique bars, Australia (ChappeU and Eliot, 1979). 
13 Crescentic bar, Australia (Wright et al., 1986). 
14 Mean values crescentic inner bar, central Dutch coast (Short, 1992). 
15 Georgian Bay, Canada (Bauer and Greenwood, 1990). 
16 Oregon, U.S.A. (Hunter et al., 1979). 
17 Lake Michigan, U.S.A. (Evans, 1939). 
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the spacing not to increase with increasing beach slope suggests that infragravity edge 
waves would very often be controlled by the topography rather than the period of the 
grouping of the incident waves, and therefore in accordance with the observations by 
Wright et al. (1986) and also with Huntley and Short (1992). 

For R up to 0.5, which is very common in natural beaches, "low regime" prevails in the 
model, yielding transverse bars with a slight downcurrent skewness. This is not inconsist- 
ent with the observed transverse bars in low energy beaches but does not compare well 
with the welded bars on open coasts, which are very often almost parallel to the coast. The 
higher modes of the present model, which may be rotated 60 ° in the downcurrent 
direction, would be more suited to the latter case. This would nevertheless require R 
higher than 0.5, which is not very realistic except for, maybe, a rippled bed and/or beach 
profile well above equilibrium. Models that incorporate the bed-surf in addition to the 
bed-flow mechanism predict oblique bars for lateral wave incidence. However, Hino 
(1975) predicts downcurrent rotated crests whereas Christensen et al. (1995) predict 
upcurrent rotated crests. According to Christensen et al. (1995), this discrepancy might be 
explained by the differences in the longshore current profiles. But the point is that all the 
available observation of surf zone welded or oblique bars report downcurrent or down- 
wave skewness. It should be borne in mind, however, that all these models describe only 
the initial development of topographic features since they are based on linearized 
equations for small amplitude perturbations. When the bars grow significantly all the 
different mechanisms strongly interact and even though one mechanism may have been 
the driving one at the initial stage another can become dominant, imposing its own 
characteristic pattern. For instance, even if bed-flow was dominant at the initial stage, as 
soon as bedforms develop according to the present model, the incoming waves would be 

* * * * *  l ow  e n e r g y  
. . . . .  m o d e r a t e  t o  h i g h  e n e r g y  

6 -  • • 

Fig. 16. 

A • 

0 ~ * 

X (m) 
Beach slope, fl, and mean spacing, 2, for rhythmic topography on several beaches 

ranging from low to high energy. 
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disturbed and bed-surf mechanism would start to operate, modifying the initial shape of 
the bedforms. 

The model based on edge waves (Holman and Bowen, 1982) yields topographic patterns 
most reminiscent of observed welded bars on open coasts (see, for instance, Fig. 6 in their 
paper). This might be due to the fact that, although small amplitude edge waves are used, 
an equilibrium solution rather than an initial development is obtained. This concordance 
and the observation of edge waves linked to rhythmic topography prove that infragravity 
edge waves are, indeed, a very important factor for the development and maintenance of 
such topographic features but do not imply that they will always be the initial driving 
mechanism. 

In addition to river and surf zone sand bars, the bed-flow instability mechanism could 
also explain larger scale coastal topographic features like offshore generated sand waves 
eventually reaching the shoreline [as observed in the Nile Delta by Inman et al. (1993)]. It 
could also have some influence on shore connected sand ridges in the shelf [as observed on 
the Dutch coast; Van de Meene (1994)]. Our numerical model can therefore be applied to 
these sedimentary patterns. However, the validity of the present available results is 
restricted to the surf z~ne, as they drastically depend on the longshore current width and 
distribution. 

6. CONCLUSIONS 

It has been found that the longshore current on an erodible beach can be unstable due to 
the positive feedback between topographic disturbances and flow disturbances. The 
instability occurs as a result of the vertical vorticity generated by the topographically 
induced differences in bottom friction. Therefore, even though the mechanism is concep- 
tually similar to the dune or antidune growth mechanism for one-dimensional channel flow 
hypothesized by Sonu (1969) as an explanation for rhythmic topography, its two- 
dimensional geometrical nature makes it essentially different. Thus, the closest analogy 
may be found in the occurrence of alternate bars in a river. The instability causes the 
growth of alongshore periodic beach topography, downflow progressing or sand waves. 
The governing parameters are the bottom friction coefficient, Ca, the beach mean slope, fl, 
and the maximum Froude number, F. In general, the spatial patterns may be quite 
complicated, with several unstable modes. For steep beaches with a small bottom friction 
coefficient, that is, for small R = Cd/fl, the instability is very weak, perhaps negligible. 
Increasing R around 0.1-0.7 increases instability, which in this range gives, typically, a 
quite simple transverse bars pattern. A further increase in R leads to complex patterns with 
oblique bars, bumps and holes, and possible quasi-periodic spatial behaviour. In general, 
the most intense morphological activity and the most complex behaviour is found on very 
gently sloping beaches, for high bed roughness (large R) and high Froude number. 
Wavelengths decrease with increasing R, being of the order of one to four times the width 
of the longshore current, close to four times for the most common values of R in natural 
beaches. For the dominant mode, the e-folding time is between one-third to one times the 
period and sand waves may therefore grow significantly while they migrate one wave- 
length. 

In order to test the presence of this instability mechanism for field and laboratory 
conditions, it should be kept in mind that the observed topography may be a result of many 
nonlinear interacting mechanisms and it is very difficult to assess which was the driving one 
for the initial growth. For instance, bed-flow instability for wave driven longshore currents 
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is inseparable from bed-surf instability, that is, the instability stemming from the positive 
feedback between bottom disturbances and the disturbances in the incoming wave field. 
Moreover, infragravity edge wave activity has proved to be very often correlated to 
rhythmic topography. In spite of this difficulty, the comparison of the model prediction of 
sand wave initial growth with field and laboratory observations are encouraging. First, the 
ratio wavelength to surf zone width is in the correct order of 1.5-8, very close to the mean 
value, 3-4. The migrational speed is inversely proportional to the wavelength, in rough 
accordance with experimental data. The growth time is proportional to the squared 
wavelength, so that the largest features grow much more slowly than the smaller ones. In 
agreement with experimental observations, the model predicts that sand wave growth 
increases with the angle of wave incidence, and it is suggested that the maximum growth 
would correspond to some intermediate value between high and low incoming wave 
activity. Typical growth times of a sand wave train with a wavelength of 100 m are of the 
order of 1 day, depending on the sediment transport rate. This is not in disagreement with 
the available field data. Application of the model to a laboratory experiment in which a 
sand wave train with a wavelength of 3 m was generated yielded a growth time of 4 h, in 
close agreement with observations. 

Intriguingly, available field studies relate rhythmic patterns with accretion beach states 
and beach profiles above equilibrium profile, that is, when R is expected to be high and 
thereby the morphological activity due to the bed-flow mechanism more intense and 
complex. There is some controversy regarding the orientation of the crests of sand waves. 
According to observations, the bars may be normal or oblique. In the latter case, they are 
downcurrent skewed. However, the theory predicts downcurrent or upcurrent orientation 
depending upon the model. The present model yields transverse crests for low R and 
downflow rotated crests for high R. Anyway,  it seems that bar orientation is very sensitive 
to the longshore current profile. Clearly, it appears that there is a need for more extensive 
research with a unified numerical model having the capability to select any one of the 
individual instability mechanisms or all of them together, to choose between several 
sediment transport models and to use alternatively regular or irregular incoming waves. 
Curiously, some of the sand wave patterns are reminiscent of the spatial distribution of 
shear waves stemming from shear instability of the longshore current. Even though the 
timescales for both instabilities are very different, an investigation of the possible 
interaction between the two is also worthy of future research. 
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APPENDIX A 

NUMERICAL METHOD 

The method is based upon truncated expansions in Chebyshev polynomials, a map from 
[0, ~ )  to [ -1 ,1 )  and a collocation procedure. In order to briefly describe its application to 
the eigenproblem (equation 23) we will consider the simpler equation 

, ,d2u du a~x)-~ + b(x)~ + c(x)u = Xu, x • (0,oo) (A1) 

with boundary conditions u(0) = 0, u(oo) = 0, where ;t is an eigenvalue and u(x) its 
eigenfunction. This simple equation is used instead of equation (23) in order to avoid 
unnecessary complications. The first step is to consider the rational map from our domain, 
[0,oo), into the [ -1 ,1)  interval given by: 

x = ¢(~) = 11 + ~ ~ e ( - 1 , 1 )  (A2) 
1 - ~  

where I is a parameter which will be specified later on. The second step is to replace each 
unknown function by its expansion: 

N N 
= y a,,T,,(O = y a,,T,,(¢fl(x)) x • (0,oo) (A3) u(x) 

g,,,,,,,d 
n ~ O  ~ n = O  

where T,(~) = cos(n c o s - t 0  are the Chebyshev polynomials. Then, the Gauss-Lobatto 
nodes 

~ri 
~i = cos ~ i = 0 . . . N  (A4) 
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transformed into: 

xi = qb(~u-i), i =  0 . . .  N -  1 (A5) 

are considered. Notice that x0 = 0 and XN = o0. The I parameter is the distance from x = 0 
where there are half the discretization nodes. This makes it possible to control the mesh 
density, so that small values give a high density near x = 0, whereas large values expand the 
mesh. The suitable values depend on the problem we are solving. In the case of our 
morphodynamical model they are of the order of the longshore current width. The first and 
second order derivatives of any function, u(x), are computed by means of the D, D 2 
matrices: 

du(x) u - ,  
"~X Ix=x, = ~-~k=0 DjkUk 

M2U(X) N-1 2 

x=x  = 

j = 0 . . .  N - 1 (A6) 

j = 0 . . .  N - 1 (A7) 

where Uk = U(Xk). In order that these formulae be applicable the function must vanish at 
infinity so that the xN node has not to be taken into account. By means of the chain rule the 
following expressions for D, D 2 can be obtained: 

_ 1 D 1 - 2  _ (P"(~j) n j , k  = 0 . .  N - 1  (A8) (D)jk ~,~j)" jk (D2)jk : (~,(~j)2 (D) jk  (~,(~)3 xJJ k' 

where 15 and ~2 are the Chebyshev derivative operators, which can easily be obtained 
from the derivatives of Chebyshev polynomials (Canuto et al., 1988, p. 69). Finally, 
following a collocation procedure, the eigenproblem (A1) is replaced by its discretized 
version 

N-1 N--1 
a(xj) Z DEkuk + b(xj) Z DjkUk + C(Xj)Ui = ~,Uj, j ---- 1. . .  N - 1 (A9) 

k=O k=0 

u 0 =  0. 

The boundary condition at infinity, u(~) = 0, has been implicitly included simply by 
dropping the xN node. 

Equation (23) of our morphodynamical model has been discretized in the same way as 
has been shown for equation (A1), and the numerical problem has been solved by a 
standard eigenvalue computation subroutine. 

This spectral numerical technique has proved to have much higher resolution than the 
more traditional finite difference methods, and it has been applied efficiently to edge wave 
and shear wave computation. It can be applied to nonlinear problems as well (Falqu~s et 
al., 1995). The details can be seen in Falqu~s et al. (1993) or Iranzo and Falqu~s (1992). 
Some additional information on the numerical solution of similar eigenproblems may be 
found in Falqu6s and Iranzo (1994). The book by Canuto et al. (1988) provides a valuable 
general overview of numerical spectral methods applied to fluid mechanics. 


